CN113083367B - 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法 - Google Patents

一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法 Download PDF

Info

Publication number
CN113083367B
CN113083367B CN202110375486.7A CN202110375486A CN113083367B CN 113083367 B CN113083367 B CN 113083367B CN 202110375486 A CN202110375486 A CN 202110375486A CN 113083367 B CN113083367 B CN 113083367B
Authority
CN
China
Prior art keywords
carbon dioxide
nipc
catalytic
mpop
dioxide reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110375486.7A
Other languages
English (en)
Other versions
CN113083367A (zh
Inventor
臧双全
王珊
王乾有
董晓玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110375486.7A priority Critical patent/CN113083367B/zh
Publication of CN113083367A publication Critical patent/CN113083367A/zh
Application granted granted Critical
Publication of CN113083367B publication Critical patent/CN113083367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于多孔有机聚合物材料和催化化学的交叉领域,公开了一种新型二氧化碳还原光催化剂及其制备方法。本发明设计并制备了一系列同时包含M‑N4和M‑N2O2单原子位点的多孔有机聚合物NiPc‑MPOP。该聚合物不仅可以协同提高催化效率,而且还提供了更直接的机会识别金属中心活性。CO2的光还原结果表明,将带有Ni‑N2O2催化中心引入原始的酞菁基Ni‑N4框架可实现出色的CO生成能力(7.77 mmol g‑1),相对H2的选择性高达96%。结合对照实验和理论研究,与传统的Ni‑N4部分相比,Ni‑N2O2部分被证明是CO2RR活性更高的部位。本发明通过改变其配位环境,设计出更有效的单原子催化剂,为高效单原子催化剂的设计与合成提供了新的思路和理论依据。

Description

一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP 及其制备方法
技术领域
本发明属于多孔有机聚合物材料和催化化学的交叉领域,具体涉及一种二氧化碳还原光催化剂及其制备方法。
背景技术
化石燃料(石油,煤炭和天然气)的燃烧经常伴随着温室气体(GHG)的大量排放,其中绝大部分以二氧化碳(CO2)的形式排入大气。储量有限的化石燃料的持续消耗和CO2的过量排放,导致了能源紧缺和温室效应等重大问题。因此,利用太阳能或可再生电力将CO2转化为一氧化碳(CO)和其他增值化学品(甲烷、甲醇、甲酸、乙醇等)成为能源催化领域的研究热点。这种策略不仅可以降低大气中CO2含量,缓解温室效应带来的不良影响,而且可以缓解能源短缺问题。
单原子催化剂(SACs)由于其高效的原子利用率和优异的催化活性,在二氧化碳还原反应(CO2RR)中展现出良好的应用前景。然而,目前SACs的制备存在合成过程繁琐、催化位点微环境不可控及催化剂易失活等问题。同时由于存在整体化学环境的差异,单独调节一种单原子位点的配位微环境无法完整探究其对SACs催化性能的影响。因此,如何在分子水平上可控制备SACs,调节催化活性位点的微环境,研究不同的精细结构对SACs催化性能的影响,是目前亟待解决的重要科学问题。
基于多孔有机聚合物材料(POPs)的单原子催化剂凭借其结构可设计性、比表面积大、优异的化学和热稳定性等特点,为研究活性位点的微环境与催化反应活性及反应机理之间的构-效关系提供了理想平台。
发明内容
为开发高效、可实际应用的CO2RR光催化材料,本发明的目的在于提供一种具有高效光催化二氧化碳还原效果的单原子催化材料NiPc-MPOP及其制备方法。
具有M-N4(M=Co、Ni、Cu和Fe)活性位点的基于金属卟啉或金属酞菁的多孔有机聚合物作为SACs,已被广泛用于电/光催化CO2RR。考虑到其催化能力的稳定性和催化位点的可及性,本申请以镍酞菁和水杨醛衍生物作为构筑基元设计了二氧化碳还原光催化材料NiPc-MPOP。本发明利用多孔有机聚合物的高比表面积、配位结构可调协性、分散的单原子金属位点以及易于后修饰等特点,实现本发明目的。
为此,公开了一种同时存在M-N4和M-N2O2两类单原子活性中心的催化材料NiPc-MPOP,其呈二维网状结构,见图1。
该单原子催化材料NiPc-MPOP的制备方法通过如下步骤实现:
将2,3,9,10,16,17,23,24-八氨基酞菁镍(II)和2,6-二甲酰基苯酚加入到N,N-二甲基乙酰胺和均三甲苯的混合溶剂中,将所得混合物超声处理,加入苯胺和乙酸水溶液,密封在聚四氟乙烯反应釜中,通过溶剂热反应。冷却至室温后通过离心、洗涤、干燥得到单中心单原子材料NiPc-2HPOP。将NiPc-2HPOP添加到Ni(OAc)2·4H2O或Co(OAc)2·4H2O的饱和甲醇溶液中,在室温下搅拌,经离心、洗涤、干燥得到双中心单原子材料NiPc-NiPOP或NiPc-CoPOP。该材料具有较好的热稳定性及333m2 g-1以上的比表面积。含有如下分子结构单元:
Figure BDA0003010997750000021
本发明应用于光催化CO2RR。由于该材料存在氨基与水杨醛衍生物通过席夫碱反应生成的salphen单元,通过后修饰可以得到M-N2O2金属活性中心;材料通过共价键结合形成,共轭程度进一步增大,有利于电荷传输;该材料具有一定的孔道和比表面积,有利于反应底物与催化中心接触。因此,此材料能够高效快速的光催化CO2RR。
具体应用如下:
光催化CO2还原实验在60mL的定制石英反应瓶中进行。按典型的光催化体系,分别以三联吡啶氯化钌([Ru(bpy)3]Cl2)、三乙醇胺(TEOA)和该发明材料作为光敏剂、电子给体和催化剂,将称量准确的光敏剂、催化剂加入到反应瓶中。加入乙腈和TEOA后用硅胶塞和封口膜将反应瓶的瓶口密封,将混合物超声使体系内组分分散均匀,向体系中通入CO2气体以完全除去空气并使CO2达到饱和。白光LED作为光源进行光催化反应。用注射器吸取反应瓶中上层气体,使用气相色谱仪(N2作为气体载体)监测催化进程(图3所示)。
所需光照波长范围包含可见光的全部波段,即390nm~780nm;所需二氧化碳质量百分含量为10%~99.99%;所需催化剂用量:1~2mg;溶剂中含水质量百分比:0%~20%。
本发明优点:通过设计合成具有-N4和-N2O2配位的多孔有机聚合物基单原子催化剂,通过双球差校正扫描透射电子显微镜、X-射线光电子能谱以及X-射线吸收光谱等手段对其结构进行表征证明,通过光催化CO2还原实验结果可知,与传统的Ni-N4位点相比,同时包含Ni-N4和M-N2O2独特的NiPc-NiPOP和NiPc-CoPOP在4小时反应过程中表现出更高的CO和H2释放速率。对NiPc-NiPOP的光催化条件进行优化后,1mg NiPc-NiPOP在7.2mL乙腈和0.8mL水的溶剂体系中具有更高的CO选择性(96%)及产量(7.77mmol g-1)。NiPc-NiPOP的催化性能优于大多数已报道的基于POPs的CO2还原光催化剂,并且材料在循环3圈后仍能保持较高的催化稳定性。这一双中心单原子催化材料为深入探索高效SACs的制备和催化还原二氧化碳提供了实践参考和理论依据,为单原子催化剂的设计提供了行之有效的合成策略。
结合理论计算结果表明,与Ni-N4相比,具有Ni-N2O2微环境的单原子有效降低了CO2RR 反应动力学的吉布斯自由能,提高了与*COOH中间体的结合强度,这有利于CO2RR反应进行。该工作为高效SACs的设计合成提供了新的思路和理论依据。
附图说明
图1为本发明所述材料NiPc-MPOP的二维网状合成示意图(a)、NiPc-CoPOP的球差校正扫描透射电子显微镜图(b)及元素分布图(c)。
图2为本发明所述NiPc-CoPOP的Co和Ni K边缘处的FT-EXAFS光谱及相应EXAFS拟合曲线与金属配位结构模型图。
图3为本发明所述NiPc-MPOP作为催化剂,在光催化反应体系中的效果对比条件优化及 NiPc-NiPOP的循环稳定实验结果。
图4为本发明所述NiPc-MPOP作为模型,通过理论计算研究催化过程吸附能垒图。
图5为本发明所述NiPc-NiPOP作为CO2RR光催化剂的反应机理图。
具体实施方式
下面通过实例对本发明做进一步的说明:
实施例1:合成本发明NiPc-MPOP材料
将2,3,9,10,16,17,23,24-八氨基酞菁镍(II)(13.8mg,0.02mmol)和2,6-二甲酰基苯酚(12mg,0.08mmol)加入到N,N-二甲基乙酰胺和均三甲苯(v/v=3:2,1mL)的混合溶剂中,将所得混合物超声处理三分钟,加入苯胺(44μL,0.48mmol)和6.0M乙酸水溶液(0.2mL),密封在聚四氟乙烯反应釜中,150℃溶剂热反应7天。冷却至室温后通过离心、洗涤、干燥得到墨绿色单中心单原子材料NiPc-2HPOP。将NiPc-2HPOP(100mg) 添加到Ni(OAc)2·4H2O或Co(OAc)2·4H2O的饱和甲醇溶液(100mL)中,在室温下搅拌3天后离心、洗涤、干燥得到墨绿色双中心单原子材料NiPc-NiPOP粉末或NiPc-CoPOP粉末。该材料具有较好的热稳定性及333m2 g-1以上的比表面积。
取实施例1制得的材料NiPc-MPOP做进一步的表征,其过程如下:
(1)NiPc-CoPOP的单原子表征
本发明所述多孔有机聚合物的双球差校正扫描透射电子显微镜图像是将粉末样品分散在乙醇中并取悬浮液滴涂到超薄碳支持膜上,在JEM-2100设备上测定。原子级亮点证明单原子的存在。
(2)NiPc-CoPOP的配位环境表征
NiPc-CoPOP的配位环境表征是通过基于同步辐射的X射线吸收光谱(XAS)阐明。
表1 NiPc-CoPOP的EXAFS拟合结果
Figure BDA0003010997750000041
实施例2:NiPc-MPOP的光催化CO2RR测试
光催化CO2还原实验在60mL的定制石英反应瓶中进行。按典型的光催化体系,分别以三联吡啶氯化钌([Ru(bpy)3]Cl2)、三乙醇胺(TEOA)和该发明材料作为光敏剂、电子给体和催化剂,将称量准确的光敏剂(10mg)、催化剂(2mg)加入到反应瓶中。加入8mL乙腈和2mL的TEOA后用硅胶塞将反应瓶的瓶口密封,并用封口膜再次密封以确保反应体系的密闭性。将混合物超声3~5分钟使体系内组分分散均匀,向体系中通入半个小时CO2气体以完全除去空气并使CO2达到饱和。白光LED(400nm≤λ≤800nm)作为光源进行光催化反应。用注射器吸取反应瓶中上层气体,使用气相色谱仪(N2作为气体载体)监测催化进程。根据光催化实验结果可知,具有双中心的单原子材料NiPc-CoPOP和NiPc-NiPOP具有更好的光催化效果,这说明双中心单原子催化剂催化性能的优越性。通过调节溶剂的含水量(3%~20%),对NiPc-CoPOP和NiPc-NiPOP的光催化条件进行探索。实验结果表明,NiPc-CoPOP和 NiPc-NiPOP的CO选择性提高,NiPc-NiPOP在溶剂含量为10%时的选择性相对更高(90%)。进一步选择NiPc-NiPOP对其催化剂用量进行调整,发现当催化剂用量为1mg,光催化效果最好。在此优化条件下对NiPc-NiPOP的光催化循环实验进行测试,实验结果表明本发明材料具有良好的循环催化稳定性。
NiPc-MPOP光催化CO2RR的机理及催化性能与结构关系的研究:催化过程中中间产物的捕获和研究,对于催化过程以及机理的提出至关重要。为了研究NiPc-MPOP光催化途径,建立材料模型对其CO2RR和HER自由能进行计算。计算结果表明,与-N4相比,具有-N2O2微环境的单原子有效降低了CO2RR反应动力学的吉布斯自由能,提高了与*COOH中间体的结合强度,并促进了电荷转移过程,因而具有更高的光催化CO2RR活性。从上述实验和理论计算的结果出发,本发明提出了NiPc-NiPOP光催化CO2还原的可能机理。在光照射下,光敏剂[Ru(bpy)3]Cl2被激发并将电子转移到以M-N2O2模式配位的金属位点,牺牲剂三乙醇胺捕获空穴,通过质子辅助的两电子转移过程完成CO2-CO转化过程。

Claims (5)

1.一种单原子二氧化碳还原光催化材料,其特征在于:含有如下分子结构单元:
Figure DEST_PATH_IMAGE002
2.如权利要求1所述的单原子二氧化碳还原光催化材料,其特征在于:聚合物中同时存在M-N4和M-N2O2两类单原子活性,呈二维网状结构。
3.制备如权利要求1所述的单原子二氧化碳还原光催化材料的方法,其特征在于:通过如下步骤制备而成:
将2,3,9,10,16,17,23,24-八氨基酞菁镍和2,6-二甲酰基苯酚加入到N,N-二甲基乙酰胺和均三甲苯的混合溶剂中,将所得混合物超声处理,加入苯胺和乙酸水溶液,密封在聚四氟乙烯反应釜中,通过溶剂热反应;反应结束后,冷却至室温,通过离心、洗涤、干燥得到单中心单原子材料NiPc-2HPOP;将NiPc-2HPOP添加到M(OAc)2·4H2O的饱和甲醇溶液中,在室温下搅拌;经离心、洗涤、干燥得到双中心单原子材料NiPc-MPOP;所述M(OAc)2·4H2O选Ni(OAc)2·4H2O或Co(OAc)2·4H2O。
4.如权利要求1或2所述的单原子二氧化碳还原光催化材料的应用,其特征在于:满足光照、二氧化碳饱和、光敏剂和牺牲剂同时存在的条件下,将单原子二氧化碳还原光催化材料作为催化剂,应用于光催化二氧化碳还原。
5.如权利要求4所述的单原子二氧化碳还原光催化材料的应用,其特征在于:所需光照波长范围包含可见光的全部波段,即390 nm~780 nm;所需二氧化碳质量百分含量为10 %~99.99 %;所需催化剂用量:1~2 mg;溶剂中含水质量百分比:0%~20% 。
CN202110375486.7A 2021-04-08 2021-04-08 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法 Active CN113083367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110375486.7A CN113083367B (zh) 2021-04-08 2021-04-08 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110375486.7A CN113083367B (zh) 2021-04-08 2021-04-08 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法

Publications (2)

Publication Number Publication Date
CN113083367A CN113083367A (zh) 2021-07-09
CN113083367B true CN113083367B (zh) 2022-11-18

Family

ID=76674879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110375486.7A Active CN113083367B (zh) 2021-04-08 2021-04-08 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法

Country Status (1)

Country Link
CN (1) CN113083367B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600165A (zh) * 2021-08-16 2021-11-05 常州大学 四取代3-(4-甲酰基)苯氧基酞菁钴/多壁碳纳米管复合催化剂及其制备方法
CN113941348B (zh) * 2021-08-30 2023-05-12 郑州大学 Bp/bbs异质结构光催化剂及其制备方法和应用
CN114392774B (zh) * 2022-01-28 2024-01-23 湖南天氟新材料有限公司 一种聚合物负载协同催化剂的制备方法及其在二氧化碳光还原催化中的应用
CN114854034B (zh) * 2022-05-27 2023-03-24 武汉大学 一种钴酞菁和金属卟啉偶联的共价有机框架聚合物材料、制备方法及其应用
CN116393173B (zh) * 2023-03-07 2024-04-19 海天水务集团股份公司 一种模型单原子催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754597A (zh) * 2016-08-19 2018-03-06 中国科学院福建物质结构研究所 三嗪基多孔有机聚合物的制备及催化转化二氧化碳应用
JP2018176036A (ja) * 2017-04-07 2018-11-15 国立研究開発法人物質・材料研究機構 光触媒およびその使用方法
JP2019037921A (ja) * 2017-08-23 2019-03-14 国立研究開発法人物質・材料研究機構 固定化光触媒およびその製造方法
CN109794294A (zh) * 2019-02-11 2019-05-24 盐城师范学院 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
CN110314700A (zh) * 2018-03-28 2019-10-11 中国科学院理化技术研究所 一种光催化还原二氧化碳助催化剂、光催化体系及其应用
CN112138720A (zh) * 2020-09-15 2020-12-29 中国科学院青岛生物能源与过程研究所 氨基修饰的过渡金属单原子催化剂体系,其制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222046A (ja) * 1992-02-17 1993-08-31 Nippon Shokubai Co Ltd 含フッ素フタロシアニン化合物及びその製造方法
US10150096B2 (en) * 2017-03-20 2018-12-11 Wisys Technology Foundation, Inc. Heteroatom rich organic polymers with ultra-small pore apertures for carbon dioxide separation and/or conversion
CN111111786A (zh) * 2020-01-14 2020-05-08 西安工业大学 一种MOFs负载型燃油脱硫催化剂及其制备方法、用途
CN111477889A (zh) * 2020-06-02 2020-07-31 浙江大学 一种单原子铁-氮共掺杂碳电催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754597A (zh) * 2016-08-19 2018-03-06 中国科学院福建物质结构研究所 三嗪基多孔有机聚合物的制备及催化转化二氧化碳应用
JP2018176036A (ja) * 2017-04-07 2018-11-15 国立研究開発法人物質・材料研究機構 光触媒およびその使用方法
JP2019037921A (ja) * 2017-08-23 2019-03-14 国立研究開発法人物質・材料研究機構 固定化光触媒およびその製造方法
CN110314700A (zh) * 2018-03-28 2019-10-11 中国科学院理化技术研究所 一种光催化还原二氧化碳助催化剂、光催化体系及其应用
CN109794294A (zh) * 2019-02-11 2019-05-24 盐城师范学院 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
CN112138720A (zh) * 2020-09-15 2020-12-29 中国科学院青岛生物能源与过程研究所 氨基修饰的过渡金属单原子催化剂体系,其制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Coordination polymers with a pyridyl–salen ligand for photocatalytic carbon dioxide reduction;Yi Liu et al.;《Chem. Commun.》;20200305;第56卷;第4110-4113页 *

Also Published As

Publication number Publication date
CN113083367A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113083367B (zh) 一种高效光催化二氧化碳还原的单原子催化材料NiPc-MPOP及其制备方法
Fan et al. Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production
Zhang et al. MOFs-derived Cu3P@ CoP pn heterojunction for enhanced photocatalytic hydrogen evolution
Huang et al. Fabrication of hierarchical Co 3 O 4@ CdIn 2 S 4 p–n heterojunction photocatalysts for improved CO 2 reduction with visible light
Zhang et al. Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction
Zhu et al. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO 2 reduction into CH 4
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN105921163B (zh) 一种Fe‑N‑C氧还原催化剂及其合成方法和应用
Zhang et al. Type II cuprous oxide/graphitic carbon nitride pn heterojunctions for enhanced photocatalytic nitrogen fixation
Wang et al. Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production
Ji et al. A high-efficiency dye-sensitized Pt (II) decorated metal-organic cage for visible-light-driven hydrogen production
Gao et al. Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution
Jin et al. Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n–2) electron transport layer
CN114849785B (zh) 一种三嗪环共价有机框架材料掺杂卟啉钴光催化剂的制备
Bai et al. Hydrophilic regulated photocatalytic converting phenol selectively over S-scheme CuWO4/TiO2
CN111632612B (zh) 一种磷化铟-氧化铟p-n结多孔微球复合材料及其制备方法和应用
Zhang et al. An efficient ternary photocatalyst via anchoring nickel complex and nickel oxides onto carbon nitride for visible light driven H2 evolution
Zhao et al. 2D/2D heterostructure of metal-free ultrathin graphdiyne/carbon nitride nanosheets for enhanced photocatalytic reduction of carbon dioxide with water
Mao et al. Defect Engineering in CuS x/COF Hybridized Heterostructures: Synergistic Facilitation of the Charge Migration for an Efficacious Photocatalytic Conversion of CO2 into CO
Zhou et al. Fabrication of novel Mn0. 43Cd0. 57S/ZnCo2O4 pn heterojunction photocatalyst with efficient charge separation for highly enhanced visible-light-driven hydrogen evolution
CN111185199A (zh) 一种z型异质结光催化剂及其制备方法和应用
CN107754857B (zh) 一种还原co2光催化剂及其制备方法与应用
Meng et al. Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4
Guo et al. Molecular engineering of gC 3 N 4 with spatial charge separation for enhancing photocatalytic performances

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant