CN113083362B - 半均相金属酶集成纳米催化剂 - Google Patents

半均相金属酶集成纳米催化剂 Download PDF

Info

Publication number
CN113083362B
CN113083362B CN202110309470.6A CN202110309470A CN113083362B CN 113083362 B CN113083362 B CN 113083362B CN 202110309470 A CN202110309470 A CN 202110309470A CN 113083362 B CN113083362 B CN 113083362B
Authority
CN
China
Prior art keywords
semi
catalyst
homogeneous
metalloenzyme
organic molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110309470.6A
Other languages
English (en)
Other versions
CN113083362A (zh
Inventor
刘运亭
高士耆
姜艳军
高静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202110309470.6A priority Critical patent/CN113083362B/zh
Publication of CN113083362A publication Critical patent/CN113083362A/zh
Application granted granted Critical
Publication of CN113083362B publication Critical patent/CN113083362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B55/00Racemisation; Complete or partial inversion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/16Preparation of optical isomers
    • C07C231/20Preparation of optical isomers by separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/08Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/007Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Catalysts (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明涉及一种半均相金属酶集成纳米催化剂及其制备方法和应用,其中,半均相金属酶集成纳米催化剂包括由疏水性的有机分子笼包裹的钯金属纳米粒子,以及固定于所述有机分子笼表面的脂肪酶CALB。本发明所述的半均相金属酶集成纳米催化剂,利用疏水的有机分子笼作为稳定剂与固定化酶的载体,可实现金属催化剂与酶的分隔,避免两者的接触抑制。同时,有机分子笼能够为催化剂提供极强的疏水性,提高本催化剂在有机溶剂中的溶解性,从而可实现半均相催化剂,并改善催化剂的传质性能,进而能够有效提高催化剂的催化能力。

Description

半均相金属酶集成纳米催化剂
技术领域
本发明涉及纳米催化技术领域,特别涉及一种半均相金属酶集成纳米催化剂,同时,本发明还涉及一种半均相金属酶集成纳米催化剂的制备方法,以及该半均相金属酶集成纳米催化剂的应用。
背景技术
化学-生物催化领域兼具化学催化剂与生物催化剂二者的优点,在有机合成与精细化工领域发挥了巨大的作用,但是,化学催化与生物催化之间通常存在相互抑制现象,严重阻碍了两者的结合。虽然非均相金属酶集成催化剂可有效解决金属与酶相互抑制的问题,但非均相催化剂的固有性质导致的传质问题会导致其催化能力较低。
手性胺是合成药物的重要中间体,脂肪酶催化手性胺的传统动力学拆分法是获得手性胺单一对映体的有效途径之一,但该方法的最大产率较低。现在的金属酶级联催化反应虽能提高传统动力学拆分的产率,但仍存在以下诸多缺点:(1)金属催化剂与生物催化剂之间存在相互抑制;(2)相对于脂肪酶的最适反应温度,需要不低于70℃的较高的反应温度;(3)需要加入碱性添加物来抑制副反应的发生。
实用新型内容
有鉴于此,发明旨在提出一种半均相金属酶集成纳米催化剂,其能够避免动态动力学拆分反应中金属催化剂与生物催化剂之间的相互抑制,并可具有较高的催化能力。
为达到上述目的,发明的技术方案是这样实现的:
一种半均相金属酶集成纳米催化剂,包括由疏水性的有机分子笼包裹的钯金属纳米粒子,以及固定于所述有机分子笼表面的脂肪酶CALB。
进一步的,所述有机分子笼为通过动态醛胺缩合反应合成的有机亚胺分子笼,其结构式为:
Figure GDA0004045386130000021
相对于现有技术,发明具有以下优势:
本发明所述的半均相金属酶集成纳米催化剂,通过利用疏水的有机分子笼作为稳定剂与固定化酶的载体,可实现金属催化剂与酶的分隔,避免两者的接触抑制。同时,有机分子笼能够为催化剂提供极强的疏水性,提高本催化剂在有机溶剂中的溶解性,从而可实现半均相催化剂,并改善催化剂的传质性能,进而能够有效提高催化剂的催化能力。
另外,有机分子笼上的亚胺基团可作为固定化酶的锚点,并完成酶的固定化,操作简单,无需复杂的基团修饰步骤,且固定化酶的活性大于游离酶的活性。另外有机分子笼上的亚胺基团能够为手性胺消旋化反应和动态动力学拆分反应提供碱性环境,无需加入碱性添加物,并可有效避免副反应的发生。
此外,本发明涉及一种半均相金属酶集成纳米催化剂的制备方法,其特征在于:该制备方法包括以下步骤:
a、通过醛胺缩合反应合成疏水性的有机分子笼;
b、制备有机分子笼包裹的钯金属纳米粒子;
c、通过Ugi反应固定脂肪酶CALB,得到半均相金属酶集成纳米催化剂。
进一步的,其特征在于,步骤a包括:
a1、将均三苯甲醛和环己二胺分散在有机溶剂中;
a2、加入三氟乙酸作为催化剂,室温下搅拌反应2-10天;
a3、离心分离,利用二氯甲烷和甲醇的混合溶液洗涤,得到沉淀物,干燥后得到疏水性的有机分子笼。
进一步的,步骤b包括:
b1、室温下将有机分子笼分散于有机溶剂中,搅拌均匀,得到混合物;
b2、向混合物中加入钯前驱体;
b3、室温搅拌2-12h,升温至80℃-100℃后,搅拌1-5h,钯前驱体还原后,除去溶剂,得到有机分子笼包裹的钯金属纳米粒子。
进一步的,所述钯前驱体为醋酸钯或四氯钯酸钠。
进一步的,所述有机溶剂为甲醇、二氯甲烷或四氢呋喃。
进一步的,步骤c包括:
c1、将有机分子笼包裹的钯金属纳米粒子与脂肪酶CALB混合在pH为7.0-9.0的磷酸缓冲液中;
c2、加入异氰酸酯,至少搅拌20min;
c3、在5000-12000r/min下离心分离,再在低于5℃的条件下干燥,得到半均相金属酶集成纳米催化剂。
进一步的,所述异氰酸酯为叔丁基异氰酸酯、环己基异氰酸酯或环戊基异氰酸酯。
本发明所述的半均相金属酶集成纳米催化剂的制备方法,利用甲醇等温和还原剂在制备钯金属纳米粒子制备的同时,可有效避免对有机分子笼CC3的影响,能够保持有机分子笼CC3的性能;另外,本方法利用Ugi反应实现脂肪酶CALB的固定化,可充分利用有机分子笼CC3上丰富的亚胺基团,且可省去复杂的基团修饰步骤。因此,本制备方法操作简便,成本低,对酶的利用率高,具有很好的实用性。
最后,本发明还涉及上述半均相金属酶集成纳米催化剂的应用,所述半均相金属酶集成纳米催化剂用于在低于70℃时,无碱性添加物条件下的手性胺的动态动力学拆分反应。
本发明所述的半均相金属酶集成纳米催化剂应用于手性胺的动态动力学拆分反应时,其具有的钯金属可用于手性胺的消旋化,并与酶催化的动力学拆分结合,从而可实现手性胺的动态动力学拆分。另外,利用有机分子笼的疏水性能,可使得本发明的催化剂在加热反应条件下能够部分溶解,从而提高其催化活性;同时其具有的亚胺基团可为催化剂提供碱性微环境,因此,可在低于70℃时,无碱性添加物条件下用于手性胺的动态动力学拆分反应,并可具有较高的产率。
附图说明
构成发明的一部分的附图用来提供对发明的进一步理解,发明的示意性实施例及其说明用于解释发明,并不构成对发明的不当限定。在附图中:
图1为本发明实施例所述的半均相金属酶集成纳米催化剂的立体结构图;
图2为本发明实施例所述的半均相金属酶集成纳米催化剂的制备流程图;
图3为本发明实施例所述的由有机分子笼包裹的金属钯的粒径分布图;
图4为本发明实施例所述的加入不同量的异氰酸酯时,酶固定量与固化时间之间的曲线图;
图5为本发明实施例所述的加入不同量的异氰酸酯时,酶活回收率与固化时间之间的曲线图。
具体实施方式
需要说明的是,在不冲突的情况下,发明中的实施例及实施例中的特征可以相互组合。
另外,除本实施例特别说明之外,本实施例中所涉及的各术语及工艺依照现有技术中的一般认知及常规方法进行理解即可。
下面将参考附图并结合实施例来详细说明发明。
实施例一
本实施例涉及一种半均相金属酶集成纳米催化剂,其包括疏水性有机分子笼包裹的钯金属纳米粒子,以及固定于有机分子笼表面的脂肪酶CALB。
其中,有机分子笼为通过动态醛胺缩合反应合成的有机亚胺分子笼,其立体结构图如图1中所示,其结构式为:
Figure GDA0004045386130000051
制备例
本实施例的半均相金属酶集成纳米催化剂的制备流程如图2中所示,其制备过程如下:
(一)有机分子笼的合成
首先,将0.25g均三苯甲醛和5μL三氟乙酸溶解在5mL二氯甲烷中,再缓慢加入(1R,2R)-环己二胺0.25g,室温搅拌2天,过滤收集沉淀物。然后,利用体积比为5:95的二氯甲烷和甲醇的混合溶液清洗沉淀物,最后,于80℃烘箱中干燥3h,得到白色固体,该白色固定即为有机分子笼(CC3)。
(2)包裹金属钯
将20mg上述制备的有机分子笼分散在50mL甲醇中,超声分散后加入22.5mg醋酸钯,然后在室温搅拌6h。随后,将温度提高至80℃回流1h,待混合体系变为黑色后停止加热。冷却至室温,再使用旋转蒸发仪除去有机溶剂,得到的黑色粉末,该黑色粉末即为由有机分子笼包裹的钯金属纳米粒子(Pd@CC3)。
其中,上述醋酸钯加入量分别为22.5mg、16.9mg、11.2mg、5.6mg时,得到的由有机分子笼包裹的金属钯(Pd)的粒径调控如图3中所示。且图3中的a、a’对应于加入量为22.5mg,b、b’对应于加入量为16.9mg,c、c’对应于加入量为11.2mg,d、d’对应于加入量为5.6mg。且随着醋酸钯的加入量的减少,钯金属纳米粒子的粒径逐渐减小,a’图中示出的粒径平均为5.4nm,d’图中示出的粒径1.8nm,而有机分子笼功能单体的内部空腔尺寸平均约为0.8nm,因此,钯金属纳米粒子分布于各有机分子笼功能单体的外部,并由多个有机分子笼功能单体包裹。
由于Pd粒径越小,金属催化活性越高,因此本制备例选定醋酸钯溶液加入量为8.1mg,且此时参见图3中的d’,Pd的平均粒径为1.8nm。而通过ICP测定金属钯实际负载了大约为5wt%。
(三)半均相金属酶集成纳米催化剂的制备
将10mg上述制备的钯金属纳米粒子经超声均匀分散在1.8mL、pH为8.0的浓度为50mM的磷酸缓冲液中,室温下搅拌5min后,向其中加入0.2mL脂肪酶CALB和10μL异氰酸酯,室温下搅拌1h完成固定化。然后,在5000-12000r/min下离心分离,再利用pH为8.0浓度为50mM的磷酸缓冲溶液清洗三次,并在低于<5℃的条件下冷冻干燥后得到黑色固体,该黑色固体即半均相金属酶集成纳米催化剂(Pd@CC3@CALB)。
其中,图4为分别加入5μL、10μL、15μL和20μL的异氰酸酯时,固定量与固化时间之间的曲线图,而图5为分别加入5μL、10μL、15μL和20μL的异氰酸酯时,酶活回收率与固化时间之间的曲线图。且通过观察图4和图5,为提高对酶的固定化效果,本制备例选定加入10μL的异氰酸酯,固定化1h,此时,固定量达到55mg/g载体,酶活回收率达到游离酶的120%。
应用例
(一)半均相金属酶集成纳米催化剂用于在低于70℃时,无碱性添加物条件下的手性胺的消旋化反应
本应用例为将以上制备的半均相金属酶集成纳米催化剂用于在低于70℃时,无碱性添加物条件下的手性胺的消旋化反应中,其具体包括以下步骤:
将6mg的(R)-苯乙胺溶解于3mL干甲苯中,并向其加入15mg上述制备的半均相金属酶集成纳米催化剂,再加入30mg均三甲氧基苯作为内标物,置换氢气,维持氢气分压为0.1atm,反应通过气相色谱仪检测。
该反应的反应式如下:
Figure GDA0004045386130000071
通过改变半均相金属酶集成纳米催化剂中钯金属纳米粒子的粒径、反应温度和反应时间,并且利用气相色谱仪检测选择性,反应结果如下表1所示。
表1.不同钯金属纳米粒子粒径的消旋化反应
Figure GDA0004045386130000072
其中,a下标代表钯金属纳米粒子的粒径;b通过气相色谱检测选择性与ee值;c反应中加入碳酸钠作为添加物,d反应中加入0.5当量的有机分子笼作为添加剂。
通过以上表1可知,相较于现有技术,采用本实施例制备的半均相金属酶集成纳米催化剂可以在不加入碳酸钠作为碱性添加剂的条件下,实现低温(<70℃)消旋化,且具有优秀的选择性。
(二)半均相金属酶集成纳米催化剂用于在低于70℃时,无碱性添加物条件下的手性胺的动态动力学拆分反应
本应用例为将以上制备的半均相金属酶集成纳米催化剂用于在低于70℃时,无碱性添加物条件下的手性胺的动态动力学拆分反应中,其具体包括以下步骤:
将36mg的消旋苯乙胺与34mg的甲氧基乙酸乙酯溶解于3mL干甲苯中,并加入15mg上述制备的半均相金属酶集成纳米催化剂,再加入30mg均三甲氧基苯作为内标物,置换氢气维持氢气分压为0.1atm,60℃条件下反应,产率与ee值通过气相色谱仪检测。
通过不同取代基的底物的实验来验证催化剂的催化剂适用性,并且利用TLC监测反应进程,反应结果如下表2所示:
表2.不同取代基的动态动力学拆分
Figure GDA0004045386130000081
通过以上表2可知,相较于现有技术,采用本实施例制备的半均相金属酶集成纳米催化剂可以在不加入碳酸钠作为碱性添加剂的同时实现低温(<70℃)动态动力学拆分反应,且具有优秀的产率。
以上所述仅为发明的较佳实施例而已,并不用以限制发明,凡在发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在发明的保护范围之内。

Claims (4)

1.一种半均相金属酶集成纳米催化剂,其特征在于:包括由疏水性的有机分子笼包裹的钯金属纳米粒子,以及固定于所述有机分子笼表面的脂肪酶CALB;
所述有机分子笼为通过动态醛胺缩合反应合成的有机亚胺分子笼,其结构式为:
Figure FDA0004045386120000011
所述半均相金属酶集成纳米催化剂用于在低于70℃ 时,无碱性添加物条件下的手性胺的动态动力学拆分反应;
所述半均相金属酶集成纳米催化剂的制备方法包括以下步骤:
a、通过醛胺缩合反应合成疏水性的有机分子笼;
b、制备有机分子笼包裹的钯金属纳米粒子;
c、通过Ugi反应固定脂肪酶CALB,得到半均相金属酶集成纳米催化剂;
其中,步骤a包括:
a1、将均三苯甲醛和环己二胺分散在有机溶剂中;
a2、加入三氟乙酸作为催化剂,室温下搅拌反应2-10天;
a3、离心分离,利用二氯甲烷和甲醇的混合溶液洗涤,得到沉淀物,干燥后得到疏水性的有机分子笼;
其中,步骤b包括:
b1、室温下将有机分子笼分散于有机溶剂中,搅拌均匀,得到混合物;
b2、向混合物中加入钯前驱体;
b3、室温搅拌2-12h,升温至80℃ -100℃ 后,搅拌1-5h,钯前驱体还原后,除去溶剂,得到有机分子笼包裹的钯金属纳米粒子;
其中,步骤c包括:
c1、将有机分子笼包裹的钯金属纳米粒子与脂肪酶CALB混合在pH为7.0-9.0的磷酸缓冲液中;
c2、加入异氰酸酯,搅拌至少20min;
c3、在5000-12000r/min下离心分离,再在低于5℃ 的条件下干燥,得到半均相金属酶集成纳米催化剂。
2.根据权利要求1所述的半均相金属酶集成纳米催化剂,其特征在于:所述钯前驱体为醋酸钯或四氯钯酸钠。
3.根据权利要求1所述的半均相金属酶集成纳米催化剂,其特征在于:所述有机溶剂为甲醇、二氯甲烷或四氢呋喃。
4.根据权利要求1所述的半均相金属酶集成纳米催化剂,其特征在于:所述异氰酸酯为叔丁基异氰酸酯、环己基异氰酸酯或环戊基异氰酸酯。
CN202110309470.6A 2021-03-23 2021-03-23 半均相金属酶集成纳米催化剂 Active CN113083362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110309470.6A CN113083362B (zh) 2021-03-23 2021-03-23 半均相金属酶集成纳米催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110309470.6A CN113083362B (zh) 2021-03-23 2021-03-23 半均相金属酶集成纳米催化剂

Publications (2)

Publication Number Publication Date
CN113083362A CN113083362A (zh) 2021-07-09
CN113083362B true CN113083362B (zh) 2023-03-21

Family

ID=76669038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110309470.6A Active CN113083362B (zh) 2021-03-23 2021-03-23 半均相金属酶集成纳米催化剂

Country Status (1)

Country Link
CN (1) CN113083362B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305244A (zh) * 2022-07-26 2022-11-08 南昌大学 一种脂肪酶-钯铜双金属复合催化剂及其制备和在手性胺类化合物合成中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423875B1 (ko) * 2001-12-06 2004-03-22 주식회사 포스코 키랄 아민의 제조 방법
JP7082108B2 (ja) * 2016-04-16 2022-06-07 ザイムトロニクス キャタリティック システムズ インコーポレイテッド 生体ナノ触媒固定化用磁性マクロポーラスポリマーハイブリッド足場
CN106669822B (zh) * 2017-01-04 2019-11-05 河北工业大学 一种复合仿生矿化纳米生物催化剂的制备方法
CN109529945B (zh) * 2018-12-03 2019-11-08 清华大学 一种高分子-酶-金属复合纳米催化剂及其可控合成方法

Also Published As

Publication number Publication date
CN113083362A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN107774246B (zh) 一种中空介孔硅纳米胶囊核内负载钯催化剂的制备方法及其应用
CN109876801B (zh) 纳米碳负载高分散铂催化剂及其制备方法和在芳香族硝基化合物加氢反应中的应用
CN104140479B (zh) 一种氢化丁腈橡胶的制备方法
CN113083362B (zh) 半均相金属酶集成纳米催化剂
CN112371173B (zh) 一种应用于间硝基苯磺酸加氢的铂炭催化剂及其制备方法
CN111589443B (zh) 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法
CN111111777A (zh) 一种Pd基聚多巴胺包裹碳纳米管催化剂的制备方法及其在Heck反应中的应用
CN107227301B (zh) 磁性联合交联酶聚集体生物催化剂及其制备方法和应用
CN113457695A (zh) 一种锰镍铜基水处理催化剂及其制备方法和应用
CN115160111A (zh) 一种香兰素加氢脱氧反应的绿色催化方法
CN109158127B (zh) 负载有钯的二茂铁基超薄金属有机框架纳米片及其制备方法
CN110935481B (zh) 一种用于芳香醚键选择性氢解催化剂及制备和应用
CN117619388A (zh) 一种肉桂醛加氢制3-苯丙醛的核壳结构NiFe@C催化剂及其制备方法和用途
CN113042083A (zh) 一种钯基单原子催化剂及其制备与应用方法
CN112871199A (zh) 一种非均相负载型加氢催化剂、其制备方法以及其在加氢制备聚环己烷基乙烯上的应用
CN113398986B (zh) 一种催化不对称Aldol反应的pH敏感型催化剂及制备方法
CN114317629B (zh) 一种转氨酶连续化反应制备手性胺的方法
CN112973791B (zh) 席夫碱修饰的纤维素负载钯催化剂的制备方法
CN112774662B (zh) 一种单原子催化剂及其制备方法和应用
CN112675909A (zh) 一种聚多巴胺球锚定Pd纳米颗粒催化剂制备方法
CN109796305B (zh) 一种采用复合型催化剂制备环己醇的方法
CN107649184B (zh) 一种灌流硅胶/纳米金复合微球及其制备方法和应用
CN115161297B (zh) 三酶纳米反应器及其应用和手性叔α-苯基环醇的合成
CN114369592B (zh) 一种Pickering乳液及基于该乳液酶催化制备手性醇类化合物的方法
CN109126869B (zh) 壳聚糖修饰活性焦原位负载纳米金催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant