CN113061029A - 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法 - Google Patents

一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113061029A
CN113061029A CN202110324860.0A CN202110324860A CN113061029A CN 113061029 A CN113061029 A CN 113061029A CN 202110324860 A CN202110324860 A CN 202110324860A CN 113061029 A CN113061029 A CN 113061029A
Authority
CN
China
Prior art keywords
ceramic material
energy storage
sodium niobate
based lead
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110324860.0A
Other languages
English (en)
Other versions
CN113061029B (zh
Inventor
晁小练
王记通
杨祖培
彭战辉
石强强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202110324860.0A priority Critical patent/CN113061029B/zh
Publication of CN113061029A publication Critical patent/CN113061029A/zh
Application granted granted Critical
Publication of CN113061029B publication Critical patent/CN113061029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明公开了一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法,该陶瓷材料的通式为(1‑x)NaNbO3‑xLa(Mn0.5Ni0.5)O3,式中x代表La(Mn0.5Ni0.5)O3占总物质量的摩尔比,x的取值为0.05~0.2。该陶瓷材料通过配料、预烧、球磨、压片、无压密闭烧结等工艺步骤制备而成。本发明制备方法简单、重复性好、成品率高,所得陶瓷材料具有光伏效应,具有高的储能密度和储能效率、高居里温度和介电击穿强度、超快的充放电速度,其中x值取0.05时具有最高有效储能密度和储能效率,分别为1.77J/cm3和77.5%,介电击穿强度为200kV/cm、充放电速度t0.9小于50ns;x取值0.2时获得最大短路电流密度,Jsc为60nA/cm2,此时开路电压Voc为0.71eV。

Description

一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其 制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法。
背景技术
能源是世界各国发展的战略需求,进入21世纪以来,各国的发展依旧高度依赖传统能源,随着各种资源面临耗竭,由石油、煤炭、天然气等传统一次能源过度消耗引发的环境问题也受到关注。太阳能作为一种清洁可再生能源,仍是目前最有可能替代传统能源的一种新型能源。目前太阳能光伏电池主要分为硅基太阳电池、薄膜太阳电池、钙钛矿太阳能电池、铁电薄膜电池,铁电薄膜电池正处于起步阶段。早在1979年,Fridkin等人发现铁电晶体中具有反常光伏效应,但由于铁电体低的光吸收效率和高阻绝缘特性,使得铁电光伏效应的研究受阻。近年来,由于半导体工艺的发展和微加工技术的进步,铁电光伏效应的研究再次引发关注。2009年,T.Choi等在《Science上报道了BiFeO3的光伏效应,研究发现与p-n结电流的单向性不同,铁电材料的光生电流与极化方向有着密切的关系。2010年,S.Y.Yang等提出了新的铁电光伏机制:畴壁理论,在BiFeO3实验测得的开路电压Voc可达16V。铁电光伏电池与传统有机无机光伏电池最重要的不同源于全新的光生载荷分离机制,铁电材料最显著的特征就是具有自发极化,这些自发极化可以扮演p-n结中内建电场的作用来分离光生空穴和电子,因此相比于传统材料中p-n结的界面光伏效应,铁电光伏电池是一种体光伏效应,具有更强的电子空穴的分离与传输能力。铁电材料的光生电流受材料的极化强度和取向调控,其次由于其特殊的电学性质,与传统p-n结不同,铁电光伏电池的开路电压不受限于自生带隙大小,畴与畴之间产生的光生电动势可以叠加,在薄膜中易获得反常光伏效应,因此,铁电光伏电池的光电转化效率(77%),可以突破Shockley-Queisser理论极限(33%)。
目前,铁电光伏电池的光电转换效率仍处于较低水平(7%),铁电材料往往表现出高阻绝缘和宽带隙的特点,铁电材料的带隙大都高于3eV,这使得大多数铁电材料对太阳光的吸收集中于紫外光区,而对于可见光区的利用率很低,使得太阳电池的光生电流很小。因此,寻找具有低带隙和高极化强度的新型铁电材料是目前发展铁电太阳电池的关键。无铅铁电材料铌酸钠具有高极化强度和剩余极化强度,高的居里温度和易于调控的带隙,是一种非常有潜力的新型铁电光伏材料。
发明内容
本发明的目的是提供一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料,以及该陶瓷材料的制备方法。
针对上述目的,本发明具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料的通式是(1-x)NaNbO3-xLa(Ni0.5Mn0.5)O3,式中x代表La(Mn0.5Ni0.5)O3占总物质量的摩尔比,x的取值为0.05~0.2;该陶瓷材料为钙钛矿结构,有效储能密度和储能效率分别为0.14~1.77J/cm3、15%~77.5%,介电击穿强度为180~200kV/cm、陶瓷居里温度为430~240℃,带隙值调控在2.90~2.14eV范围内,短路电流密度为0.55~60nA/cm2,开路电压为0.68~0.71eV。
上述通式中,x的取值为0.05时,所述陶瓷材料为四方相钙钛矿结构,其具有良好的储能性能,有效储能密度和效率分别为1.77J/cm3和77.5%,介电击穿强度为200kV/cm,居里温度为380℃,带隙值2.57eV,短路电流密度为0.55nA/cm2,开路电压为0.71eV。
上述通式中,x的取值为0.2时,所述陶瓷材料为伪立方相钙钛矿结构,其具有良好的铁电光伏效应,介电击穿强度为200kV/cm,居里温度为240℃,带隙值2.14eV,短路电流密度为60nA/cm2,开路电压为0.71eV。
本发明具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料的制备方法由下述步骤组成:
1、配料
按照(1-x)NaNbO3-xLa(Ni0.5Mn0.5)O3的化学计量,分别称取纯度均为99.99%的Na2CO3、Nb2O5、La2O3、NiO以及纯度99.95%的MnO2,将称取的所有原料混合均匀后装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,850~950℃预烧4~6小时,自然冷却至室温,用研钵研磨,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过180目筛。
4、压片
将过180目筛后的预烧粉用粉末压片机压制成圆柱状坯件,然后在200~300MPa的压力下进行冷等静压15~20分钟。
5、无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先以10℃/分钟升温至1000℃,再以2~5℃/分钟的升温速率升温至1300~1350℃,烧结5~8小时,随炉自然冷却至室温,得到铌酸钠基无铅铁电陶瓷材料。
上述步骤5中,优选将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先以10℃/分钟升温至1000℃,再以3℃/分钟的升温速率升温至1325℃,烧结6小时,随炉自然冷却至室温。
本发明的有益效果如下:
1、本发明陶瓷材料具有光伏效应,高的储能密度和储能效率、高居里温度和介电击穿强度、超快的充放电速度,其中x=0.05时具有最高有效储能密度和储能效率,分别为1.77J/cm3和77.5%、介电击穿强度为200kV/cm、充放电速度t0.9小于50ns;x=0.2时获得最大短路电流密度为60nA/cm2,此时开路电压为0.71eV。
2、本发明陶瓷材料制备方法简单、重复性好、成品率高,实用性强、易于生产,兼顾储能和光伏特性,是一种性能优良的多功能无铅铁电陶瓷。
附图说明
图1是实施例1~4制备的铌酸钠基无铅铁电陶瓷材料的XRD图。
图2是实施例1~4制备的铌酸钠基无铅铁电陶瓷材料的Tauc图,内部图为材料紫外-可见吸收谱图和材料的带隙Eg随组分变化曲线图。
图3是实施例1~4制备的铌酸钠基无铅铁电陶瓷材料的介电击穿强度Eb、饱和极化强度Ps和剩余极化强度Pr随x值变化曲线图。
图4是实施例1制备的铌酸钠基无铅铁电陶瓷材料在不同电场下的单极电滞回线图。
图5是实施例1制备的铌酸钠基无铅铁电陶瓷材料在不同电场下的有效储能密度和储能效率图。
图6是实施例4制备的铌酸钠基无铅铁电陶瓷材料的光电流测试J-V曲线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
对比例1
1、配料
按照0.95NaNbO3-0.05La(Mn0.5Ni0.5)O3的化学计量分别称取纯度为99.99%的Na2CO3 5.33341g、纯度为99.99%的Nb2O5 13.37555g、纯度为99.99%的La2O3 0.86288g、纯度为99.99%的NiO 0.19781g、纯度为99.95%的MnO2 0.23035g,混合均匀,将原料混合物装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与原料混合物的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将原料混合物置于干燥箱内在80℃下干燥14小时,用研钵研磨30分钟,过80目筛。
2、预烧
将步骤1过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至950℃预烧5小时,自然冷却至室温,出炉,用研钵研磨10分钟,得到预烧粉。
3、二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,无水乙醇与预烧粉的质量比为1:1.2,用球磨机401转/分钟球磨24小时,分离锆球,将预烧粉置于干燥箱内在80℃下干燥15小时,用研钵研磨10分钟,过180目筛。
4、压片
将过180目筛后的预烧粉用粉末压片机压制成直径为11.5mm、厚度为0.8mm的圆柱状坯件,然后在250MPa的压力下进行冷等静压15分钟。
5、无压密闭烧结
将步骤4冷等静压后的圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先用10℃/分钟升温至1000℃,再以3℃/分钟的升温速率升温至1325℃,烧结6小时,随炉自然冷却至室温,制备成分子式为0.95NaNbO3-0.05La(Mn0.5Ni0.5)O3的铌酸钠基无铅铁电陶瓷材料。
实施例2
本实施例的步骤1中,按照0.9NaNbO3-0.1La(Mn0.5Ni0.5)O3的化学计量分别称取纯度为99.99%的Na2CO3 4.97648g、纯度为99.99%的Nb2O5 12.48040g、纯度为99.99%的La2O3 1.69973g、纯度为99.99%的NiO 0.38965g、纯度为99.95%的MnO2 0.45374g,其他步骤与实施例1相同,制备成分子式为0.9NaNbO3-0.1La(Mn0.5Ni0.5)O3的铌酸钠基无铅铁电陶瓷材料。
实施例3
本实施例的步骤1中,按照0.85NaNbO3-0.15La(Mn0.5Ni0.5)O3的化学计量分别称取纯度为99.99%的Na2CO3 4.63015g、纯度为99.99%的Nb2O5 11.61186g、纯度为99.99%的La2O3 2.51170g、纯度为99.99%的NiO 0.57579g、纯度为99.95%的MnO2 0.67050g,其他步骤与实施例1相同,制备成分子式为0.85NaNbO3-0.15La(Mn0.5Ni0.5)O3的铌酸钠基无铅铁电陶瓷材料。
实施例4
本实施例的步骤1中,按照0.8NaNbO3-0.2La(Mn0.5Ni0.5)O3的化学计量分别称取纯度为99.99%的Na2CO3 4.29397g、纯度为99.99%的NbO5 10.76876g、纯度为99.99%的La2O33.29989g、纯度为99.99%的NiO 0.75648g、纯度为99.95%的MnO2 0.88090g,其他步骤与实施例1相同,制备成分子式为0.8NaNbO3-0.2La(Mn0.5Ni0.5)O3的铌酸钠基无铅铁电陶瓷材料。
将上述实施例1~4制备的陶瓷材料各选取其中一个表面用320目的砂纸打磨,然后用800目的砂纸打磨,最后用1500目的砂纸和金刚砂抛光至0.5mm厚,用酒精超声并搽拭干净后研磨成粉,采用日本理学MiniFlex600型衍射仪进行XRD测试,结果见图1,采用Cary5000UV-Vis-NIR型紫外可见近红外分光光度计进行吸收特性测试,结果见图2。将实施例1~4制备的陶瓷材料抛光后,在陶瓷上下表面涂覆厚度为0.02mm、直径为2mm的金电极,采用AixACCT-TF2000型铁电参数测试仪进行铁电性能测试,其介电击穿强度、饱和极化强度、剩余极化强度随组分La(Mn0.5Ni0.5)O3含量(x值)变化关系见图3,其中实施例1陶瓷材料的单极P-E电滞回线结果和储能计算结果见图4~5;将实施例4制备的陶瓷材料打磨至200μm,抛光,用氙灯模拟标准太阳光照(AM1.5),采用Keithley 2410型数字源表记录光响应测试结果,见图6。
由图1可见,实施例1~4制备的陶瓷材料均为纯的钙钛矿结构,随着La(Mn0.5Ni0.5)O3含量的增加,材料的相结构由四方相转变为伪立方相。由图2可见,实施例1~4制备的陶瓷材料在紫外光区(200~400nm)的吸收最强,且随着第二组元La(Mn0.5Ni0.5)O3含量的增加,可见光区(400~800nm)的吸收明显增强,材料的带隙由2.90eV降至2.14eV。对实施例1~4制备的陶瓷材料的介电温谱研究表明,材料的居里温度分布为430~240℃。图3结果表明实施例1~4制备的陶瓷材料均具有较高的介电击穿强度,均保持在200kV/cm左右,其中实施例1(x=0.05)所制的陶瓷具有最优储能特性。图4为实施例1陶瓷材料在不同电场下的单极电滞回线测试结果,图5由图4结果拟合计算得来,可见,实施例1制备的陶瓷材料在电场200kV/cm下获得最优的储能密度1.77J/cm3和储能效率77.5%,击穿场强高达200kV/cm,充放电测试结果表明该陶瓷材料的充放电时间t0.9为47ns。图6表明,实施例4制备的陶瓷材料(x=0.2时)具有铁电光伏效应,其开路电压Voc=0.71eV,短路电流密度高达60nA/cm2。由此可见,本发明陶瓷材料兼具储能和优异的光伏特性。

Claims (5)

1.一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料,其特征在于:该陶瓷材料的通式为(1-x)NaNbO3-xLa(Ni0.5Mn0.5)O3,式中x代表La(Mn0.5Ni0.5)O3占总物质量的摩尔比,x的取值为0.05~0.2;该陶瓷材料为钙钛矿结构,有效储能密度和储能效率分别为0.14~1.77J/cm3、15%~77.5%,介电击穿强度为180~200kV/cm、陶瓷居里温度为430~240℃,带隙值调控在2.90~2.14eV范围内,短路电流密度为0.55~60nA/cm2,开路电压为0.68~0.71eV。
2.根据权利要求1所述的具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料,其特征在于:x的取值为0.05,所述陶瓷材料为四方相钙钛矿结构,有效储能密度和储能效率分别为1.77J/cm3和77%,介电击穿强度为200kV/cm,居里温度为380℃,带隙值2.9eV,短路电流密度为0.55nA/cm2,开路电压为0.68eV。
3.根据权利要求1所述的具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料,其特征在于:x的取值为0.2,所述陶瓷材料为伪立方相钙钛矿结构,介电击穿强度为200kV/cm,居里温度为240℃,带隙值2.14eV,短路电流密度为60nA/cm2,开路电压为0.71eV。
4.一种权利要求1所述的具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料
按照(1-x)NaNbO3-xLa(Ni0.5Mn0.5)O3的化学计量,分别称取纯度均为99.99%的Na2CO3、Nb2O5、La2O3、NiO以及纯度99.95%的MnO2,将称取的所有原料混合均匀后装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将原料混合物在80~100℃下干燥12~24小时,用研钵研磨,过80目筛;
(2)预烧
将步骤(1)过80目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,加盖,850~950℃预烧4~6小时,自然冷却至室温,用研钵研磨,得到预烧粉;
(3)二次球磨
将预烧粉装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨12~24小时,分离锆球,将预烧粉在80~100℃下干燥12~24小时,用研钵研磨,过180目筛;
(4)压片
将过180目筛后的预烧粉用粉末压片机压制成圆柱状坯件,然后在200~300MPa的压力下进行冷等静压15~20分钟;
(5)无压密闭烧结
将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先以10℃/分钟升温至1000℃,再以2~5℃/分钟的升温速率升温至1300~1350℃,烧结5~8小时,随炉自然冷却至室温,得到铌酸钠基无铅铁电陶瓷材料。
5.根据权利要求4所述的具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料的制备方法,其特征在于:在步骤(5)中,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先以10℃/分钟升温至1000℃,再以3℃/分钟的升温速率升温至1325℃,烧结6小时,随炉自然冷却至室温。
CN202110324860.0A 2021-03-26 2021-03-26 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法 Active CN113061029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110324860.0A CN113061029B (zh) 2021-03-26 2021-03-26 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324860.0A CN113061029B (zh) 2021-03-26 2021-03-26 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113061029A true CN113061029A (zh) 2021-07-02
CN113061029B CN113061029B (zh) 2023-01-17

Family

ID=76563897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324860.0A Active CN113061029B (zh) 2021-03-26 2021-03-26 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113061029B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
US20150325331A1 (en) * 2014-05-09 2015-11-12 The Penn State Research Foundation Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
CN105645958A (zh) * 2015-12-29 2016-06-08 中国计量学院 一种铌酸钠无铅反铁电压电陶瓷的制备方法
CN106518058A (zh) * 2016-10-27 2017-03-22 北京工业大学 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN107382318A (zh) * 2017-09-01 2017-11-24 湖北大学 一种高机械强度铌酸钾钠基无铅压电陶瓷材料及其制备方法和应用
CN112408983A (zh) * 2020-11-26 2021-02-26 四川大学 一种铋酸镧掺杂铌酸钾钠基多功能陶瓷材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
US20150325331A1 (en) * 2014-05-09 2015-11-12 The Penn State Research Foundation Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
CN105645958A (zh) * 2015-12-29 2016-06-08 中国计量学院 一种铌酸钠无铅反铁电压电陶瓷的制备方法
CN106518058A (zh) * 2016-10-27 2017-03-22 北京工业大学 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN107382318A (zh) * 2017-09-01 2017-11-24 湖北大学 一种高机械强度铌酸钾钠基无铅压电陶瓷材料及其制备方法和应用
CN112408983A (zh) * 2020-11-26 2021-02-26 四川大学 一种铋酸镧掺杂铌酸钾钠基多功能陶瓷材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗泳文等: "铌酸钠无铅陶瓷的制备和性能研究", 《功能材料》 *

Also Published As

Publication number Publication date
CN113061029B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Liu et al. Growing high-quality CsPbBr 3 by using porous CsPb 2 Br 5 as an intermediate: a promising light absorber in carbon-based perovskite solar cells
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
US9399815B2 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
CN102832266B (zh) Plzt铁电光伏器件及其制备方法
CN110400931B (zh) 一种具有超晶格有序结构的锰基储钠型正极材料及其制备方法
CN107459350B (zh) 一种介电储能反铁电陶瓷材料及其制备方法
CN106282926A (zh) 一种室温溅射法制备二氧化钛薄膜的方法
CN111393160B (zh) 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法
CN106587997A (zh) 一种SrTiO3基无铅高储能密度陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN110128140A (zh) 一种镱铝共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN113004038B (zh) 一种高击穿场强、高光电流密度的铌酸钠基无铅铁电陶瓷材料及其制备方法
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN106699173B (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN113024250B (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN110511019A (zh) 一种有效降低应变滞后性的bnt基无铅铁电陶瓷及其制备方法
CN113061029B (zh) 一种具有储能和光伏效应的铌酸钠基无铅铁电陶瓷材料及其制备方法
CN103938156B (zh) 一种铕掺杂的铁酸铋薄膜及其制备方法和应用
CN103194231B (zh) 一种稀土/金属离子掺杂下转换发光增强材料及其制备方法
KR20150084834A (ko) 산화물 소결체, 그것을 이용한 스퍼터링 타깃 및 산화물막
CN109400153B (zh) 一种应用于压电能量收集具有高换能系数的四元系陶瓷材料及制备
CN108727021B (zh) 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN107337452B (zh) 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法
CN116023138B (zh) 一种应用于宽温区内能量收集的无铅压电陶瓷材料及制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant