CN113031570A - 基于自适应未知输入观测器的快速故障估计方法及设备 - Google Patents

基于自适应未知输入观测器的快速故障估计方法及设备 Download PDF

Info

Publication number
CN113031570A
CN113031570A CN202110289496.9A CN202110289496A CN113031570A CN 113031570 A CN113031570 A CN 113031570A CN 202110289496 A CN202110289496 A CN 202110289496A CN 113031570 A CN113031570 A CN 113031570A
Authority
CN
China
Prior art keywords
matrix
fault
unknown input
gain
observer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110289496.9A
Other languages
English (en)
Other versions
CN113031570B (zh
Inventor
马广富
郭延宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110289496.9A priority Critical patent/CN113031570B/zh
Publication of CN113031570A publication Critical patent/CN113031570A/zh
Application granted granted Critical
Publication of CN113031570B publication Critical patent/CN113031570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明的实施例提供了一种基于自适应未知输入观测器的快速故障估计方法及设备。所述方法包括建立动态控制系统的非线性系统模型;根据所述非线性系统模型的增广状态向量建立增广系统模型;根据所述增广系统模型建立自适应未知输入观测器,使所述自适应未知输入观测器满足第一条件;计算增广状态估计误差和执行器故障估计误差;通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数;对所述非线性系统模型的执行器故障以及传感器故障进行估计。以此方式,可以使得动态控制系统在发生故障后,能够及时得到故障信息及具体的故障情况,在尽可能准确估计故障幅值的同时抑制外部干扰对故障估计结果的影响。

Description

基于自适应未知输入观测器的快速故障估计方法及设备
技术领域
本发明的实施例一般涉及动态控制系统故障估计领域,并且更具体地,涉及基于自适应未知输入观测器的快速故障估计方法及设备。
背景技术
随着现代系统变得越来越复杂,高可靠性和安全性是系统至关重要的要求,因此故障诊断及故障估计引起了学者们的广泛研究。一个动态系统容易受到各种类型的外部环境的影响,因此,系统的可靠性很容易降低,甚至会受到可能导致系统损坏的某些故障的影响,例如系统主要功能的降低或者系统的彻底崩溃等。因此,一旦系统发生故障,应该尽早发现故障,定位故障的位置,并尽可能准确地确定故障的严重程度。
在实际工程领域中,故障是非常常见的。它们指的是系统的至少一个组件或参数偏离正常值并导致系统性能下降的情况。因此,导致系统指定的任务无法完成。故障诊断的目的是检测系统故障的发生,并进一步确定其位置,以防止整个系统的崩溃。在最近的研究中,故障诊断方法被分为四类:基于数学模型的方法、基于信号的方法、基于知识的方法和混合方法。其中,基于数学模型的方法是最有力的设计工具,因此受到许多学者的青睐。根据研究,基于数学模型的设计方法中应用最多的便是基于观测器的设计方法。该方法将被测装置的输出与系统模型中设计的观测器的输出进行比较,然后形成残差信息。虽然该方法和产生的残差可以用来检测和定位故障源,并产生报警信号,但不能提供关于故障幅度的信息。因此,为了更有效地处理故障,需要准确估计故障幅度。目前基于观测器的故障估计方法在处理外部干扰时大多采用未知输入观测器对干扰进行解耦,以减小干扰对故障估计的影响,但现有的基于未知输入观测器的故障估计方法在进行非线性系统的故障估计时都需要满足严格的观测器匹配条件,这在一定程度上限制了该方法的实际应用范围。而且在考虑外部干扰时,一般只考虑过程干扰的影响,并未考虑传感器端测量噪声的影响。另一方面,故障估计的性能也是值得关注的,在进行故障估计时不仅要保证故障估计的准确性,同时也要保证故障估计的快速性。
发明内容
根据本发明的实施例,提供了一种基于自适应未知输入观测器的快速故障估计方案,以解决非线性动态系统的鲁棒故障估计问题,该方案同时考虑了系统非线性因素、系统外部干扰、系统传感器故障及系统执行器故障问题。
在本发明的第一方面,提供了一种基于自适应未知输入观测器的快速故障估计方法。该方法包括:
建立动态控制系统的非线性系统模型;所述非线性系统模型包含执行器故障和传感器故障;
根据所述非线性系统模型的增广状态向量建立增广系统模型;所述增广状态向量由非线性系统模型的状态向量和所述传感器故障进行定义;
根据所述增广系统模型建立自适应未知输入观测器,使所述自适应未知输入观测器满足第一条件;
计算所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差;
通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数;
根据优化后的自适应未知输入观测器对所述非线性系统模型的执行器故障以及传感器故障进行估计。
进一步地,所述非线性系统模型为:
Figure BDA0002981883340000031
其中,xh为非线性系统状态;
Figure BDA0002981883340000033
为xh的导数;yh为非线性系统输出;ξd为过程干扰;ξs(t)为测量噪声;u为控制输入;gh(xh,t)为非线性系统的非线性函数;fa为非线性系统的执行器故障;fs为非线性系统的传感器故障;Ah为状态增益矩阵;Bh为控制输入增益矩阵;Ch为输出增益矩阵;Fa为执行器故障矩阵;Fs为传感器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵,t为时间变量。
进一步地,所述增广系统模型为:
Figure BDA0002981883340000032
y=Hx+Dsξs
其中,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000034
fs为非线性系统传感器故障,
Figure BDA0002981883340000035
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000036
为xh的转置运算;
Figure BDA0002981883340000037
为x的导数;y为增广系统输出;ξd为过程干扰;ξs为测量噪声;u为控制输入;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;fa为非线性系统执行器故障;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah 0n×h],Ah为状态增益矩阵;B为控制输入增益矩阵,即B=Bh;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;n为非线性系统状态向量的维数;h为传感器故障向量的维数;t为时间变量。
进一步地,所述第一条件为:
L3E+L4H=In+h
其中,L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In0n×h],In为n维的单位矩阵,n为非线性系统状态向量的维数;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;In+h为n+h维的单位矩阵,h为传感器故障向量的维数。
进一步地,所述自适应未知输入观测器为:
Figure BDA0002981883340000041
Figure BDA0002981883340000042
Figure BDA0002981883340000043
Figure BDA0002981883340000044
其中,
Figure BDA0002981883340000045
为z的导数,z为所述自适应未知输入观测器的状态信息;u为增广系统的输入;
Figure BDA0002981883340000046
为x的估计值;
Figure BDA0002981883340000047
为y的估计值,y为增广系统的输出;
Figure BDA0002981883340000048
为fa的估计值,fa为非线性系统执行器故障,
Figure BDA0002981883340000049
Figure BDA00029818833400000410
的导数;ey
Figure BDA00029818833400000412
与y的差值;
Figure BDA00029818833400000411
为ey的导数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA00029818833400000413
fs为非线性系统传感器故障,
Figure BDA00029818833400000414
表示fs的转置运算,xh为非线性系统状态,
Figure BDA00029818833400000415
为xh的转置运算;
Figure BDA00029818833400000416
为非线性系统经增广状态处理后的非线性函数的估计值;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;B为控制输入增益矩阵,即B=Bh;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;Fa为执行器故障矩阵;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵。
进一步地,所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差为:
Figure BDA0002981883340000051
其中,ex为所述自适应未知输入观测器的增广状态估计误差,即
Figure BDA0002981883340000052
Figure BDA0002981883340000053
Figure BDA0002981883340000054
为ex的导数;
Figure BDA0002981883340000055
为x的估计值,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000056
fs为系统传感器故障,
Figure BDA0002981883340000057
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000058
为xh的转置运算;
Figure BDA0002981883340000059
为所述自适应未知输入观测器的执行器故障估计误差,即
Figure BDA00029818833400000510
Figure BDA00029818833400000511
为fa的估计值,fa为系统执行器故障;
Figure BDA00029818833400000512
为fa的导数;
Figure BDA00029818833400000513
Figure BDA00029818833400000514
的导数;ey为所述自适应未知输入观测器的输出估计误差,即
Figure BDA00029818833400000515
Figure BDA00029818833400000516
为y的估计值,y为增广系统的输出;
Figure BDA00029818833400000517
为ey的导数;
Figure BDA00029818833400000518
为所述自适应未知输入观测器的非线性项估计误差,即
Figure BDA00029818833400000519
Figure BDA00029818833400000520
为非线性系统经增广状态处理后的非线性函数的估计值;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;L5为所述自适应未知输入观测器的中间设计参数,即L5=L2-L1×L4;ξd为过程干扰;ξs为测量噪声;
Figure BDA0002981883340000063
为ξs的导数;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵。
进一步地,所述通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数,包括:
如果存在对称正定矩阵P、中间计算矩阵Y、第一故障估计系数矩阵G1、第二故障估计系数矩阵G2、优化性能指标参数小第一中间计算正常数ε1和第二中间计算正常数ε2满足第二条件,则计算第一对称正定矩阵P1、中间计算矩阵Y、第一故障估计系数矩阵G1和第二故障估计系数矩阵G2
根据
Figure BDA0002981883340000061
计算对称正定矩阵P和所述自适应未知输入观测器的中间设计参数L5;其中,Iq为q维的单位矩阵;P1为第一对称正定矩阵;
Figure BDA0002981883340000064
为矩阵P1的转置运算;
根据
Figure BDA0002981883340000062
L1=L3M-L5H,L2=L5+L1L4,计算所述自适应未知输入观测器的增益矩阵第一参数L1、所述自适应未知输入观测器的增益矩阵第二参数L2、所述自适应未知输入观测器的增益矩阵第三参数L3和所述自适应未知输入观测器的增益矩阵第四参数L4;其中,E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah 0n×h],Ah为状态增益矩阵;B为控制输入增益矩阵;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵。
进一步地,所述第二条件为:
min(μ),s.t.
Figure BDA0002981883340000071
Figure BDA0002981883340000072
Figure BDA0002981883340000073
Figure BDA0002981883340000074
Figure BDA0002981883340000075
其中,*表示对称矩阵的对称项;
Figure BDA0002981883340000076
Figure BDA0002981883340000077
Figure BDA0002981883340000078
Figure BDA0002981883340000079
Figure BDA00029818833400000710
Lg为自行可设定的非线性系数;In+h为n+h维的单位矩阵;n为非线性系统状态向量的维数;h为传感器故障向量维数;q为执行器故障向量维数;l为过程干扰ξd的维数;s为测量噪声ξs的维数;Iq为q维的单位矩阵;Il为l维的单位矩阵;Is为s维的单位矩阵;Ds为测量噪声增益矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;μ为优化性能指标参数,μ>0。
进一步地,所述对所述非线性系统模型的执行器故障以及传感器故障进行估计,包括:
Figure BDA0002981883340000081
Figure BDA0002981883340000082
其中,ey
Figure BDA0002981883340000083
与y的差值;
Figure BDA0002981883340000084
为执行器故障fa的估计值;
Figure BDA0002981883340000085
为传感器故障fs的估计值;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵;t为时间量;tf为故障发生的时间;Ih为h维的单位矩阵;h为传感器故障的维数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000086
Figure BDA0002981883340000087
fs为系统传感器故障,
Figure BDA0002981883340000088
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000089
为xh的转置运算;
Figure BDA00029818833400000810
为x的估计值。
在本发明的第二方面,提供了一种电子设备。该电子设备包括:存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现如以上所述的方法。
应当理解,发明内容部分中所描述的内容并非旨在限定本发明的实施例的关键或重要特征,亦非用于限制本发明的范围。本发明的其它特征将通过以下的描述变得容易理解。
本发明为了避免匹配条件的限制,将自适应技术与未知输入观测器相结合,应用优化技术来减弱扰动的影响,最大程度上降低外干扰对故障估计结果的影响,避免了匹配条件在观测器应用时的限制,确保了状态估计误差稳定,达到精确并快速估计故障的目的。
本发明将非线性系统的原状态向量与传感器故障定义为增广状态,在此基础上设计并求解观测器,从而解决了系统执行器故障和传感器故障同时估计问题,即系统多故障估计问题,同时也在一定程度上简化了观测器的设计,更易实际工程实现。
本发明通过引入故障估计的比例项提高了故障估计的速度,改善了故障估计的性能,使得系统在出现故障后及时应对,因此,可以有效地提高系统解决故障的效率,提高系统运行的安全性和可靠性。
附图说明
结合附图并参考以下详细说明,本发明各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了根据本发明的实施例的基于自适应未知输入观测器的快速故障估计方法的流程图;
图2示出了根据本发明的实施例的系统执行器故障fa的估计结果示意图;
图3示出了根据本发明的实施例的执行器故障fa估计误差示意图;
图4示出了根据本发明的实施例的系统传感器故障fs的估计结果示意图;
图5示出了根据本发明的实施例的传感器故障fs估计误差示意图;
图6示出了能够实施本发明的实施例的示例性电子设备的方框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本发明保护的范围。
本发明提出了一种基于自适应未知输入观测器的快速故障估计方案,以解决非线性动态系统的鲁棒故障估计问题,该方案同时考虑了系统非线性因素,系统外部干扰,包括过程干扰和测量噪声干扰,系统传感器故障及系统执行器故障问题。为了避免匹配条件的限制,将自适应技术与未知输入观测器相结合,应用优化技术最大程度上降低外干扰对故障估计结果的影响。将非线性系统的原状态向量与传感器故障定义为增广状态,以解决执行器故障和传感器故障的同时估计问题。通过引入比例项加快了故障估计的速度,提高了故障估计的性能。该故障估计方案分两步进行。首先通过构建增广状态来构造增广系统,增广状态包括系统原状态和相关的传感器故障。然后在增广系统的基础上设计了一种基于自适应未知输入观测器的快速故障估计方法,来解决非线性系统的鲁棒故障估计问题。最后,利用优化技术来减弱扰动的影响,并利用线性矩阵不等式优化技术进一步求解观测器的设计参数,以确保状态估计误差稳定,达到精确并快速估计故障的目的。
图1示出了本发明实施例的基于自适应未知输入观测器的快速故障估计方法的流程图。
该方法包括:
S101、建立动态控制系统的非线性系统模型;所述非线性系统模型包含执行器故障和传感器故障。
作为本发明的一种实施例,考虑到非线性系统的非线性项、外部干扰及非线性系统传感器故障及执行器故障等情况,建立动态控制系统的非线性系统模型如下:
Figure BDA0002981883340000101
其中,xh为非线性系统状态;
Figure BDA0002981883340000102
为xh的导数;yh为非线性系统输出;ξd为过程干扰;ξs(t)为测量噪声;u为控制输入;gh(xh,t)为非线性系统的非线性函数;fa为非线性系统的执行器故障;fs为非线性系统的传感器故障;Ah为状态增益矩阵;Bh为控制输入增益矩阵;Ch为输出增益矩阵;Fa为执行器故障矩阵;Fs为传感器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵,t为时间变量。
S102、根据所述非线性系统模型的增广状态向量建立增广系统模型;所述增广状态向量由非线性系统模型的状态向量和所述传感器故障进行定义。
作为本发明的一种实施例,将非线性系统原状态向量和传感器故障定义为新的增广状态向量,即
Figure BDA0002981883340000112
根据该新的增广状态向量建立增广系统模型为:
Figure BDA0002981883340000111
y=Hx+Dsξs
其中,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000113
fs为非线性系统传感器故障,
Figure BDA0002981883340000114
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000115
为xh的转置运算;
Figure BDA0002981883340000116
为x的导数;y为增广系统输出;ξd为过程干扰;ξs为测量噪声;u为控制输入;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;fa为非线性系统执行器故障;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah On×h],Ah为状态增益矩阵;B为控制输入增益矩阵,即B=Bh;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;n为非线性系统状态向量的维数;h为传感器故障向量的维数;t为时间变量。
在本实施例中,通过将非线性系统的原状态向量与传感器故障定义为增广状态,以解决执行器故障和传感器故障的同时估计问题,使系统可以同时对执行器故障和传感器故障进行估计,提高了估计效率。
S103、根据所述增广系统模型建立自适应未知输入观测器,使所述自适应未知输入观测器满足第一条件。
作为本发明的一种实施例,在满足第一条件的基础上,建立自适应未知输入观测器。所述第一条件为:
L3E+L4H=In+h
其中,L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[InOn×h],In为n维的单位矩阵,n为非线性系统状态向量的维数;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;In+h为n+h维的单位矩阵,h为传感器故障向量的维数。
在满足上述第一条件的基础上,建立的自适应未知输入观测器为:
Figure BDA0002981883340000121
Figure BDA0002981883340000122
Figure BDA0002981883340000123
Figure BDA0002981883340000124
其中,
Figure BDA0002981883340000126
为z的导数,z为所述自适应未知输入观测器的状态信息;u为增广系统的输入;
Figure BDA0002981883340000127
为x的估计值;
Figure BDA0002981883340000128
为y的估计值,y为增广系统的输出;
Figure BDA0002981883340000129
为fa的估计值,fa为非线性系统执行器故障,
Figure BDA00029818833400001210
Figure BDA00029818833400001211
的导数;ey
Figure BDA00029818833400001212
与y的差值;
Figure BDA00029818833400001213
为ey的导数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000125
fs为非线性系统传感器故障,
Figure BDA00029818833400001214
表示fs的转置运算,xh为非线性系统状态,
Figure BDA00029818833400001215
为xh的转置运算;
Figure BDA00029818833400001216
为非线性系统经增广状态处理后的非线性函数的估计值;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;L1、L2、L3、L4用于在存在干扰的情况下尽可能准确地估计增广状态;B为控制输入增益矩阵,即B=Bh;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;Fa为执行器故障矩阵;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵;G1和G2用于快速估计执行器故障,其中G2
Figure BDA0002981883340000131
的引入可以提高故障估计的快速性。
在本实施例中,通过引入故障估计的比例项G1、G2
Figure BDA0002981883340000132
提高了故障估计的速度,改善了故障估计的性能,使得系统在出现故障后及时应对,因此,可以有效地提高系统解决故障的效率,提高系统运行的安全性和可靠性;通过加入四个增益矩阵参数,能够在存在干扰的情况下尽可能准确地估计增广状态。
S104、计算所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差。
作为本发明的一种实施例,所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差为:
Figure BDA0002981883340000133
其中,ex为所述自适应未知输入观测器的增广状态估计误差,即
Figure BDA0002981883340000134
Figure BDA0002981883340000135
Figure BDA0002981883340000136
为ex的导数;
Figure BDA0002981883340000137
为x的估计值,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000138
fs为系统传感器故障,
Figure BDA0002981883340000139
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000141
为xh的转置运算;
Figure BDA0002981883340000142
为所述自适应未知输入观测器的执行器故障估计误差,即
Figure BDA0002981883340000143
Figure BDA0002981883340000144
为fa的估计值,fa为系统执行器故障;
Figure BDA0002981883340000145
为fa的导数;
Figure BDA0002981883340000146
Figure BDA0002981883340000147
的导数;ey为所述自适应未知输入观测器的输出估计误差,即
Figure BDA0002981883340000148
Figure BDA0002981883340000149
为y的估计值,y为增广系统的输出;
Figure BDA00029818833400001410
为ey的导数;
Figure BDA00029818833400001411
为所述自适应未知输入观测器的非线性项估计误差,即
Figure BDA00029818833400001412
Figure BDA00029818833400001413
为非线性系统经增广状态处理后的非线性函数的估计值;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;L5为所述自适应未知输入观测器的中间设计参数,即L5=L2-L1×L4;ξd为过程干扰;ξs为测量噪声;
Figure BDA00029818833400001414
为ξs的导数;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵。
S105、通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数。
作为本发明的一种实施例,为了抑制外部干扰ξd、ξs对状态估计和故障估计的影响,引入优化性能指标参数μ,设计自适应未知输入观测器,使得||e||2<μ||υ||2;其中,e为由状态估计误差和执行器故障估计误差组成的增广估计误差,即
Figure BDA00029818833400001415
υ表示由过程干扰和测量噪声组成的增广干扰向量,即
Figure BDA00029818833400001416
其中
Figure BDA00029818833400001417
μ值越小表示干扰对状态估计和故障估计的影响越小。
通过线性矩阵不等式(LMI)优化技术求解优化问题得到优化性能指标参数μ的最小值,使得S104中所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差的动态趋势是鲁棒渐近稳定的。
对于所述增广系统模型设计的所述自适应未知输入观测器,如果存在对称正定矩阵P、中间计算矩阵Y、第一故障估计系数矩阵G1、第二故障估计系数矩阵G2、优化性能指标参数μ、第一中间计算正常数ε1和第二中间计算正常数ε2,使得线性矩阵不等式满足第二条件,即线性矩阵不等式在第二条件下有解,则S104中所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差的动态趋势是鲁棒渐近稳定的。
所述线性矩阵不等式满足第二条件,包括:
min(μ),s.t.
Figure BDA0002981883340000151
Figure BDA0002981883340000152
Figure BDA0002981883340000153
Figure BDA0002981883340000154
Figure BDA0002981883340000161
其中,*表示对称矩阵的对称项;
Figure BDA0002981883340000162
Figure BDA0002981883340000163
Figure BDA0002981883340000164
Figure BDA0002981883340000165
Figure BDA0002981883340000166
Lg为自行可设定的非线性系数;In+h为n+h维的单位矩阵;n为非线性系统状态向量的维数;h为传感器故障向量维数;q为执行器故障向量维数;l为过程干扰ξd的维数;s为测量噪声ξs的维数;Iq为q维的单位矩阵;Il为l维的单位矩阵;Is为s维的单位矩阵;Ds为测量噪声增益矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;μ为优化性能指标参数,μ>0。
在所述线性矩阵不等式满足第二条件的情况下,首先,能够计算出第一对称正定矩阵P1、中间计算矩阵Y、第一故障估计系数矩阵G1和第二故障估计系数矩阵G2
其次,根据
Figure BDA0002981883340000167
计算对称正定矩阵P和所述自适应未知输入观测器的中间设计参数L5;其中,Iq为q维的单位矩阵;P1为第一对称正定矩阵;
Figure BDA0002981883340000168
为矩阵P1的转置运算。
最后,根据
Figure BDA0002981883340000171
L1=L3M-L5H,L2=L5+L1L4,计算所述自适应未知输入观测器的增益矩阵第一参数L1、所述自适应未知输入观测器的增益矩阵第二参数L2、所述自适应未知输入观测器的增益矩阵第三参数L3和所述自适应未知输入观测器的增益矩阵第四参数L4;其中,E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[InOn×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah On×h],Ah为状态增益矩阵;B为控制输入增益矩阵;H为由Ch和Fs构成的增广输出增益矩阵,即H=[ChFs],Ch为输出增益矩阵,Fs为传感器故障矩阵。
至此,观测器参数求解出来后,完成所述自适应未知输入观测器的设计。利用优化技术来减弱扰动的影响,并利用线性矩阵不等式优化技术进一步求解观测器的设计参数,以确保状态估计误差稳定,达到精确并快速估计故障的目的,提高系统运行的安全性和可靠性。
S106、根据优化后的自适应未知输入观测器对所述非线性系统模型的执行器故障以及传感器故障进行估计。
应用设计的自适应未知输入观测器进行系统增广状态及执行器故障的估计,最后完成系统执行器故障和传感器故障的估计任务,所述观测器执行器和传感器故障的估计结果为:
Figure BDA0002981883340000172
Figure BDA0002981883340000173
其中,ey
Figure BDA0002981883340000174
与y的差值;
Figure BDA0002981883340000175
为执行器故障fa的估计值;
Figure BDA0002981883340000176
为传感器故障fs的估计值;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵;t为时间量;tf为故障发生的时间;Ih为h维的单位矩阵;h为传感器故障的维数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure BDA0002981883340000181
Figure BDA0002981883340000182
fs为系统传感器故障,
Figure BDA0002981883340000183
表示fs的转置运算,xh为非线性系统状态,
Figure BDA0002981883340000184
为xh的转置运算;
Figure BDA0002981883340000185
为x的估计值。
本发明应用基于数学模型的观测器设计方法设计一种基于自适应未知输入观测器的快速故障估计策略,使得动态控制系统在发生故障后,能够及时得到故障信息及具体的故障情况,在尽可能准确估计故障幅值的同时抑制外部干扰对故障估计结果的影响。本发明与现有技术相比突出的优势在于:一、将自适应技术与未知输入观测器相结合,应用优化技术最大程度上降低外干扰对故障估计结果的影响,避免了匹配条件在观测器应用时的限制;二、将非线性系统的原状态向量与传感器故障定义为增广状态,在此基础上设计并求解观测器,从而解决了系统执行器故障和传感器故障同时估计问题,即系统多故障估计问题,同时也在一定程度上简化了观测器的设计,更易实际工程实现;三、通过引入故障估计的比例项提高了故障估计的速度,改善了故障估计的性能,使得系统在出现故障后及时应对,因此,可以有效地提高系统解决故障的效率,提高系统运行的安全性和可靠性。
本发明中,以一个由直流电机驱动的单连杆柔性关节机器人作为一种实施例,对上述基于自适应未知输入观测器的快速故障估计方法进行进一步说明和阐述,以进一步证明所提出的自适应未知输入观测器对非线性系统故障估计的精确性及快速性。
在本实施例中,非线性系统模型可建立为:
Figure BDA0002981883340000191
其中,θm、ωm、θl和ωl分别表示为电机位置、电机速度、连杆位置、连杆速度。Jm和Jl分别是直流电机和机器人关节的转动惯量,k是扭力弹簧常数,kτ是减速器的放大倍数,b是粘滞摩擦系数,m是机器人连杆质量,g是引力常数,h是机器人连杆长度;u为控制输入,即电机的控制转矩。
通过定义xh=[x1,x2,x3,x4]=[θm,ωm,θl,ωl]T,该非线性系统模型可以表示为:
Figure BDA0002981883340000192
其中,该非线性系统模型的相关参数为:
Figure BDA0002981883340000193
Figure BDA0002981883340000194
过程干扰和测量噪声干扰及控制输入定义为:
ξd=0.2sin(10t),ξs=0.1sin(10t),u=2sin(2πt)。
非线性系统及观测器的初始值都为0。
执行器故障和传感器故障为:
Figure BDA0002981883340000195
Figure BDA0002981883340000201
非线性系数Lg取为0.1。
接着,通过将原状态向量和传感器故障定义为增广状态向量,所述增广系统模型为:
Figure BDA0002981883340000202
y=Hx+Dsξs
其中,该增广系统模型的相关参数为:
Figure BDA0002981883340000203
Figure BDA0002981883340000204
Figure BDA0002981883340000205
其他参数设置不变。
然后应用S105中观测器参数求解计算方法,在Matlab中应用LMI工具箱,得到:
μ=1.7360,ε1=0.0280,ε2=6.1681,
G1=[0.9219 36.2344 6.9697],G2=[0 3.7560 0.0660],
Figure BDA0002981883340000206
Figure BDA0002981883340000211
接着根据
Figure BDA0002981883340000212
可求得:
Figure BDA0002981883340000213
Figure BDA0002981883340000214
最后,应用
Figure BDA0002981883340000215
L1=L3M-L5H,L2=L5+L1L4
可求得:
Figure BDA0002981883340000216
Figure BDA0002981883340000217
Figure BDA0002981883340000218
针对上述实施例中的观测器进行快速估计,并对仿真结果进行分析:
由基于自适应未知输入观测器的单连杆柔性关节机器人快速故障估计结果如图2-图5所示:
图2表示系统执行器故障fa的估计结果,其中图中横坐标表示仿真时间,纵坐标表示执行器故障fa的估计幅值,图中实线表示执行器故障fa的真实值,虚线表示执行器故障fa的估计值,真实值和估计值重合。
图3表示执行器故障fa估计误差,其中图中横坐标表示仿真时间,纵坐标表示执行器故障fa估计误差的幅值。
图4表示系统传感器故障fs的估计结果,其中图中横坐标表示仿真时间,纵坐标表示传感器故障fs的估计幅值,图中实线表示传感器故障fs的真实值,虚线表示传感器故障fs的估计值。
图5表示传感器故障fs估计误差,其中图中横坐标表示仿真时间,纵坐标表示执传感器故障fs估计误差的幅值。
从本实施例的仿真图中可以看出,本发明设计的自适应未知输入观测器,可以快速准确的估计系统的执行器故障和传感器故障,同时保证最大程度的减小外部干扰对故障估计结果的影响,其对实际工程中的动态非线性系统的在线故障估计具有重要的应用价值。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本发明所必须的。
以上是关于方法实施例的介绍,以下通过设备实施例,对本发明所述方案进行进一步说明。
如图6所示,设备包括中央处理单元(CPU),其可以根据存储在只读存储器(ROM)中的计算机程序指令或者从存储单元加载到随机访问存储器(RAM)中的计算机程序指令,来执行各种适当的动作和处理。在RAM中,还可以存储设备操作所需的各种程序和数据。CPU、ROM以及RAM通过总线彼此相连。输入/输出(I/O)接口也连接至总线。
设备中的多个部件连接至I/O接口,包括:输入单元,例如键盘、鼠标等;输出单元,例如各种类型的显示器、扬声器等;存储单元,例如磁盘、光盘等;以及通信单元,例如网卡、调制解调器、无线通信收发机等。通信单元允许设备通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理单元执行上文所描述的各个方法和处理,例如方法S101~S103。例如,在一些实施例中,方法S101~S103可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元。在一些实施例中,计算机程序的部分或者全部可以经由ROM和/或通信单元而被载入和/或安装到设备上。当计算机程序加载到RAM并由CPU执行时,可以执行上文描述的方法S101~S103的一个或多个步骤。备选地,在其他实施例中,CPU可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法S101~S103。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本发明的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本发明的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本发明的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (10)

1.一种基于自适应未知输入观测器的快速故障估计方法,其特征在于,包括:
建立动态控制系统的非线性系统模型;所述非线性系统模型包含执行器故障和传感器故障;
根据所述非线性系统模型的增广状态向量建立增广系统模型;所述增广状态向量由非线性系统模型的状态向量和所述传感器故障进行定义;
根据所述增广系统模型建立自适应未知输入观测器,使所述自适应未知输入观测器满足第一条件;
计算所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差;
通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数;
根据优化后的自适应未知输入观测器对所述非线性系统模型的执行器故障以及传感器故障进行估计。
2.根据权利要求1所述的方法,其特征在于,所述非线性系统模型为:
Figure FDA0002981883330000011
其中,xh为非线性系统状态;
Figure FDA0002981883330000012
为xh的导数;yh为非线性系统输出;ξd为过程干扰;ξs(t)为测量噪声;u为控制输入;gh(xh,t)为非线性系统的非线性函数;fa为非线性系统的执行器故障;fs为非线性系统的传感器故障;Ah为状态增益矩阵;Bh为控制输入增益矩阵;Ch为输出增益矩阵;Fa为执行器故障矩阵;Fs为传感器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵,t为时间变量。
3.根据权利要求1所述的方法,其特征在于,所述增广系统模型为:
Figure FDA0002981883330000021
y=Hx+Dsξs
其中,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure FDA0002981883330000022
fs为非线性系统传感器故障,
Figure FDA0002981883330000023
表示fs的转置运算,xh为非线性系统状态,
Figure FDA0002981883330000024
为xh的转置运算;
Figure FDA0002981883330000025
为x的导数;y为增广系统输出;ξd为过程干扰;ξs为测量噪声;u为控制输入;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;fa为非线性系统执行器故障;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah 0n×h],Ah为状态增益矩阵;B为控制输入增益矩阵,即B=Bh;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;n为非线性系统状态向量的维数;h为传感器故障向量的维数;t为时间变量。
4.根据权利要求1所述的方法,其特征在于,所述第一条件为:
L3E+L4H=In+h
其中,L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵,n为非线性系统状态向量的维数;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵;In+h为n+h维的单位矩阵,h为传感器故障向量的维数。
5.根据权利要求1所述的方法,其特征在于,所述自适应未知输入观测器为:
Figure FDA0002981883330000031
Figure FDA0002981883330000032
Figure FDA0002981883330000033
Figure FDA0002981883330000034
其中,
Figure FDA0002981883330000035
为z的导数,z为所述自适应未知输入观测器的状态信息;u为增广系统的输入;
Figure FDA0002981883330000036
为x的估计值;
Figure FDA0002981883330000037
为y的估计值,y为增广系统的输出;
Figure FDA0002981883330000038
为fa的估计值,fa为非线性系统执行器故障,
Figure FDA0002981883330000039
Figure FDA00029818833300000310
的导数;ey
Figure FDA00029818833300000311
与y的差值;
Figure FDA00029818833300000312
为ey的导数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure FDA00029818833300000313
fs为非线性系统传感器故障,
Figure FDA00029818833300000314
表示fs的转置运算,xh为非线性系统状态,
Figure FDA00029818833300000315
为xh的转置运算;
Figure FDA00029818833300000316
为非线性系统经增广状态处理后的非线性函数的估计值;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;B为控制输入增益矩阵,即B=Bh;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;Fa为执行器故障矩阵;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵。
6.根据权利要求1所述的方法,其特征在于,所述自适应未知输入观测器与所述增广系统模型之间的增广状态估计误差和执行器故障估计误差为:
Figure FDA00029818833300000317
其中,ex为所述自适应未知输入观测器的增广状态估计误差,即
Figure FDA00029818833300000318
Figure FDA0002981883330000041
Figure FDA0002981883330000042
为ex的导数;
Figure FDA0002981883330000043
为x的估计值,x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure FDA0002981883330000044
fs为系统传感器故障,
Figure FDA0002981883330000045
表示fs的转置运算,xh为非线性系统状态,
Figure FDA0002981883330000046
为xh的转置运算;
Figure FDA0002981883330000047
为所述自适应未知输入观测器的执行器故障估计误差,即
Figure FDA0002981883330000048
Figure FDA0002981883330000049
为fa的估计值,fa为系统执行器故障;
Figure FDA00029818833300000410
为fa的导数;
Figure FDA00029818833300000411
Figure FDA00029818833300000412
的导数;ey为所述自适应未知输入观测器的输出估计误差,即
Figure FDA00029818833300000413
Figure FDA00029818833300000414
为y的估计值,y为增广系统的输出;
Figure FDA00029818833300000415
为ey的导数;
Figure FDA00029818833300000416
为所述自适应未知输入观测器的非线性项估计误差,即
Figure FDA00029818833300000417
Figure FDA00029818833300000418
为非线性系统经增广状态处理后的非线性函数的估计值;g(Ex,t)为非线性系统经增广状态处理后的非线性函数;L1为所述自适应未知输入观测器的增益矩阵第一参数;L2为所述自适应未知输入观测器的增益矩阵第二参数;L3为所述自适应未知输入观测器的增益矩阵第三参数;L4为所述自适应未知输入观测器的增益矩阵第四参数;L5为所述自适应未知输入观测器的中间设计参数,即L5=L2-L1×L4;ξd为过程干扰;ξs为测量噪声;
Figure FDA00029818833300000419
为ξs的导数;Dd为过程干扰增益矩阵;Ds为测量噪声增益矩阵;α为增益系数;P为对称正定矩阵;P-1表示对称正定矩阵P的逆矩阵运算;H为增广输出增益矩阵,HT表示矩阵H的转置运算;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵。
7.根据权利要求1所述的方法,其特征在于,所述通过线性矩阵不等式对所述自适应未知输入观测器进行误差优化,计算优化后的观测器参数,包括:
如果存在对称正定矩阵P、中间计算矩阵Y、第一故障估计系数矩阵G1、第二故障估计系数矩阵G2、优化性能指标参数小第一中间计算正常数ε1和第二中间计算正常数ε2满足第二条件,则计算第一对称正定矩阵P1、中间计算矩阵Y、第一故障估计系数矩阵G1和第二故障估计系数矩阵G2
根据
Figure FDA0002981883330000051
Figure FDA0002981883330000052
计算对称正定矩阵P和所述自适应未知输入观测器的中间设计参数L5;其中,Iq为q维的单位矩阵;P1为第一对称正定矩阵;
Figure FDA0002981883330000053
为矩阵P1的转置运算;
根据
Figure FDA0002981883330000054
L1=L3M-L5H,L2=L5+L1L4,计算所述自适应未知输入观测器的增益矩阵第一参数L1、所述自适应未知输入观测器的增益矩阵第二参数L2、所述自适应未知输入观测器的增益矩阵第三参数L3和所述自适应未知输入观测器的增益矩阵第四参数L4;其中,E为由单位矩阵和零矩阵构成的扩展矩阵,即E=[In 0n×h],In为n维的单位矩阵;M为由Ah和零矩阵构成的增广状态增益矩阵,即M=[Ah 0n×h],Ah为状态增益矩阵;B为控制输入增益矩阵;H为由Ch和Fs构成的增广输出增益矩阵,即H=[Ch Fs],Ch为输出增益矩阵,Fs为传感器故障矩阵。
8.根据权利要求7所述的方法,其特征在于,所述第二条件为:
min(μ),s.t.
Figure FDA0002981883330000055
Figure FDA0002981883330000056
Figure FDA0002981883330000057
Figure FDA0002981883330000058
Figure FDA0002981883330000061
其中,*表示对称矩阵的对称项;
Figure FDA0002981883330000062
Figure FDA0002981883330000063
Figure FDA0002981883330000064
Δ=[HT(HHT)-1Ds];
Figure FDA0002981883330000065
Figure FDA0002981883330000066
Figure FDA0002981883330000067
Lg为自行可设定的非线性系数;In+h为n+h维的单位矩阵;n为非线性系统状态向量的维数;h为传感器故障向量维数;q为执行器故障向量维数;l为过程干扰ξd的维数;s为测量噪声ξs的维数;Iq为q维的单位矩阵;Il为l维的单位矩阵;Is为s维的单位矩阵;Ds为测量噪声增益矩阵;Fa为执行器故障矩阵;Dd为过程干扰增益矩阵;μ为优化性能指标参数,μ>0。
9.根据权利要求1所述的方法,其特征在于,所述对所述非线性系统模型的执行器故障以及传感器故障进行估计,包括:
Figure FDA0002981883330000068
Figure FDA0002981883330000069
其中,ey
Figure FDA00029818833300000610
与y的差值;
Figure FDA00029818833300000611
为执行器故障fa的估计值;
Figure FDA00029818833300000612
为传感器故障fs的估计值;G1为第一故障估计系数矩阵;G2为第二故障估计系数矩阵;t为时间量;tf为故障发生的时间;Ih为h维的单位矩阵;h为传感器故障的维数;x为包含所述非线性系统模型的状态向量和传感器故障的增广状态向量,
Figure FDA0002981883330000071
Figure FDA0002981883330000072
fs为系统传感器故障,
Figure FDA0002981883330000073
表示fs的转置运算,xh为非线性系统状态,
Figure FDA0002981883330000074
为xh的转置运算;
Figure FDA0002981883330000075
为x的估计值。
10.一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1~9中任一项所述的方法。
CN202110289496.9A 2021-03-18 2021-03-18 基于自适应未知输入观测器的快速故障估计方法及设备 Active CN113031570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110289496.9A CN113031570B (zh) 2021-03-18 2021-03-18 基于自适应未知输入观测器的快速故障估计方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110289496.9A CN113031570B (zh) 2021-03-18 2021-03-18 基于自适应未知输入观测器的快速故障估计方法及设备

Publications (2)

Publication Number Publication Date
CN113031570A true CN113031570A (zh) 2021-06-25
CN113031570B CN113031570B (zh) 2022-02-01

Family

ID=76472150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110289496.9A Active CN113031570B (zh) 2021-03-18 2021-03-18 基于自适应未知输入观测器的快速故障估计方法及设备

Country Status (1)

Country Link
CN (1) CN113031570B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721468A (zh) * 2021-09-03 2021-11-30 华东理工大学 污水处理系统执行器加性故障的自愈控制方法及系统
CN113885499A (zh) * 2021-10-08 2022-01-04 四川大学 腔体内检测用机器人轨迹容错控制方法
CN114019944A (zh) * 2021-11-08 2022-02-08 江南大学 一种fdi攻击下网络化控制系统状态与故障的联合区间估计方法
CN114115185A (zh) * 2021-11-15 2022-03-01 哈尔滨工业大学 一种基于区间运算的故障检测阈值计算方法
CN114325164A (zh) * 2021-11-24 2022-04-12 合肥工业大学 单相三电平整流器多故障诊断方法
CN114815785A (zh) * 2022-06-07 2022-07-29 哈尔滨工业大学 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法
CN114825281A (zh) * 2022-04-22 2022-07-29 合肥工业大学 一种交错并联Boost PFC系统的多故障估计方法
CN116203848A (zh) * 2023-04-28 2023-06-02 西北工业大学 一种飞机升降舵故障感知与保护一体化驱动方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US20060064291A1 (en) * 2004-04-21 2006-03-23 Pattipatti Krishna R Intelligent model-based diagnostics for system monitoring, diagnosis and maintenance
US8515712B1 (en) * 2010-08-26 2013-08-20 Lockheed Martin Corporation Information based optimal reduced state estimator for poorly conditioned estimation problems
CN105093934A (zh) * 2015-08-17 2015-11-25 哈尔滨工业大学 考虑干扰与模型不确定性的多机器人系统分布式有限时间跟踪控制方法
CN105204499A (zh) * 2015-10-09 2015-12-30 南京航空航天大学 基于未知输入观测器的直升机协同编队故障诊断方法
CN107329083A (zh) * 2017-07-28 2017-11-07 南京航空航天大学 针对高速列车牵引电机非线性系统传感器的故障诊断方法
CN109557818A (zh) * 2019-01-10 2019-04-02 南京航空航天大学 具有执行器和传感器故障的多智能体跟踪系统的滑模容错控制方法
US20200089229A1 (en) * 2018-09-18 2020-03-19 GM Global Technology Operations LLC Systems and methods for using nonlinear model predictive control (mpc) for autonomous systems
CN111090945A (zh) * 2019-12-20 2020-05-01 淮阴工学院 一种针对切换系统的执行器和传感器故障估计设计方法
CN111290366A (zh) * 2020-02-12 2020-06-16 北京科技大学顺德研究生院 一种航天器姿控系统多故障诊断方法
CN111812980A (zh) * 2020-07-02 2020-10-23 淮阴工学院 基于未知输入观测器的离散切换系统的鲁棒故障估计方法
CN113625677A (zh) * 2021-06-16 2021-11-09 河南大学 一种基于自适应迭代学习算法的非线性系统故障检测与估计方法和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US20060064291A1 (en) * 2004-04-21 2006-03-23 Pattipatti Krishna R Intelligent model-based diagnostics for system monitoring, diagnosis and maintenance
US8515712B1 (en) * 2010-08-26 2013-08-20 Lockheed Martin Corporation Information based optimal reduced state estimator for poorly conditioned estimation problems
CN105093934A (zh) * 2015-08-17 2015-11-25 哈尔滨工业大学 考虑干扰与模型不确定性的多机器人系统分布式有限时间跟踪控制方法
CN105204499A (zh) * 2015-10-09 2015-12-30 南京航空航天大学 基于未知输入观测器的直升机协同编队故障诊断方法
CN107329083A (zh) * 2017-07-28 2017-11-07 南京航空航天大学 针对高速列车牵引电机非线性系统传感器的故障诊断方法
US20200089229A1 (en) * 2018-09-18 2020-03-19 GM Global Technology Operations LLC Systems and methods for using nonlinear model predictive control (mpc) for autonomous systems
CN109557818A (zh) * 2019-01-10 2019-04-02 南京航空航天大学 具有执行器和传感器故障的多智能体跟踪系统的滑模容错控制方法
CN111090945A (zh) * 2019-12-20 2020-05-01 淮阴工学院 一种针对切换系统的执行器和传感器故障估计设计方法
CN111290366A (zh) * 2020-02-12 2020-06-16 北京科技大学顺德研究生院 一种航天器姿控系统多故障诊断方法
CN111812980A (zh) * 2020-07-02 2020-10-23 淮阴工学院 基于未知输入观测器的离散切换系统的鲁棒故障估计方法
CN113625677A (zh) * 2021-06-16 2021-11-09 河南大学 一种基于自适应迭代学习算法的非线性系统故障检测与估计方法和装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D.KOENING, S.MAMMAR: "Design of a class of reduced order unknown inputs nonlinear observer for fault diagnosis", 《PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE》 *
H. WANG; S. DALEY: "Actuator fault diagnosis: an adaptive observer-based technique", 《IEEE TRANSACTIONS ON AUTOMATIC CONTROL》 *
孙延修等: "非线性广义系统传感器故障估计方法", 《广西大学学报(自然科学版)》 *
肖冰,胡庆雷,马广富: "基于观测器的航天器执行机构失效故障重构", 《宇航学报》 *
胡正高等: "基于自适应未知输入观测器的非线性动态系统故障诊断", 《控制与决策》 *
邓露等: "基于广义未知输入观测器的执行器故障估计", 《计算机应用研究》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721468A (zh) * 2021-09-03 2021-11-30 华东理工大学 污水处理系统执行器加性故障的自愈控制方法及系统
CN113885499B (zh) * 2021-10-08 2023-06-06 四川大学 腔体内检测用机器人轨迹容错控制方法
CN113885499A (zh) * 2021-10-08 2022-01-04 四川大学 腔体内检测用机器人轨迹容错控制方法
CN114019944A (zh) * 2021-11-08 2022-02-08 江南大学 一种fdi攻击下网络化控制系统状态与故障的联合区间估计方法
CN114019944B (zh) * 2021-11-08 2024-04-30 江南大学 一种fdi攻击下网络化控制系统状态与故障的联合区间估计方法
CN114115185A (zh) * 2021-11-15 2022-03-01 哈尔滨工业大学 一种基于区间运算的故障检测阈值计算方法
CN114325164A (zh) * 2021-11-24 2022-04-12 合肥工业大学 单相三电平整流器多故障诊断方法
CN114325164B (zh) * 2021-11-24 2023-03-10 合肥工业大学 单相三电平整流器多故障诊断方法
CN114825281A (zh) * 2022-04-22 2022-07-29 合肥工业大学 一种交错并联Boost PFC系统的多故障估计方法
CN114825281B (zh) * 2022-04-22 2024-03-26 合肥工业大学 一种交错并联Boost PFC系统的多故障估计方法
CN114815785B (zh) * 2022-06-07 2023-04-07 哈尔滨工业大学 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法
CN114815785A (zh) * 2022-06-07 2022-07-29 哈尔滨工业大学 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法
CN116203848A (zh) * 2023-04-28 2023-06-02 西北工业大学 一种飞机升降舵故障感知与保护一体化驱动方法

Also Published As

Publication number Publication date
CN113031570B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN113031570B (zh) 基于自适应未知输入观测器的快速故障估计方法及设备
Li et al. Integrated fault estimation and non‐fragile fault‐tolerant control design for uncertain Takagi–Sugeno fuzzy systems with actuator fault and sensor fault
Defoort et al. Adaptive sensor and actuator fault estimation for a class of uncertain Lipschitz nonlinear systems
Wang et al. Fault estimation filter design for discrete‐time descriptor systems
Yoo Fault‐tolerant control of strict‐feedback non‐linear time‐delay systems with prescribed performance
CN111090945B (zh) 一种针对切换系统的执行器和传感器故障估计设计方法
Awan et al. Adaptive backstepping based sensor and actuator fault tolerant control of a manipulator
JPH07121495A (ja) 1つ以上のニューラルネットワークを使用したエキスパートシステムの構築方法
EP4151485A2 (en) Method and apparatus for determining information, storage medium and computer program product
Elleuch et al. State and faults estimation based on proportional integral sliding mode observer for uncertain Takagi–Sugeno fuzzy systems and its application to a turbo-reactor
KR20240043656A (ko) 공정 설비의 비정상 동작 탐지를 위한 딥러닝 모델의 학습 방법
Tavasolipour et al. A new approach for robust fault estimation in nonlinear systems with state-coupled disturbances using dissipativity theory
Li et al. Observer‐based fault diagnosis and self‐restore control for systems with measurement delays
Miranda‐Colorado Closed‐loop parameter identification of second‐order non‐linear systems: a distributional approach using delayed reference signals
Zhirabok et al. Nonparametric methods for fault diagnosis in dynamic systems
Ramírez Jerónimo et al. Robust stabilisation of linear time‐invariant time‐delay systems via first order and super‐twisting sliding mode controllers
Liao et al. Design and implementation of a hierarchical‐clustering CMAC PID controller
Langueh et al. Fixed‐time sliding mode‐based observer for non‐linear systems with unknown parameters and unknown inputs
Enciso-Salas et al. Fault Detection and Isolation for UAVs using Neural Ordinary Differential Equations
Lomakin et al. Reliable algebraic fault detection and identification of robots
Jia Control of flexible joint robot based on motor state feedback and dynamic surface approach
Zhou et al. Interval state and sensor fault estimation based on unknown input observer and interval hull computation
Zarourati et al. Designing an adaptive robust observer for underactuation fault diagnosis of a remote sensing satellite
Zhao et al. Multisensor fault identification scheme based on decentralized sliding mode observers applied to reconfigurable manipulators
Piltan et al. Fault diagnosis of a robot manipulator based on an ARX-laguerre fuzzy PID observer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Gao Sheng

Inventor after: Ma Guangfu

Inventor after: Guo Yanning

Inventor before: Ma Guangfu

Inventor before: Guo Yanning

CB03 Change of inventor or designer information