CN113035931A - 沟槽式金属氧化物半导体场效应管器件及其制造方法 - Google Patents

沟槽式金属氧化物半导体场效应管器件及其制造方法 Download PDF

Info

Publication number
CN113035931A
CN113035931A CN202010113782.5A CN202010113782A CN113035931A CN 113035931 A CN113035931 A CN 113035931A CN 202010113782 A CN202010113782 A CN 202010113782A CN 113035931 A CN113035931 A CN 113035931A
Authority
CN
China
Prior art keywords
region
conductivity type
doping concentration
junction
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010113782.5A
Other languages
English (en)
Other versions
CN113035931B (zh
Inventor
刘莒光
罗祎仑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Excelliance Mos Corp
Original Assignee
Excelliance Mos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Excelliance Mos Corp filed Critical Excelliance Mos Corp
Publication of CN113035931A publication Critical patent/CN113035931A/zh
Application granted granted Critical
Publication of CN113035931B publication Critical patent/CN113035931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66537Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种沟槽式金属氧化物半导体场效应管器件及其制造方法。所述器件包括基板、具有第一导电型的外延层、位于外延层中的沟槽内的栅极、栅氧化层、具有第一导电型的源极区、具有第二导电型的本体区与抗击穿掺杂区。抗击穿掺杂区是位于本体区与源极区的界面,且其掺杂浓度高于本体区的掺杂浓度。外延层具有接近源极区的第一pn结和接近基板的第二pn结。以两个pn结之间划分为N等分的N个区域,N是大于1的整数。所述N个区域内的掺杂浓度愈接近第一pn结愈大。所述N个区域分别具有一掺杂浓度积分面积,且所述N个区域中愈接近第一pn结的区域的掺杂浓度积分面积愈大。通过抗击穿掺杂区使该处具有陡峭的浓度分布,因此改善器件的UIS能力。

Description

沟槽式金属氧化物半导体场效应管器件及其制造方法
技术领域
本发明涉及一种功率半导体器件,尤其涉及一种沟槽式金属氧化物半导体场效应管元件及其制造方法。
背景技术
在功率半导体器件中,垂直设置于沟槽的功率半导体器件因为能大幅增加单元密度,所以已成为各界发展的重点之一。
图1是已知的一种沟槽式金属氧化物半导体场效应管器件的示意图。在图1中,基板100上的外延层102内有源极区104和本体(body)区106,而沟槽式栅极108则是设置于外延层102中,内层介电层(ILD)110覆盖外延层102与沟槽式栅极108。另外,沟槽式栅极108表面会有栅氧化层112。
图2是沿着图1的沟槽式栅极结构108的侧壁108a的掺杂浓度曲线图,其中显示源极区104和本体区106之间的掺杂浓度分布平缓,而使本体电阻(body resistance)变高。一旦本体电阻变高,将容易造成寄生N(源极104)-P(本体106)-N(外延层102)双极性晶体管导通,MOSFET发生二次崩溃(Secondary breakdown),使得器件温度上升,造成器件永久损伤,即非箝位电感开关(Unclamped Inductive Switching,UIS)的性能变差。
发明内容
本发明是针对一种沟槽式金属氧化物半导体场效应管器件,其本体与源极之间设有特定掺杂浓度范围的抗击穿掺杂区(anti-punch through region),能降低本体电阻率,藉此改善沟槽式金属氧化物半导体场效应管器件的UIS能力。
本发明还针对一种沟槽式金属氧化物半导体场效应管器件的制造方法,可使本体与源极之间产生高掺杂浓度区域,以降低本体电阻率(Rs_Body),以抑制寄生双极性晶体管开启。
根据本发明的实施例,一种沟槽式金属氧化物半导体场效应管器件,包括基板、具有第一导电型的外延层、栅极、栅氧化层、具有第一导电型的源极区、具有第二导电型的本体区与具有第二导电型的抗击穿掺杂区。外延层是形成于基板上。外延层则具有沟槽,栅极位于所述沟槽内,栅氧化层位于栅极与沟槽之间。源极区是位于沟槽两侧的外延层的表面,本体区是位于源极区下方的部分外延层内,且抗击穿掺杂区是位于本体区与源极区的界面,其中所述抗击穿掺杂区的掺杂浓度高于本体区的掺杂浓度。所述外延层具有接近源极区的一个第一pn结(pn junction)与接近基板的一个第二pn结,且以第一pn结与第二pn结之间划分为N等分的N个区域,N是大于1的整数。所述N个区域内的掺杂浓度愈接近第一pn结愈大。所述N个区域分别具有一掺杂浓度积分面积,且所述N个区域中愈接近第一pn结的区域的掺杂浓度积分面积愈大。
在根据本发明的实施例的沟槽式金属氧化物半导体场效应管器件中,上述N为2,且所述N个区域包括接近第一pn结的第一区域与接近第二pn结的第二区域,所述第一区域内的掺杂浓度均大于所述第二区域内的掺杂浓度,所述第一区域的所述掺杂浓度积分面积大于所述第二区域的所述掺杂浓度积分面积。
在根据本发明的实施例的沟槽式金属氧化物半导体场效应管器件中,上述N为3,且所述N个区域包括接近第一pn结的第一区域、接近第二pn结的第三区域与介于第一区域与第三区域之间的第二区域,所述第一区域内的掺杂浓度均大于所述第二区域内的掺杂浓度、所述第二区域内的掺杂浓度均大于所述第三区域内的掺杂浓度,且所述第一区域的所述掺杂浓度积分面积大于所述第二区域的所述掺杂浓度积分面积,所述第二区域的所述掺杂浓度积分面积大于所述第三区域的所述掺杂浓度积分面积。
根据本发明的另一实施例,一种沟槽式金属氧化物半导体场效应管器件的制造方法,包括在一基板上的具有第一导电型的外延层内形成沟槽式栅极;以注入剂量往所述基板的方向逐渐减少的方式,对所述外延层进行多道注入具有第二导电型的掺杂物的步骤;进行第一驱入(drive-in)步骤,使具有所述第二导电型的所述掺杂物在所述外延层的上半部扩散,形成具有所述第二导电型的本体区;在所述外延层的表面注入具有所述第一导电型的掺杂物;进行第二驱入步骤,使具有所述第一导电型的所述掺杂物扩散形成源极区;以及在形成所述源极区之后,在本体区与源极区的界面全面地注入具有第二导电型的掺杂物,以形成一抗击穿掺杂区,其中所述抗击穿掺杂区的掺杂浓度高于所述本体区的掺杂浓度。
在根据本发明的另一实施例的制造方法中,上述进行多道注入具有第二导电型的掺杂物的步骤包括两道或三道注入步骤。
在根据本发明的另一实施例的制造方法中,上述注入具有第一导电型的掺杂物的能量例如在20KeV~45KeV之间。
在根据本发明的另一实施例的制造方法中,上述第二驱入步骤包括快速热处理(RTP)。
在根据本发明的另一实施例的制造方法中,形成上述沟槽式栅极的步骤包括:在上述外延层先形成沟槽,在所述沟槽的表面形成栅氧化层,再在上述沟槽内沉积导体作为栅极。
在根据本发明的各个实施例中,上述第一导电型为N型,上述第二导电型为P型。
在根据本发明的各个实施例中,上述第一导电型为P型,上述第二导电型为N型。
基于上述,本发明通过本体与源极之间形成的抗击穿掺杂区,使该处具有陡峭的浓度分布并因而降低本体电阻率,以抑制寄生双极性晶体管开启,改善沟槽式金属氧化物半导体场效应管器件的UIS能力。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1是已知的一种沟槽式金属氧化物半导体场效应管器件的示意图;
图2是沿着图1的沟槽式栅极结构的侧壁的掺杂浓度曲线图;
图3是依照本发明的第一实施例的一种沟槽式金属氧化物半导体场效应管器件的示意图;
图4是沿着图3的沟槽式栅极结构的侧壁的一种掺杂浓度曲线图;
图5是沿着图3的沟槽式栅极结构的侧壁的另一种掺杂浓度曲线图;
图6是依照本发明的第二实施例的一种沟槽式金属氧化物半导体场效应管器件的制造流程步骤图。
附图标号说明
100、300:基板;
102、302:外延层;
104、304:源极区;
106、306:本体区;
108:沟槽式栅极;
108a:侧壁;
110、316:内层介电层;
112、310:栅氧化层;
302a:表面;
308:栅极;
312:抗击穿掺杂区;
314:沟槽;
400a:第一pn结;
400b:第二pn结;
404a、500a:第一区域;
404b、500b:第二区域;
500c:第三区域;
S600、S602、S604、S606、S608、S610:步骤。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。以下揭示内容提供许多不同的实施方式或范例,用于实施本发明的不同特征。当然这些实施例仅为范例,并非用于限制本发明的范围与应用。再者,为了清楚起见,各个构件、膜层或区域的相对厚度及位置可能缩小或放大。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
图3是依照本发明的第一实施例的一种沟槽式金属氧化物半导体场效应管器件的示意图。
请参照图3,第一实施例的沟槽式金属氧化物半导体场效应管器件包括基板300、具有第一导电型的外延层302、具有第一导电型的源极区304、具有第二导电型的本体区306、栅极308、栅氧化层310与具有第二导电型的抗击穿掺杂区312。在本实施例中,第一导电型为N型,第二导电型为P型。但是本发明并不限于此,于另一实施例中,第一导电型可为P型,第二导电型可为N型。外延层302是形成于基板300上,且外延层302具有沟槽314。虽然图3只显示一个沟槽314,但是应知用于功率装置的沟槽式金属氧化物半导体场效应管器件实际上具有多个沟槽314。
请继续参照图3,栅极308位于沟槽314内,且栅氧化层310位于栅极308与沟槽314之间。源极区304是位于沟槽314两侧的外延层302的表面302a,本体区306则是位于源极区304下方的部分外延层302内。一般来说,外延层302若是N型外延,则源极区304是N+区。抗击穿掺杂区312则是位于本体区306与源极区304的界面,其中抗击穿掺杂区312的掺杂浓度需高于本体区306的掺杂浓度。也就是说,相对于本体区306若是P型井区,则抗击穿掺杂区312是P+区。在一实施例中,抗击穿掺杂区312的掺杂浓度例如介于5E+16原子/cm3~5E+17原子/cm3。此外,可形成一内层介电层316覆盖外延层302与栅极308。
图4是沿着图3的沟槽式栅极结构的侧壁的一种掺杂浓度曲线图。
在图4中,外延层具有接近源极区304的一个第一pn结(pn junction)400a以及接近基板300的一个第二pn结400b,且以第一pn结400a与第二pn结400b之间划分为2个等分,接近第一pn结400a的设为第一区域404a、接近第二pn结400b的设为第二区域404b。然而本发明并不限于此,第一pn结400a与第二pn结400b之间可划分为N等份,N除了2以外也可以是大于1的其他整数。在图4中,所述第一区域404a内的掺杂浓度均大于第二区域404b内的掺杂浓度,且第一区域404a具有一第一掺杂浓度积分面积、第二区域404b具有一第二掺杂浓度积分面积,所述第一掺杂浓度积分面积大于所述第二掺杂浓度积分面积。而且位于本体区306与源极区304的界面的抗击穿掺杂区312具有陡峭的浓度分布,使得此处的本体电阻率变低,进而改善沟槽式金属氧化物半导体场效应管器件的UIS能力。也就是说,本发明中的上述区域内的掺杂浓度愈接近第一pn结400a愈大,愈接近第一pn结400a的区域的掺杂浓度积分面积也愈大。关于这样特别的掺杂浓度分布的制作方式,将于下文描述。
图5是图3的器件的沟槽侧壁的另一种掺杂浓度曲线图,其中使用与图4相同的器件符号来表示相同或近似的区域,且相同或近似的区域内容也可参照上述,不再赘述。
在图5中与图4不同的地方在于,第一pn结400a与第二pn结400b之间划分为3等分,即包含接近第一pn结400a的第一区域500a、接近第二pn结400b的第三区域500c与介于第一区域500a与第三区域500c之间的第二区域500b。第一区域500a内的掺杂浓度均大于第二区域500b内的掺杂浓度、第二区域500b内的掺杂浓度均大于第三区域500c内的掺杂浓度,且第一区域500a的掺杂浓度积分面积大于第二区域500b的掺杂浓度积分面积,第二区域500b的掺杂浓度积分面积大于第三区域500c的掺杂浓度积分面积。所述掺杂浓度分布的制作方式,也会于下文描述。
图6是依照本发明的第二实施例的一种沟槽式金属氧化物半导体场效应管器件的制造流程步骤图。而且,根据第二实施例的步骤,可制作出如图4或图5的掺杂浓度分布。
请参照图6,先进行步骤S600,在一基板上的具有第一导电型的外延层内形成沟槽式栅极。在本实施例中,上述第一导电型为N型,第二导电型为P型;反之亦然。形成沟槽式栅极的步骤可列举但不限于:在N型外延层先形成沟槽,在沟槽的表面形成栅氧化层,再在沟槽内沉积导体作为栅极,其中所述导体例如多晶硅。
接着,在步骤S602中,以注入剂量往基板的方向逐渐减少的方式,对外延层进行多道注入具有第二导电型的掺杂物的步骤;在本实施例中,上述注入步骤可为两道或三道注入P型的掺杂物的步骤。
然后,在步骤S604中,进行第一驱入(drive-in)步骤,使上述P型掺杂物在N型外延层的上半部扩散,形成P型本体区。而且,为避免源极区底部趋近平缓的N型浓度与本体区平缓的P型浓度,在第一pn结处相互抵消彼此的浓度,导致本体区的电阻率增加,本发明的工艺通过降低热预算(thermal budget),使本体区的掺杂浓度分布接近步骤S602的注入步骤后的浓度分布。举例来说,若是已知的驱入步骤是高温长时间的工艺(如高于1000℃一小时),则步骤S604则是采取高温短时间(如高于1000℃30分钟以下)或者采取同时降低温度与缩短时间(如1000℃以下且短于一小时)的驱入。也就是说,当步骤S602的注入步骤是两道,则所形成的本体区的杂浓度分布如图4所示;另一方面,若是步骤S602的注入步骤是三道,则所形成的本体区的掺杂浓度分布会如图5所示。
随后,在步骤S606中,在外延层的表面注入具有第一导电型(如N型)的掺杂物。而且,为了后续所形成的源极区具有较陡峭的掺杂浓度分布,上述注入步骤的能量要比已知形成源极区所进行的注入要低,例如在20KeV~45KeV之间。然而,本发明并不限于此。依据沟槽式金属氧化物半导体场效应管器件的设计准则(design rule),上述注入步骤的能量可进行变更。
之后,在步骤S608中,进行第二驱入步骤,使具有第一导电型(如N型)的掺杂物扩散形成源极区。同样地,为了使源极区具有较陡峭的掺杂浓度分布,本发明的工艺需进一步降低热预算,因此第二驱入步骤的时间要比已知的驱入步骤短,例如在5分钟以下。举例来说,第二驱入步骤可采用快速热处理(RTP)。
然后,在步骤S608之后再进行步骤S610,在不需要任何光阻遮罩的情况下,在本体区与源极区的界面全面地注入具有第二导电型(如P型)的掺杂物,以形成抗击穿掺杂区,其中所述抗击穿掺杂区的掺杂浓度高于本体区的掺杂浓度,且后续将不再进行高温的驱入步骤,使得本体区与源极区的界面形成陡峭的浓度分布,如图4与图5中第一pn结400a左侧(往源极区304)的直线。在本实施例中,抗击穿掺杂区的掺杂浓度例如介于5E+16原子/cm3~5E+17原子/cm3。然而,本发明并不限于此。根据本体区的掺杂浓度大小,抗击穿掺杂区的掺杂浓度也可作变更。后续的工艺可按照既有技术进行,故不赘述。
综上所述,本发明通过工艺的控制在本体与源极之间形成特别的掺杂浓度分布,而降低本体电阻率,并藉此改善沟槽式金属氧化物半导体场效应管器件的UIS能力。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

1.一种沟槽式金属氧化物半导体场效应管器件,其特征在于,包括:
基板;
具有第一导电型的外延层,形成于所述基板上,且所述外延层具有沟槽;
栅极,位于所述沟槽内;
栅氧化层,位于所述栅极与所述沟槽之间;
具有所述第一导电型的源极区,位于所述沟槽两侧的所述外延层的表面;
具有第二导电型的本体区,位于所述源极区下方的部分所述外延层内;以及
具有所述第二导电型的抗击穿掺杂区,位于所述本体区与所述源极区的界面,其中所述抗击穿掺杂区的掺杂浓度高于所述本体区的掺杂浓度,
其中所述外延层具有接近所述源极区的一第一pn结以及接近所述基板的一第二pn结,且以所述第一pn结与所述第二pn结之间划分为N等分的N个区域,N是大于1的整数,
其中所述N个区域内的掺杂浓度愈接近所述第一pn结愈大,且
其中所述N个区域分别具有一掺杂浓度积分面积,且所述N个区域中愈接近所述第一pn结的区域的所述掺杂浓度积分面积愈大。
2.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中所述抗击穿掺杂区的掺杂浓度介于5E+16原子/cm3~5E+17原子/cm3
3.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中N为2,且所述N个区域包括接近所述第一pn结的第一区域与接近所述第二pn结的第二区域,所述第一区域内的掺杂浓度均大于所述第二区域内的掺杂浓度,所述第一区域的所述掺杂浓度积分面积大于所述第二区域的所述掺杂浓度积分面积。
4.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中N为3,且所述N个区域包括接近所述第一pn结的第一区域、接近所述第二pn结的第三区域与介于所述第一区域与所述第三区域之间的第二区域,所述第一区域内的掺杂浓度均大于所述第二区域内的掺杂浓度、所述第二区域内的掺杂浓度均大于所述第三区域内的掺杂浓度,且所述第一区域的所述掺杂浓度积分面积大于所述第二区域的所述掺杂浓度积分面积,所述第二区域的所述掺杂浓度积分面积大于所述第三区域的所述掺杂浓度积分面积。
5.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中所述第一导电型为N型,所述第二导电型为P型。
6.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中所述第一导电型为P型,所述第二导电型为N型。
7.一种沟槽式金属氧化物半导体场效应管器件的制造方法,其特征在于,包括:
在基板上的具有第一导电型的外延层内形成沟槽式栅极;
以注入剂量往所述基板的方向逐渐减少的方式,对所述外延层进行多数道注入具有第二导电型的掺杂物的步骤;
进行第一驱入步骤,使具有所述第二导电型的所述掺杂物在所述外延层的上半部扩散,形成具有所述第二导电型的本体区;
在所述外延层的表面注入具有所述第一导电型的掺杂物;
进行第二驱入步骤,使具有所述第一导电型的所述掺杂物扩散形成源极区;以及
在形成所述源极区之后,在所述本体区与所述源极区的界面全面地注入具有所述第二导电型的掺杂物,以形成抗击穿掺杂区,其中所述抗击穿掺杂区的掺杂浓度高于所述本体区的掺杂浓度。
8.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述多数道注入具有第二导电型的掺杂物的步骤包括两道或三道注入具有所述第二导电型的掺杂物的步骤。
9.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述抗击穿掺杂区的掺杂浓度介于5E+16原子/cm3~5E+17原子/cm3
10.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述第一导电型为N型,所述第二导电型为P型。
11.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述第一导电型为P型,所述第二导电型为N型。
12.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述注入具有所述第一导电型的掺杂物的能量在20KeV~45KeV之间。
13.根据权利要求7所述的沟槽式金属氧化物半导体场效应管器件的制造方法,其中所述第二驱入步骤包括快速热处理。
14.根据权利要求1所述的沟槽式金属氧化物半导体场效应管器件,其中形成所述沟槽式栅极的步骤包括:
在所述外延层形成沟槽;
在所述沟槽的表面形成栅氧化层;以及
在所述沟槽内沉积导体作为栅极。
CN202010113782.5A 2019-12-25 2020-02-24 沟槽式金属氧化物半导体场效应管器件及其制造方法 Active CN113035931B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108147542 2019-12-25
TW108147542A TWI739252B (zh) 2019-12-25 2019-12-25 溝槽式mosfet元件及其製造方法

Publications (2)

Publication Number Publication Date
CN113035931A true CN113035931A (zh) 2021-06-25
CN113035931B CN113035931B (zh) 2022-11-04

Family

ID=76458896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010113782.5A Active CN113035931B (zh) 2019-12-25 2020-02-24 沟槽式金属氧化物半导体场效应管器件及其制造方法

Country Status (3)

Country Link
US (2) US11588021B2 (zh)
CN (1) CN113035931B (zh)
TW (1) TWI739252B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911087A (zh) * 2022-09-08 2023-04-04 弘大芯源(深圳)半导体有限公司 一种提高uis性能的sgt-mosfet及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739252B (zh) * 2019-12-25 2021-09-11 杰力科技股份有限公司 溝槽式mosfet元件及其製造方法
CN113990928B (zh) * 2021-10-28 2023-05-26 电子科技大学 低击穿电压温度系数的Trench MOSFET器件及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048132A1 (en) * 2000-05-30 2001-12-06 Hiroyasu Ito Semiconductor device and manufacturing method of the same
US20020179976A1 (en) * 2001-05-29 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US20070194375A1 (en) * 2006-02-20 2007-08-23 Kabushiki Kaisha Toshiba Semiconductor device
CN101641763A (zh) * 2007-01-09 2010-02-03 威力半导体有限公司 半导体器件及其制造方法
US20160104702A1 (en) * 2014-10-08 2016-04-14 Force Mos Technology Co., Ltd. Super-junction trench mosfet integrated with embedded trench schottky rectifier
CN107026205A (zh) * 2016-02-01 2017-08-08 富士电机株式会社 碳化硅半导体装置以及碳化硅半导体装置的制造方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567634A (en) * 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
JPH10214888A (ja) * 1997-01-30 1998-08-11 Nec Yamagata Ltd 半導体装置の製造方法
KR100275756B1 (ko) * 1998-08-27 2000-12-15 김덕중 트렌치 절연 게이트 바이폴라 트랜지스터
WO2000038244A1 (de) * 1998-12-18 2000-06-29 Infineon Technologies Ag Feldeffekt-transistoranordnung mit einer grabenförmigen gate-elektrode und einer zusätzlichen hochdotierten schicht im bodygebiet
US20010001494A1 (en) * 1999-04-01 2001-05-24 Christopher B. Kocon Power trench mos-gated device and process for forming same
US6348712B1 (en) * 1999-10-27 2002-02-19 Siliconix Incorporated High density trench-gated power MOSFET
US6569738B2 (en) * 2001-07-03 2003-05-27 Siliconix, Inc. Process for manufacturing trench gated MOSFET having drain/drift region
JP4945055B2 (ja) * 2003-08-04 2012-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
GB0407363D0 (en) * 2004-03-31 2004-05-05 Koninkl Philips Electronics Nv Trench semiconductor device and method of manufacturing it
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US7436022B2 (en) * 2005-02-11 2008-10-14 Alpha & Omega Semiconductors, Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US8093651B2 (en) * 2005-02-11 2012-01-10 Alpha & Omega Semiconductor Limited MOS device with integrated schottky diode in active region contact trench
US8110869B2 (en) * 2005-02-11 2012-02-07 Alpha & Omega Semiconductor, Ltd Planar SRFET using no additional masks and layout method
US7952139B2 (en) * 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7948029B2 (en) * 2005-02-11 2011-05-24 Alpha And Omega Semiconductor Incorporated MOS device with varying trench depth
DE102006053145B4 (de) * 2005-11-14 2014-07-10 Denso Corporation Halbleitervorrichtung mit Trennungsbereich
US7807536B2 (en) * 2006-02-10 2010-10-05 Fairchild Semiconductor Corporation Low resistance gate for power MOSFET applications and method of manufacture
US7812409B2 (en) * 2006-12-04 2010-10-12 Force-Mos Technology Corp. Trench MOSFET with cell layout, ruggedness, truncated corners
US7807576B2 (en) * 2008-06-20 2010-10-05 Fairchild Semiconductor Corporation Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
JP2011134910A (ja) * 2009-12-24 2011-07-07 Rohm Co Ltd SiC電界効果トランジスタ
US8546893B2 (en) * 2010-01-12 2013-10-01 Mohamed N. Darwish Devices, components and methods combining trench field plates with immobile electrostatic charge
US8742451B2 (en) 2010-05-24 2014-06-03 Ixys Corporation Power transistor with increased avalanche current and energy rating
US20120080748A1 (en) * 2010-09-30 2012-04-05 Force Mos Technology Co., Ltd. Trench mosfet with super pinch-off regions
US20120175699A1 (en) * 2011-01-06 2012-07-12 Force Mos Technology Co., Ltd. Trench mosfet with super pinch-off regions and self-aligned trenched contact
CN102184945A (zh) 2011-05-03 2011-09-14 成都芯源系统有限公司 一种槽栅型mosfet器件
US8907415B2 (en) * 2011-05-16 2014-12-09 Force Mos Technology Co., Ltd. High switching trench MOSFET
US9793153B2 (en) * 2011-09-20 2017-10-17 Alpha And Omega Semiconductor Incorporated Low cost and mask reduction method for high voltage devices
US8785278B2 (en) * 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
US9018701B2 (en) 2012-08-14 2015-04-28 Force Mos Technology Co., Ltd. Avalanche capability improvement in power semiconductor devices using three masks process
US8723317B2 (en) * 2012-09-14 2014-05-13 Force Mos Technology Co., Ltd. Trench metal oxide semiconductor field effect transistor with embedded schottky rectifier using reduced masks process
US9196701B2 (en) * 2013-03-11 2015-11-24 Alpha And Omega Semiconductor Incorporated High density MOSFET array with self-aligned contacts enhancement plug and method
US9704948B2 (en) 2014-08-09 2017-07-11 Alpha & Omega Semiconductor (Cayman), Ltd. Power trench MOSFET with improved unclamped inductive switching (UIS) performance and preparation method thereof
TWI571959B (zh) * 2014-09-02 2017-02-21 萬國半導體股份有限公司 改善uis性能的溝槽式功率半導體器件及其製備方法
US9484452B2 (en) * 2014-12-10 2016-11-01 Alpha And Omega Semiconductor Incorporated Integrating enhancement mode depleted accumulation/inversion channel devices with MOSFETs
US9929260B2 (en) * 2015-05-15 2018-03-27 Fuji Electric Co., Ltd. IGBT semiconductor device
JP6514035B2 (ja) * 2015-05-27 2019-05-15 株式会社豊田中央研究所 半導体装置
US10424642B2 (en) * 2015-09-09 2019-09-24 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
CN106847880B (zh) * 2017-01-23 2019-11-26 矽力杰半导体技术(杭州)有限公司 一种半导体器件及其制备方法
US10211333B2 (en) * 2017-04-26 2019-02-19 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable SGT structure with improved FOM
CN108172622A (zh) * 2018-01-30 2018-06-15 电子科技大学 功率半导体器件
JP7139683B2 (ja) * 2018-05-17 2022-09-21 富士電機株式会社 半導体集積回路及びその製造方法
US11189702B2 (en) * 2019-01-30 2021-11-30 Vishay SIliconix, LLC Split gate semiconductor with non-uniform trench oxide
US20210028305A1 (en) * 2019-07-22 2021-01-28 Nami MOS CO., LTD. Trench mosfets with oxide charge balance region in active area and junction charge balance region in termination area
US20210126124A1 (en) * 2019-10-29 2021-04-29 Nami MOS CO., LTD. Termination of multiple stepped oxide shielded gate trench mosfet
TWI739252B (zh) * 2019-12-25 2021-09-11 杰力科技股份有限公司 溝槽式mosfet元件及其製造方法
US11444164B2 (en) * 2020-11-09 2022-09-13 Nami MOS CO., LTD. Shielded gate trench MOSFET having improved specific on-resistance structures
CN115911087A (zh) * 2022-09-08 2023-04-04 弘大芯源(深圳)半导体有限公司 一种提高uis性能的sgt-mosfet及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048132A1 (en) * 2000-05-30 2001-12-06 Hiroyasu Ito Semiconductor device and manufacturing method of the same
US20020179976A1 (en) * 2001-05-29 2002-12-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US20070194375A1 (en) * 2006-02-20 2007-08-23 Kabushiki Kaisha Toshiba Semiconductor device
CN101641763A (zh) * 2007-01-09 2010-02-03 威力半导体有限公司 半导体器件及其制造方法
US20160104702A1 (en) * 2014-10-08 2016-04-14 Force Mos Technology Co., Ltd. Super-junction trench mosfet integrated with embedded trench schottky rectifier
CN107026205A (zh) * 2016-02-01 2017-08-08 富士电机株式会社 碳化硅半导体装置以及碳化硅半导体装置的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911087A (zh) * 2022-09-08 2023-04-04 弘大芯源(深圳)半导体有限公司 一种提高uis性能的sgt-mosfet及其制造方法

Also Published As

Publication number Publication date
US20210343840A1 (en) 2021-11-04
TW202125822A (zh) 2021-07-01
CN113035931B (zh) 2022-11-04
US20210202701A1 (en) 2021-07-01
US11588021B2 (en) 2023-02-21
TWI739252B (zh) 2021-09-11

Similar Documents

Publication Publication Date Title
JP3413250B2 (ja) 半導体装置及びその製造方法
TWI528458B (zh) 半導體元件及其製備方法
CN110718546B (zh) 绝缘栅极半导体器件及其制造方法
US6537885B1 (en) Transistor and method of manufacturing a transistor having a shallow junction formation using a two step EPI layer
CN113035931B (zh) 沟槽式金属氧化物半导体场效应管器件及其制造方法
EP1096574A2 (en) Power MOSFET having a trench gate electrode and method of making the same
TWI388011B (zh) 半導體裝置及其形成方法
SE1850824A1 (en) MOSFET in SiC with self-aligned lateral MOS channel
US11610991B2 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
JP2019521529A (ja) パワーデバイス及びその製造方法
CN114944338A (zh) 具有缩短沟道长度和高Vth的SiC MOSFET
CN108155230B (zh) 一种横向rc-igbt器件及其制备方法
CN111164759B (zh) 具有高电流容量的馈线设计
CN112242445A (zh) Ldmos器件及其形成方法
US11769828B2 (en) Gate trench power semiconductor devices having improved deep shield connection patterns
KR101779224B1 (ko) 펀치스루 반도체 디바이스 및 그의 제조 방법
KR20180032771A (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
CN103178121B (zh) Pin二极管及其制造方法
CN113611598A (zh) 一种分裂闸型沟槽半导体功率器件的制备方法
WO2019053201A1 (en) SIC SEMICONDUCTOR DEVICE COMPRISING A DOUBLE GRID STRUCTURE
US11869982B2 (en) Single sided channel mesa power junction field effect transistor
CN112531026B (zh) 横向扩散金属氧化物半导体器件及其制造方法
KR102463180B1 (ko) 반도체 소자 및 그 제조 방법
US20230098516A1 (en) Single sided channel mesa power junction field effect transistor
US20240234495A1 (en) Gate trench power semiconductor devices having self-aligned trench shielding regions and related methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant