CN113061039A - 一种氮化铝陶瓷发热体的制备方法 - Google Patents

一种氮化铝陶瓷发热体的制备方法 Download PDF

Info

Publication number
CN113061039A
CN113061039A CN202110209261.4A CN202110209261A CN113061039A CN 113061039 A CN113061039 A CN 113061039A CN 202110209261 A CN202110209261 A CN 202110209261A CN 113061039 A CN113061039 A CN 113061039A
Authority
CN
China
Prior art keywords
aluminum nitride
ceramic heating
heating element
nitride ceramic
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110209261.4A
Other languages
English (en)
Other versions
CN113061039B (zh
Inventor
杨大胜
施纯锡
冯家伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD filed Critical FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority to CN202110209261.4A priority Critical patent/CN113061039B/zh
Publication of CN113061039A publication Critical patent/CN113061039A/zh
Application granted granted Critical
Publication of CN113061039B publication Critical patent/CN113061039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明涉及一种氮化铝陶瓷发热体的制备方法,包括:步骤一、一次球磨,在球磨机内加入甲基乙基酮、氮化铝粉体、5wt%的三氧化二钇粉体和三油酸甘油酯连续研磨,得到固体质量分数达到40%以上的一次球磨浆料;步骤二、二次球磨,在球磨机的一次球磨浆料内添加PVB粘结剂和聚环氧乙烯,球磨机继续研磨,直至得到氮化铝流延浆料;步骤三、制备生瓷片,将氮化铝流延浆料注入氮化铝陶瓷发热体模具内;步骤四、除泡;步骤五、将生瓷片从氮化铝陶瓷发热体模具内排出;步骤六、将生瓷片放置在高压条件下,加热至烧结温度1720℃~1820℃,保温时间为3h~5h,形成氮化铝陶瓷发热体。本发明能够提高氮化铝陶瓷发热体的机械强度。

Description

一种氮化铝陶瓷发热体的制备方法
技术领域
本发明涉及陶瓷发热体制备技术领域,尤其涉及一种氮化铝陶瓷发热体的制备方法。
背景技术
陶瓷发热体具备耐腐蚀、耐高温、寿命长、温度均匀和导热性能良好的优点。陶瓷发热体包括电加热丝,以及封装在电加热丝外的陶瓷外壳,电加热丝通电后发热通过陶瓷外壳传导热量以加热物体。
目前陶瓷发热体的陶瓷外壳一般采用氧化铝陶瓷、氧化铍陶瓷或氮化铝陶瓷。其中,氮化铝陶瓷的导热系数可达到150-300W/m·K,是氧化铝陶瓷的7-8倍,超过氧化铍陶瓷的导热系数,氮化铝陶瓷已经逐步取代了氧化铍陶瓷和氮化铝陶瓷应用于陶瓷发热体。
但是本发明人指出,在我国氮化铝陶瓷的商品化、工业化程度并不高,主要原因之一是氮化铝属于共价键化合物,原子自扩散系数小,甚至在制备过程中氮化铝陶瓷存在微小气泡,因此,氮化铝陶瓷很难烧结致密化,即难以获得高的机械强度。
发明内容
因此,针对上述的问题,本发明提出一种氮化铝陶瓷发热体的制备方法,能够提高氮化铝陶瓷发热体的机械强度。
为实现上述目的,本发明采用了以下技术方案:一种氮化铝陶瓷发热体的制备方法,包括以下步骤:
步骤一、一次球磨,在球磨机内以甲基乙基酮为介质,加入氮化铝粉体和5wt%的三氧化二钇粉体连续研磨,并且逐渐添加三油酸甘油酯直至达到氮化铝粉体的饱和吸附;
得到固体质量分数达到40%以上的一次球磨浆料;
步骤二、二次球磨,在球磨机的一次球磨浆料内添加PVB粘结剂和聚环氧乙烯的混合溶液,所述PVB粘结剂和聚环氧乙烯的体积之比为0.9~1.8;并且所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.55~0.6;
所述球磨机继续研磨,直至氮化铝粉体的粒度达到2~3μm,得到氮化铝流延浆料;
步骤三、制备生瓷片,将上述步骤二制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具内,包括以下子步骤:
1)将石蜡覆涂在氮化铝陶瓷发热体模具内壁;
2)在氮化铝陶瓷发热体模具内铺设电加热丝,所述电加热丝包括两个电极端,两个所述电极端延伸到氮化铝陶瓷发热体模具外;
3)步骤二中制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具内,并且氮化铝流延浆料将氮化铝陶瓷发热体模具内的电加热丝完全包覆在内;
步骤四、除泡,将超声波发生器的超声波探头与所述电加热丝的两个电极端接触,通过电加热丝形成高频机械振荡,氮化铝流延浆料内的微小气泡在高频机械振荡下迅速增大,并在脱离氮化铝流延浆料表面破裂,消除氮化铝流延浆料内的微小气泡;
步骤五、待氮化铝陶瓷发热体模具内的氮化铝流延浆料固化成型后形成生瓷片;将氮化铝陶瓷发热体模具浸泡于乙酸乙酯溶液内,直至氮化铝陶瓷发热体模具内壁的石蜡溶解,将生瓷片从氮化铝陶瓷发热体模具内排出;
步骤六、将生瓷片放置在压力为1000MPa~6000MPa的高压条件下,将生瓷片加热至烧结温度1720℃~1820℃,保温时间为3h~5h,形成氮化铝陶瓷发热体;
烧结结束后,先将压力降至标准大气压后,再将氮化铝陶瓷发热体逐渐降温至当前环境温度。
进一步的,所述PVB粘结剂和聚环氧乙烯的体积之比为1。
进一步的,所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.6。
进一步的,所述步骤六中,将生瓷片放置在压力为5000MPa的高压条件下。
进一步的,所述步骤六中,将生瓷片加热至烧结温度1770℃,保温时间为4h。
进一步的,所述步骤六中,生瓷片以20℃/min速率升温至1200℃,而后以10℃/min的速率升温至1770℃。
通过采用前述技术方案,本发明的有益效果是:本氮化铝陶瓷发热体的制备方法通过在一次球磨时加入三油酸甘油酯形成空间位阻效应,改善一次球磨浆料的流动性。而后进行二次球磨,添加PVB粘结剂提高烧结的氮化铝陶瓷发热体的致密度,从而提升其机械强度,添加聚环氧乙烯改善氮化铝陶瓷发热体的柔韧性及延展性。将制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具内,并且电加热丝的两个电极端与超声波探头接触,通过电加热丝形成高频机械振荡,消除氮化铝流延浆料内的微小气泡,提高氮化铝陶瓷发热体的致密度,从而提高氮化铝陶瓷发热体的导热率以及机械强度。而生瓷片放置在压力为1000MPa~6000MPa的高压条件下,将生瓷片加热至烧结温度1720℃~1820℃,保温时间为3h~5h,制备出的高氮化铝陶瓷发热体导热率高、致密度高、机械强度好。优选的,在本技术方案中,将生瓷片放置在压力为5000MPa的高压条件下,且生瓷片以20℃/min速率升温至1200℃,而后以10℃/min的速率升温至1770℃,保温时间为4h,制备出的氮化铝陶瓷发热体导热率和致密度高,也即氮化铝陶瓷发热体的机械强度高。
附图说明
图1是本发明实施例的氮化铝陶瓷发热体模具结构示意图。
具体实施方式
现结合附图和具体实施方式对本发明进一步说明。
参考图1,本实施例提供一种氮化铝陶瓷发热体的制备方法,包括以下步骤:
步骤一、一次球磨,在球磨机内以甲基乙基酮为介质,加入氮化铝粉体和5wt%的三氧化二钇粉体连续研磨,三氧化二钇粉体一方面可以与氮化铝粉体表面氧化形成的氧化铝反应生成较低熔点的第二相,由于液相表面的张力作用,促进氮化铝粉体晶粒的重排,加速烧结体致密化进程,另一方面形成的第二相冷却后,淀析凝结在晶界上,减少了高温下氧进入晶格的可能,起到净化晶格,提高热导率的作用。
并且为了改善一次球磨浆料的流动性,还在球磨机内逐渐添加三油酸甘油酯,由于氮化铝粉体表面可吸附三油酸甘油酯形成空间位阻效应,改善一次球磨浆料的流动性。但是要注意,若三油酸甘油酯添加量不足,则空间位阻效应弱,一次球磨浆料流动性差;而若三油酸甘油酯添加量过多,会导致一次球磨浆料产生絮凝;因此,应当保证逐渐添加三油酸甘油酯直至达到氮化铝粉体的饱和吸附。
得到固体质量分数达到40%以上的一次球磨浆料。
步骤二、二次球磨,在球磨机的一次球磨浆料内添加PVB粘结剂和聚环氧乙烯的混合溶液,通过添加PVB粘结剂和聚环氧乙烯可有效改善制备的氮化铝陶瓷发热体的柔韧性及延展性。
所述PVB粘结剂和聚环氧乙烯的体积之比为0.9~1.8;并且所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.55~0.6,制备出的氮化铝陶瓷发热体的导热率和机械强度高。
更优选的,在本具体实施例中,所述PVB粘结剂和聚环氧乙烯的体积之比为1;并且所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.6。
所述球磨机继续研磨,直至氮化铝粉体的粒度达到2~3μm,得到氮化铝流延浆料。在本具体实施例中,优选的,球磨机研磨氮化铝粉体的粒度达到2μm。
步骤三、制备生瓷片,将上述步骤二制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具1内,图1为所述氮化铝陶瓷发热体模具1结构,所述氮化铝陶瓷发热体模具1上开设有凹槽10;
包括以下子步骤:
1)将石蜡覆涂在氮化铝陶瓷发热体模具1的凹槽10内壁;
2)在氮化铝陶瓷发热体模具1的凹槽10内铺设电加热丝2,所述电加热丝2包括两个电极端20,两个所述电极端20延伸到氮化铝陶瓷发热体模具1外;
3)步骤二中制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具1内,并且氮化铝流延浆料将氮化铝陶瓷发热体模具1内的电加热丝2完全包覆在内。
步骤四、除泡,将超声波发生器的超声波探头与所述电加热丝2的两个电极端20接触,通过电加热丝2形成高频机械振荡,氮化铝流延浆料内的微小气泡在高频机械振荡下迅速增大,并在脱离氮化铝流延浆料表面破裂,消除氮化铝流延浆料内的微小气泡。通过将氮化铝流延浆料内的微小气泡消除,可以提高制备的氮化铝陶瓷发热体密度,提高氮化铝陶瓷发热体的导热率和机械强度。
步骤五、待氮化铝陶瓷发热体模具1内的氮化铝流延浆料固化成型后形成生瓷片;将氮化铝陶瓷发热体模具1浸泡于乙酸乙酯溶液内,直至氮化铝陶瓷发热体模具1的凹槽10内壁的石蜡溶解,将生瓷片从氮化铝陶瓷发热体模具1内排出。
步骤六、将生瓷片放置在压力为1000MPa~6000MPa的高压条件下,将生瓷片加热至烧结温度1720℃~1820℃,保温时间为3h~5h,形成氮化铝陶瓷发热体。
高压能够使得物质间的原子间距压缩,即烧结后的氮化铝晶格常数变小,从而增加生瓷片的致密度,而烧结温度也影响氮化铝陶瓷发热体的致密度和导热率。因此,在本具体实施例中,将生瓷片放置在压力为5000MPa的高压条件下,通过不同的烧结温度下分别得出的几组氮化铝陶瓷发热体的致密度和导热率如下:
烧结温度/(℃) 1720 1745 1770 1795 1820
导热率/(W/(m·k)) 214 233 248 251.5 253
致密度/(g/c㎡) 3.14 3.17 3.30 3.30 3.31
实验证明在烧结温度在1720℃-1770℃范围内,随着烧结温度升高,氮化铝陶瓷发热体的致密度和导热率都有明显的提升;但是在1770℃-1820℃范围内,随着烧结温度升,高氮化铝陶瓷发热体的致密度和导热率并没有明显的提升,烧结温度提高需要投入更多的成本和能源。因此本具体实施例,考虑到成本和能源最优化,优选的,将生瓷片放置在压力为5000MPa的高压条件下,且生瓷片以20℃/min速率升温至1200℃,而后以10℃/min的速率升温至1770℃,保温时间为4h,制备出的氮化铝陶瓷发热体导热率为248W/(m·k)和致密度为3.30g/c㎡,制得的氮化铝陶瓷发热体机械强度较为理想。
待氮化铝陶瓷发热体烧结结束后,先将压力降至标准大气压后,再将氮化铝陶瓷发热体逐渐降温至当前环境温度。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (6)

1.一种氮化铝陶瓷发热体的制备方法,其特征在于,包括以下步骤:
步骤一、一次球磨,在球磨机内以甲基乙基酮为介质,加入氮化铝粉体和5wt%的三氧化二钇粉体连续研磨,并且逐渐添加三油酸甘油酯直至达到氮化铝粉体的饱和吸附;
得到固体质量分数达到40%以上的一次球磨浆料;
步骤二、二次球磨,在球磨机的一次球磨浆料内添加PVB粘结剂和聚环氧乙烯的混合溶液,所述PVB粘结剂和聚环氧乙烯的体积之比为0.9~1.8;并且所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.55~0.6;
所述球磨机继续研磨,直至氮化铝粉体的粒度达到2~3μm,得到氮化铝流延浆料;
步骤三、制备生瓷片,将上述步骤二制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具内,包括以下子步骤:
1)将石蜡覆涂在氮化铝陶瓷发热体模具内壁;
2)在氮化铝陶瓷发热体模具内铺设电加热丝,所述电加热丝包括两个电极端,两个所述电极端延伸到氮化铝陶瓷发热体模具外;
3)步骤二中制备的氮化铝流延浆料注入氮化铝陶瓷发热体模具内,并且氮化铝流延浆料将氮化铝陶瓷发热体模具内的电加热丝完全包覆在内;
步骤四、除泡,将超声波发生器的超声波探头与所述电加热丝的两个电极端接触,通过电加热丝形成高频机械振荡,氮化铝流延浆料内的微小气泡在高频机械振荡下迅速增大,并在脱离氮化铝流延浆料表面破裂,消除氮化铝流延浆料内的微小气泡;
步骤五、待氮化铝陶瓷发热体模具内的氮化铝流延浆料固化成型后形成生瓷片;将氮化铝陶瓷发热体模具浸泡于乙酸乙酯溶液内,直至氮化铝陶瓷发热体模具内壁的石蜡溶解,将生瓷片从氮化铝陶瓷发热体模具内排出;
步骤六、将生瓷片放置在压力为1000MPa~6000MPa的高压条件下,将生瓷片加热至烧结温度1720℃~1820℃,保温时间为3h~5h,形成氮化铝陶瓷发热体;
烧结结束后,先将压力降至标准大气压后,再将氮化铝陶瓷发热体逐渐降温至当前环境温度。
2.根据权利要求1所述的一种氮化铝陶瓷发热体的制备方法,其特征在于:所述PVB粘结剂和聚环氧乙烯的体积之比为1。
3.根据权利要求2所述的一种氮化铝陶瓷发热体的制备方法,其特征在于:所述混合溶液与步骤一中制备的所述一次球磨浆料体积之比为0.6。
4.根据权利要求1或2或3所述的一种氮化铝陶瓷发热体的制备方法,其特征在于:所述步骤六中,将生瓷片放置在压力为5000MPa的高压条件下。
5.根据权利要求4所述的一种氮化铝陶瓷发热体的制备方法,其特征在于:所述步骤六中,将生瓷片加热至烧结温度1770℃,保温时间为4h。
6.根据权利要求5所述的一种氮化铝陶瓷发热体的制备方法,其特征在于:所述步骤六中,生瓷片以20℃/min速率升温至1200℃,而后以10℃/min的速率升温至1770℃。
CN202110209261.4A 2021-02-24 2021-02-24 一种氮化铝陶瓷发热体的制备方法 Active CN113061039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110209261.4A CN113061039B (zh) 2021-02-24 2021-02-24 一种氮化铝陶瓷发热体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110209261.4A CN113061039B (zh) 2021-02-24 2021-02-24 一种氮化铝陶瓷发热体的制备方法

Publications (2)

Publication Number Publication Date
CN113061039A true CN113061039A (zh) 2021-07-02
CN113061039B CN113061039B (zh) 2022-07-05

Family

ID=76559147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110209261.4A Active CN113061039B (zh) 2021-02-24 2021-02-24 一种氮化铝陶瓷发热体的制备方法

Country Status (1)

Country Link
CN (1) CN113061039B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014669A (zh) * 2021-12-16 2022-02-08 河北中瓷电子科技股份有限公司 一种抗拉伸氮化铝生瓷基片的制备方法
CN115448728A (zh) * 2022-09-06 2022-12-09 福建华清电子材料科技有限公司 氮化铝陶瓷加热片的制备方法及氮化铝陶瓷加热片
CN115849915A (zh) * 2022-12-23 2023-03-28 福建华清电子材料科技有限公司 一种氮化铝球滚制成型方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484176A (zh) * 2018-05-24 2018-09-04 宁夏艾森达新材料科技有限公司 一种高温共烧陶瓷用氮化铝生瓷片的制备方法
CN109384467A (zh) * 2017-08-10 2019-02-26 河北高富氮化硅材料有限公司 一种大功率散热用氮化铝基板的制备方法
CN110364732A (zh) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 一种水系电池中具有无机功能修饰层的复合锌负极及制备方法和应用
KR20190128935A (ko) * 2018-05-09 2019-11-19 주식회사 엘지화학 유무기 복합 필러, 이를 포함하는 방열성 조성물 및 유무기 복합 필러 제조방법
CN210579289U (zh) * 2019-02-27 2020-05-19 常州联德陶业有限公司 一种氮化铝陶瓷加热器
CN111484335A (zh) * 2020-04-22 2020-08-04 衡阳凯新特种材料科技有限公司 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用
CN111697229A (zh) * 2019-03-14 2020-09-22 浙江浙能中科储能科技有限公司 一种水系电池中具有无机修饰层的复合锌负极及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109384467A (zh) * 2017-08-10 2019-02-26 河北高富氮化硅材料有限公司 一种大功率散热用氮化铝基板的制备方法
CN110364732A (zh) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 一种水系电池中具有无机功能修饰层的复合锌负极及制备方法和应用
KR20190128935A (ko) * 2018-05-09 2019-11-19 주식회사 엘지화학 유무기 복합 필러, 이를 포함하는 방열성 조성물 및 유무기 복합 필러 제조방법
CN108484176A (zh) * 2018-05-24 2018-09-04 宁夏艾森达新材料科技有限公司 一种高温共烧陶瓷用氮化铝生瓷片的制备方法
CN210579289U (zh) * 2019-02-27 2020-05-19 常州联德陶业有限公司 一种氮化铝陶瓷加热器
CN111697229A (zh) * 2019-03-14 2020-09-22 浙江浙能中科储能科技有限公司 一种水系电池中具有无机修饰层的复合锌负极及制备方法
CN111484335A (zh) * 2020-04-22 2020-08-04 衡阳凯新特种材料科技有限公司 氮化硅陶瓷浆料用烧结助剂复合添加剂、氮化硅陶瓷浆料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114014669A (zh) * 2021-12-16 2022-02-08 河北中瓷电子科技股份有限公司 一种抗拉伸氮化铝生瓷基片的制备方法
CN115448728A (zh) * 2022-09-06 2022-12-09 福建华清电子材料科技有限公司 氮化铝陶瓷加热片的制备方法及氮化铝陶瓷加热片
CN115448728B (zh) * 2022-09-06 2023-05-26 福建华清电子材料科技有限公司 氮化铝陶瓷加热片的制备方法及氮化铝陶瓷加热片
CN115849915A (zh) * 2022-12-23 2023-03-28 福建华清电子材料科技有限公司 一种氮化铝球滚制成型方法

Also Published As

Publication number Publication date
CN113061039B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN113061039B (zh) 一种氮化铝陶瓷发热体的制备方法
CN112661518B (zh) 一种高导热氮化硅陶瓷绝缘板及其制备方法
CN109400175A (zh) 一种高导热氮化硅陶瓷基片材料的制备方法
CN102030556B (zh) 一种金刚石/碳化硅陶瓷基复合材料的制备方法
CN101684520A (zh) 超声辅助致密化装置
KR100620493B1 (ko) 탄화규소소결체 및 그 제조방법
CN105254306A (zh) 一种高导热氮化硅陶瓷的制备方法
CN115466123B (zh) 一种碳化硅陶瓷晶舟的制备方法
CN106376107A (zh) 大功率氮化硅陶瓷加热片及其内软外硬的制作方法
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN115028460B (zh) 一种高导热氮化硅陶瓷基片的制备方法
CN101913879A (zh) 氮化硅材料及其制备方法和氮化硅发热器件及其制备方法
CN113480319B (zh) 一种低介电常数碳化硅、高性能氮化硅陶瓷基板及其制备方法
CN107046739B (zh) 大功率氮化硅陶瓷加热片及其内硬外软的制作方法
CN112142474A (zh) 一种水基流延成型高导热氮化铝陶瓷基板的制备方法
CN103204682B (zh) 一种高导热氮化铝陶瓷散热基片及其制备方法
CN102635479B (zh) 车用氮化硅陶瓷预热塞的制备方法
CN112723875A (zh) 一种氧化镓掺杂氧化锡陶瓷靶材及制备方法
KR100917038B1 (ko) 탄화규소 소결체 제조용 세라믹 조성물, 소결체 및 그제조방법
CN110948711A (zh) 一种igbt陶瓷基片的制备方法
CN108893639A (zh) 一种短流程真空热挤压制备大锭型SiCP/Al复合材料坯料方法
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN102592763A (zh) 陶瓷热敏电阻的制备方法
CN116387004A (zh) 一种钕铁硼磁体的制备方法
JP2022038259A (ja) 酸化物焼結体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant