CN113013278B - 一种碳化硅基全谱响应光电探测器及其制备方法 - Google Patents

一种碳化硅基全谱响应光电探测器及其制备方法 Download PDF

Info

Publication number
CN113013278B
CN113013278B CN202110270328.5A CN202110270328A CN113013278B CN 113013278 B CN113013278 B CN 113013278B CN 202110270328 A CN202110270328 A CN 202110270328A CN 113013278 B CN113013278 B CN 113013278B
Authority
CN
China
Prior art keywords
silicon carbide
carbide substrate
surface plasmon
metal
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110270328.5A
Other languages
English (en)
Other versions
CN113013278A (zh
Inventor
崔艳霞
樊亚萍
严贤雍
李国辉
田媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110270328.5A priority Critical patent/CN113013278B/zh
Publication of CN113013278A publication Critical patent/CN113013278A/zh
Priority to US17/514,526 priority patent/US11710801B2/en
Application granted granted Critical
Publication of CN113013278B publication Critical patent/CN113013278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1013Devices sensitive to infrared, visible or ultraviolet radiation devices sensitive to two or more wavelengths, e.g. multi-spectrum radiation detection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于半导体光电探测器技术领域,具体涉及一种碳化硅基紫外‑可见‑近红外全谱响应光电探测器及其制备方法。光电探测器包含碳化硅基底,以及位于其上方的金属对电极和表面等离激元纳米结构,其中碳化硅基底与金属对电极构成了电极共面形式的金属‑半导体‑金属型光电探测器。紫外光入射时,碳化硅中直接产生自由载流子被外电路收集产生电信号,可见光入射时,表面等离激元纳米结构中产生的热载流子隧穿进入碳化硅半导体成为自由载流子从而产生电信号。本发明提供的碳化硅基光电探测器克服了现有碳化硅光电探测器只能响应紫外光的限制,实现了同时对紫外光、可见光以及近红外光的全谱探测。

Description

一种碳化硅基全谱响应光电探测器及其制备方法
技术领域
本发明属于半导体光电探测器技术领域,具体涉及一种碳化硅基紫外-可见-近红外全谱响应光电探测器及其制备方法。
背景技术
碳化硅是一种宽带隙半导体材料,具有热导率高、电子饱和漂移速率大、稳定性好等优点。相比于传统半导体材料,碳化硅材料在更高温、高压、高频、强辐射等极端环境下,具有更加稳定的特性。
以碳化硅作为光吸收层,可以制成紫外光电探测器,按结构形式进行区分,碳化硅紫外光电探测器主要包含PIN结构、雪崩二极管结构、金属-绝缘体-半导体结构、垂直形式的金属-半导体-金属结构以及电极共面形式的金属-半导体-金属结构。电极共面形式的金属-半导体-金属型碳化硅紫外光电探测器是在碳化硅基底上简单制作金属对电极获得的。
该器件要获得大亮暗电流比的关键在于制作金属电极时,金属与半导体之间形成肖特基结接触。一对电极恰好形成两个肖特基结,它们背靠背串联在一起,较高的肖特基势垒可有有效拦阻外电路中的电流向碳化硅半导体中注入。例如,在2004年,中国吴正云等人对比了镍电极与铝电极所制成的金属-半导体-金属型碳化硅紫外光电探测器的性能,结果表明,与铝电极器件相比,镍电极器件的暗电流低了一个数量级,这反映出镍与碳化硅形成的肖特基接触势垒比铝的更高,进而在一定程度上抑制了外电路中注入的电流(文献:Chinese Journal of Quantum Electronics 2004, 21, 269-272)。
此外,碳化硅基底的特性也会严重影响金属-半导体-金属型碳化硅紫外光电探测器的暗电流水平。在2004年,中国吴正云等人分别基于p型碳化硅基底(本征载流子浓度3e16/cm3)和n型碳化硅基底(本征载流子浓度3e15/cm3)制作了金属-半导体-金属型碳化硅紫外光电探测器的性能,该研究表明p型碳化硅衬底器件具有更低的暗电流。(文献:Materials Science Forum 2004,457-460,1491-1494)。随后,在2012年,美国Wei-ChengLien等人利用20nm Cr/150nmPd双层复合电极与p型碳化硅基底(本征载流子浓度2e15/cm3)之间形成了肖特基结接触,所制成的金属-半导体-金属型紫外光电探测器在5 V偏压下,暗电流为10e-10A,亮暗电流比高达10e5量级(文献:IEEE Electron DeviceLetters 2012, 33, 1586-1588)。
如果在半绝缘型碳化硅基底上制作金属-半导体-金属型紫外光电探测器,有益于实现更好的光电探测性能,这是因为其本征载流子浓度(在1e13/cm3至1e15/cm3范围内)比掺杂半导体的更低。其原因在于,外加合适的偏压时,金属-半导体-金属型器件中的一个肖特基结消失,本征载流子参与导电,较高的本征载流子浓度会造成回路中形成较大的暗电流。而半绝缘型碳化硅半导体极低的本征载流子浓度确保了回路中的暗电流即便是在外加偏压时也可以被维持在一个极低的水平。同等光照条件下,暗电流越低,亮暗电流比越大,器件探测率越高。
由于带隙的限制,碳化硅光电探测器无法对光子能量大于其带隙的可见光做出响应,这在一定程度上限制了它们的应用。例如,某些工业控制要求在高温环境下进行,此时,由于硅材料不耐高温,硅光电探测器已经无法正常工作,稳定性高的碳化硅光电探测器成为必需。而基于碳化硅的全光谱光电探测器有望在极端环境下的工业控制应用领域中发挥重要作用。
发明内容
本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种碳化硅基紫外-可见-近红外全谱响应光电探测器,克服现有碳化硅光电探测器只能对紫外光做出响应的限制。
为了解决上述技术问题,本发明采用的技术方案为:一种碳化硅基全谱响应光电探测器,其特征在于,包括碳化硅基底,所述碳化硅基底的硅面上设置有金属对电极和表面等离激元纳米结构,所述金属对电极设置在碳化硅基底上,所述表面等离激元纳米结构设置在金属对电极之间,所述表面等离激元纳米结构包括多个均匀分布于碳化硅基底的硅面上的金属纳米颗粒,所述金属对电极与碳化硅基底之间形成肖特基接触。
进一步地,所述金属对电极为叉指电极,表面等离激元纳米结构均匀分布在叉指电极之间。
进一步地,所述碳化硅基底为半绝缘4H-SiC型,本征载流子浓度在1e13/cm3至1e15/cm3范围内,厚度为100-800μm,所述金属对电极的材料为金、银、钛、镍、钯或镉;叉指电极参数为指宽100~300μm,指间距100~300μm,电极对数5~15对,有效面积0.1cm2
进一步地,所述金属对电极Cr/Pd双层电极或Ag/Ti双层电极。
进一步地,表面等离激元纳米结构为立方体的纳米颗粒或圆柱体的纳米颗粒形成的阵列结构,阵列结构的周期为50-1000nm,纳米颗粒的边长或直径为20-500nm,高度为20-500nm。
进一步地,所述纳米颗粒Cr/Au双层结构。
进一步地,表面等离激元纳米结构为金属薄膜退火形成的呈随机分布的岛状金属纳米颗粒结构,金属岛的平均直径为20-100 nm,岛与岛之间间隙的平均大小在50-300 nm。
此外,本发明还提供了一种碳化硅基全谱响应光电探测器的制备方法,其特征在于,包括以下步骤:
S1、通过原子力显微镜对碳化硅基底进行碳面与硅面的标定,同时,对碳化硅基底进行清洗和烘干;
S2、在处理后的碳化硅基底的硅表面制备均匀分布的金属纳米颗粒,形成表面等离激元纳米结构;
S3、在表面等离激元纳米结构两侧制备金属对电极。
所述步骤S2中的具体方法为:
将处理过的碳化硅基底放入磁控溅射镀膜腔体中,使用0.1nm/s的速率在碳化硅的硅面一侧溅射一层5nm厚的金薄膜;将镀有金薄膜的碳化硅基底转移到马弗炉中,将马弗炉的温度升至500℃,使炉内温度在两个小时内等步长的降至室温,形成岛状金纳米颗粒;
所述步骤S3的具体方法为:
在碳化硅基底上加载掩膜版,通过蒸镀法蒸镀一层金属层;
去除掩膜版,完成金属对电极的制备。
所述步骤S2的具体方法为:
在碳化硅基底的硅面上通过旋涂法制作PMMA光刻胶薄膜,厚度为80nm,通过深紫外光刻法或电子束曝光法对其进行曝光,曝光图形与表面等离激元纳米结构的图形一致;
将曝光后的碳化硅基底浸入显影液进行定影,冲洗残液后吹干;
在碳化硅表面通过磁控溅射方法制作5nm厚 Cr粘附层以及50nm厚Au膜,将碳化硅基底浸入丙酮剥离未曝光的光刻胶以及上方金属,吹干样品,至此表面等离激元纳米结构制作完成。
本发明与现有技术相比具有以下有益效果:
1、本发明采用碳化硅作为基底,在碳化硅表面引入呈二维周期阵列形式分布的表面等离激元纳米结构,两侧设置金属对电极形成碳化硅探测器,使得本发明的探测器结合了碳化硅光电探测器与表面等离激元纳米结构的优点,其中碳化硅基底与金属对电极构成了电极共面形式的金属-半导体-金属型光电探测器。紫外光入射时,碳化硅中直接产生自由载流子被外电路收集产生电信号,可见光入射时,表面等离激元纳米结构中产生的热载流子隧穿进入碳化硅半导体成为自由载流子从而产生电信号。本发明克服了现有碳化硅光电探测器只能响应紫外光的限制,实现了同时对紫外光、可见光以及近红外光的全谱探测。通过碳化硅吸收紫外光、表面等离激元纳米结构吸收可见以及近红外光,突破了传统碳化硅光电探测器的响应波长受带隙限制的约束,可以使器件的响应波长从紫外拓展到可见以及近红外波段,实现了探测器的全谱响应,而且,其结构简单,制备工艺成熟。
2、碳化硅是一种稳定性极高的宽带隙半导体材料,它还具有电子饱和漂移速率大、热导率高等优点。相比于传统半导体材料,碳化硅材料能耐受高温、高压、高频、强辐射等极端环境。由于表面等离激元纳米结构与碳化硅基底均具有比较高的稳定性,因此,本发明的探测器可以耐受在比传统硅光电探测器更高的温度下。2.此探测器。
3. 基于表面等离激元共振原理,金属纳米结构可实现宽谱高效光吸收特性,使得碳化硅基光电探测器在可见以及近红外光宽谱范围内的响应率得到大幅度提高。
附图说明
图1为现有技术中电极共面金属-半导体-金属型碳化硅紫外光电探测器的结构图;
图2为本发明实施例一提出的碳化硅基全谱响应光电探测器结构图,该器件是在碳化硅基底上制作金属对电极和表面等离激元纳米结构,
图3为本发明实施例一提出的碳化硅基全谱响应光电探测器的剖面图;
图4为表面等离激元纳米岛结构的SEM形貌图以及测量得到的光电探测器的瞬态光电流响应特性,其中(a)是通过退火方法制得的表面等离激元纳米岛结构的SEM形貌图,岛的平均直径为40 nm, (b)为本发明提出的碳化硅基紫外-可见-近红外全谱响应光电探测器的瞬态光电流响应特性,测试波长包含了375 nm、660 nm、850 nm、1310 nm以及1550nm几个波长;
图5为本发明实施例二中在碳化硅基底上由立方体状表面等离激元纳米结构构成的二维周期阵列;
图6为本发明实施例二中在碳化硅基底上由圆柱体状表面等离激元纳米结构构成的二维周期阵列。
图中:1为碳化硅基底,2为叉指电极,3为纳米颗粒。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施
例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图2所示,本发明实施例一提供了一种碳化硅基全谱响应光电探测器,包括碳化硅基底1,所述碳化硅基底1的硅面上设置有金属对电极2和表面等离激元纳米结构3,所述金属对电极设置在碳化硅基底1两侧,所述表面等离激元纳米结构3设置在金属对电极之间,所述表面等离激元纳米结构3包括多个均匀分布于碳化硅基底1的硅面上的金属纳米颗粒,所述金属对电极与碳化硅基底1之间形成肖特基接触。碳化硅基底与金属对电极构成了电极共面形式的金属-半导体-金属型光电探测器。
具体地,本实施例中,所述碳化硅基底1为半绝缘4H-SiC型,本征载流子浓度在1e13/cm3至1e15/cm3范围内,厚度为100-800μm。
具体地,本实施例中,所述金属对电极的材料为金、银、钛、镍、钯或镉。具体地,本实施例中,所述金属对电极Cr/Pd双层电极或Ag/Ti双层电极。
进一步地,本实施例中,表面等离激元纳米结构(3)为金属薄膜退火形成的呈随机分布的岛状金属纳米颗粒结构,金属岛的平均直径为20-100 nm,岛与岛之间间隙的平均大小在50-300 nm。
进一步地,本实施例中,所述金属对电极(2)为叉指电极,参数为指宽100~300μm,指间距100~300μm,电极对数5~15对,有效面积0.1cm2
进一步地,本实施例还提供了所述的一种碳化硅基全谱响应光电探测器的制备方法,其包括以下步骤:
首先通过原子力显微镜对碳化硅基底进行碳面与硅面的标定,粗糙度低的为硅面。然后将碳化硅基底进行清洗、烘干。接着,将处理过的碳化硅基底放入磁控溅射镀膜腔体中,使用0.1nm/s的速率在碳化硅的硅面一侧溅射一层5nm厚的金薄膜。
将镀有金薄膜的碳化硅基底转移到马弗炉中,将马弗炉的温度升至500℃,使炉内温度在两个小时内等步长的降至室温,形成岛状金纳米颗粒。在含有岛状金纳米颗粒的碳化硅基底上加载叉指电极掩膜版,使用0.1nm/s的速率蒸镀厚度为100nm的银电极,其中电极的形式为叉指型,参数为指宽250μm、指间距250μm、电极对数10对、有效面积0.1cm2。
从镀膜室取出样品,去除掩膜版,完成金属电极的制备,获得一种碳化硅基紫外-可见-近红外全谱响应光电探测器。
采用本实施例的制备方法制备的光电探测器,其中的表面等离激元纳米结构为退火形成的岛状金纳米颗粒,岛的平均直径为40 nm,其SEM形貌如图4中a所示。图4中b给出了本发明实施例中的碳化硅基紫外-可见-近红外全谱响应光电探测器在不同波段的瞬态光电流响应特性,测试时对器件施加0.1 V偏压,该器件实现了对375 nm、660 nm、850 nm、1310 nm以及1550 nm波长光照的电信号响应。由于该器件中所含岛状金纳米颗粒激发的表面等离激元共振峰位于可见光波段,故而器件在1310 nm以及1550 nm波长上的电流响应较弱。
实施例二
本发明实施例二提供了一种碳化硅基全谱响应光电探测器,与实施例一相同的是,本实施例中,探测器包括碳化硅基底1,所述碳化硅基底1的硅面上设置有金属对电极2和表面等离激元纳米结构3,所述金属对电极设置在碳化硅基底1两侧,所述表面等离激元纳米结构3设置在金属对电极之间,所述表面等离激元纳米结构3包括多个均匀分布于碳化硅基底1的硅面上的金属纳米颗粒,所述金属对电极与碳化硅基底1之间形成肖特基接触。
与实施例一不同的是,本实施例中,表面等离激元纳米结构3的结构不同,如图5~6所示,本实施例中,表面等离激元纳米结构3为立方体的纳米颗粒或圆柱体的纳米颗粒形成的阵列结构,阵列结构的周期为50-1000nm,纳米颗粒的边长或直径为20-500nm,高度为20-500nm。
进一步地,本实施例中,所述纳米颗粒Cr/Au双层结构。Au纳米结构层可激发表面等离激元效应有效拓宽光谱吸收, Cr纳米颗粒层在增强Au膜与衬底之间的粘附性的同时,对Au/SiC肖特基势垒的高度有一定的调节作用。
具体地,本实施例中,所述金属对电极2为叉指电极,参数为指宽100~300μm,指间距100~300μm,电极对数5~15对,有效面积0.1cm2
进一步地,本发明实施例二还提供了所述的一种碳化硅基全谱响应光电探测器的制备方法,其包括以下步骤:
首先将碳化硅基底进行清洗、烘干。
接着,在碳化硅基底的硅面上通过旋涂法制作PMMA光刻胶薄膜(厚度为80nm),进一步通过深紫外光刻法或电子束曝光法对其进行曝光,曝光图形与表面等离激元纳米结构的图形一致(方形阵列,方形长、宽均为 50nm,行、列的周期均为300nm,行、列各5000个单元),随后将曝光后的碳化硅基底浸入显影液进行定影,冲洗残液后吹干。
然后,在碳化硅表面通过磁控溅射方法制作5nm厚 Cr粘附层以及50nm厚Au膜,随后将碳化硅基底浸入丙酮剥离未曝光的光刻胶以及上方金属,吹干样品,至此完成表面等离激元纳米结构制作。
使用与表面等离激元纳米结构相同的制备方法,进一步制作金属电极,其中,PMMA薄膜的厚度为200nm,曝光时将图形写在表面等离激元纳米结构的两侧,形状为矩形,矩形长宽分别为300μm、30μm,两个矩形正好把所有表面等离激元纳米结构夹在它们中间,磁控溅射20nm Cr/150nmPd复合薄膜,剥离后完成金属电极的制备,获得一种碳化硅基紫外-可见-近红外全谱响应光电探测器。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

1.一种碳化硅基全谱响应光电探测器,其特征在于,包括碳化硅基底(1),所述碳化硅基底(1)的硅面上设置有金属对电极(2)和表面等离激元纳米结构(3),所述金属对电极设置在碳化硅基底(1)上,所述表面等离激元纳米结构(3)设置在金属对电极之间,所述表面等离激元纳米结构(3)包括多个均匀分布于碳化硅基底(1)的硅面上的金属纳米颗粒,所述金属对电极与碳化硅基底(1)之间形成肖特基接触;
表面等离激元纳米结构(3)为纳米颗粒形成的阵列结构,所述纳米颗粒为Cr/Au双层结构。
2.根据权利要求1所述的一种碳化硅基全谱响应光电探测器,其特征在于,所述金属对电极(2)为叉指电极,表面等离激元纳米结构(3)均匀分布在叉指电极之间。
3.根据权利要求2所述的一种碳化硅基全谱响应光电探测器,其特征在于,所述碳化硅基底(1)为半绝缘4H-SiC型,本征载流子浓度在1e13/cm 3至1e15/cm 3范围内,厚度为100-800μm,所述金属对电极的材料为金、银、钛、镍、钯或镉;叉指电极参数为指宽100~300μm,指间距100~300μm,电极对数5~15对,有效面积0.1cm 2
4.根据权利要求1所述的一种碳化硅基全谱响应光电探测器,其特征在于,所述金属对电极为Cr/Pd双层电极或Ag/Ti双层电极。
5.根据权利要求1所述的一种碳化硅基全谱响应光电探测器,其特征在于,表面等离激元纳米结构(3)为立方体的纳米颗粒或圆柱体的纳米颗粒形成的阵列结构,阵列结构的周期为50-1000nm,纳米颗粒的边长或直径为20-500nm,高度为20-500nm。
6.根据权利要求1所述的一种碳化硅基全谱响应光电探测器的制备方法,其特征在于,包括以下步骤:
S1、通过原子力显微镜对碳化硅基底进行碳面与硅面的标定,同时,对碳化硅基底进行清洗和烘干;
S2、在处理后的碳化硅基底的硅表面制备均匀分布的金属纳米颗粒,形成表面等离激元纳米结构;
S3、在表面等离激元纳米结构两侧制备金属对电极。
7.根据权利要求6所述的一种碳化硅基全谱响应光电探测器的制备方法,其特征在于,所述步骤S2的具体方法为:
在碳化硅基底的硅面上通过旋涂法制作PMMA光刻胶薄膜,厚度为80nm,通过深紫外光刻法或电子束曝光法对其进行曝光,曝光图形与表面等离激元纳米结构的图形一致;
将曝光后的碳化硅基底浸入显影液进行定影,冲洗残液后吹干;
在碳化硅表面通过磁控溅射方法制作5nm厚Cr粘附层以及50nm厚Au膜,将碳化硅基底浸入丙酮剥离未曝光的光刻胶以及上方金属,吹干样品,至此表面等离激元纳米结构制作完成。
CN202110270328.5A 2021-03-12 2021-03-12 一种碳化硅基全谱响应光电探测器及其制备方法 Active CN113013278B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110270328.5A CN113013278B (zh) 2021-03-12 2021-03-12 一种碳化硅基全谱响应光电探测器及其制备方法
US17/514,526 US11710801B2 (en) 2021-03-12 2021-10-29 Silicon carbide-based full-spectrum-responsive photodetector and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110270328.5A CN113013278B (zh) 2021-03-12 2021-03-12 一种碳化硅基全谱响应光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113013278A CN113013278A (zh) 2021-06-22
CN113013278B true CN113013278B (zh) 2023-02-03

Family

ID=76406157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110270328.5A Active CN113013278B (zh) 2021-03-12 2021-03-12 一种碳化硅基全谱响应光电探测器及其制备方法

Country Status (2)

Country Link
US (1) US11710801B2 (zh)
CN (1) CN113013278B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201713B (zh) * 2020-11-03 2022-07-05 深圳先进技术研究院 红外探测器件及其制备方法
CN113013278B (zh) * 2021-03-12 2023-02-03 太原理工大学 一种碳化硅基全谱响应光电探测器及其制备方法
CN113937174B (zh) * 2021-10-14 2023-12-12 南京大学 一种基于选区离子注入的碳化硅基横向pn结极紫外探测器及其制备方法
CN115000207A (zh) * 2022-06-07 2022-09-02 太原理工大学 一种4H-SiC窄带紫外光电探测器
CN115000229A (zh) * 2022-06-09 2022-09-02 太原理工大学 一种暗电流抑制的半绝缘型4H-SiC基紫外光电探测器及制备方法
CN115000231A (zh) * 2022-06-14 2022-09-02 太原理工大学 一种PS纳米球辅助的4H-SiC基热载流子型光电探测器及制备方法
CN115000232A (zh) * 2022-06-16 2022-09-02 太原理工大学 一种基于Cs2AgBiBr6的近红外光电探测器及其制作方法
CN114937710A (zh) * 2022-06-16 2022-08-23 太原理工大学 一种晶体管型4H-SiC基宽谱表面等离激元光电探测器及其制备方法
CN115000197B (zh) * 2022-06-17 2023-12-29 太原理工大学 一种极高增益4H-SiC基宽谱光电晶体管及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201032635Y (zh) * 2006-12-23 2008-03-05 厦门三优光机电科技开发有限公司 一种PIN结构4H-SiC紫外光电探测器
CN101969080A (zh) * 2010-08-10 2011-02-09 电子科技大学 一种黑硅msm结构光电探测器及其制备方法
CN104952976A (zh) * 2015-05-13 2015-09-30 宁波工程学院 单晶碳化硅纳米线高灵敏紫光光电探测器的制备方法
CN105047749A (zh) * 2015-08-25 2015-11-11 镇江镓芯光电科技有限公司 一种具有滤波功能钝化层的碳化硅肖特基紫外探测器
CN108231953A (zh) * 2017-12-29 2018-06-29 厦门大学 一种MSM结构4H-SiC紫外光电探测器的制备方法
CN108630779A (zh) * 2018-05-04 2018-10-09 中国电子科技集团公司第十三研究所 碳化硅探测器及其制备方法
CN109962125A (zh) * 2017-12-14 2019-07-02 中国科学院苏州纳米技术与纳米仿生研究所 一种等离激元增强型深紫外探测器及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373076B1 (en) * 1999-12-07 2002-04-16 Philips Electronics North America Corporation Passivated silicon carbide devices with low leakage current and method of fabricating
JPWO2010021073A1 (ja) * 2008-08-18 2012-01-26 日本電気株式会社 半導体受光素子、光通信デバイス、光インターコネクトモジュール、光電変換方法
US20110175183A1 (en) 2009-08-14 2011-07-21 Drexel University Integrated plasmonic lens photodetector
ITTO20110649A1 (it) * 2011-07-19 2013-01-20 St Microelectronics Srl Dispositivo di fotorivelazione con copertura protettiva e antiriflesso, e relativo metodo di fabbricazione
WO2013160968A1 (ja) * 2012-04-27 2013-10-31 パイオニア株式会社 フォトダイオード
US10084102B2 (en) 2015-03-02 2018-09-25 University Of Maryland, College Park Plasmon-enhanced terahertz graphene-based photodetector and method of fabrication
CN110364584A (zh) 2019-06-28 2019-10-22 厦门大学 基于局域表面等离激元效应的深紫外msm探测器及制备方法
CN113013278B (zh) * 2021-03-12 2023-02-03 太原理工大学 一种碳化硅基全谱响应光电探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201032635Y (zh) * 2006-12-23 2008-03-05 厦门三优光机电科技开发有限公司 一种PIN结构4H-SiC紫外光电探测器
CN101969080A (zh) * 2010-08-10 2011-02-09 电子科技大学 一种黑硅msm结构光电探测器及其制备方法
CN104952976A (zh) * 2015-05-13 2015-09-30 宁波工程学院 单晶碳化硅纳米线高灵敏紫光光电探测器的制备方法
CN105047749A (zh) * 2015-08-25 2015-11-11 镇江镓芯光电科技有限公司 一种具有滤波功能钝化层的碳化硅肖特基紫外探测器
CN109962125A (zh) * 2017-12-14 2019-07-02 中国科学院苏州纳米技术与纳米仿生研究所 一种等离激元增强型深紫外探测器及其制作方法
CN108231953A (zh) * 2017-12-29 2018-06-29 厦门大学 一种MSM结构4H-SiC紫外光电探测器的制备方法
CN108630779A (zh) * 2018-05-04 2018-10-09 中国电子科技集团公司第十三研究所 碳化硅探测器及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetectors in Operation of 450℃;Wei-Cheng Lien等;《IEEE Electron Device Letters》;20121011;第33卷(第11期);第1586-1587页,图1 *
Habeeb Mousa等.Performance enhancement of 3C-SiC thin film UV photodetector via gold nanoparticles.《Semicond. Sci. Technol.》.2019,第34卷第2-3页,图3. *
Performance enhancement of 3C-SiC thin film UV photodetector via gold nanoparticles;Habeeb Mousa等;《Semicond. Sci. Technol.》;20190729;第34卷;第2-3页,图3 *
Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection;Mohammad Amin Nazirzadeh等;《Scientific Report》;20141119;第4卷;第3-4页,图2 *

Also Published As

Publication number Publication date
US11710801B2 (en) 2023-07-25
CN113013278A (zh) 2021-06-22
US20220052218A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
CN113013278B (zh) 一种碳化硅基全谱响应光电探测器及其制备方法
Kushwaha et al. Defect induced high photocurrent in solution grown vertically aligned ZnO nanowire array films
Soci et al. Nanowire photodetectors
Liu et al. High performance MoO 3− x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application
Hosseini et al. High-performance UV‐Vis-NIR photodetectors based on plasmonic effect in Au nanoparticles/ZnO nanofibers
CN110473928A (zh) 多通道全硅基红外光热电探测器及其制作方法
Yakuphanoglu et al. Novel organic doped inorganic photosensors
Yıldırım et al. Self-powered ZrO2 nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal
CN110556478A (zh) 一种基于等离激元效应的钙钛矿弱光探测器
Ruzgar The optoelectrical properties of Li: TiO2/p‐Si photodiodes for various Li doping
Zhang et al. Narrowband photoresponse of a self-powered CuI/SrTiO 3 purple light detector with an ultraviolet-shielding effect
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
Wang et al. Improved high-performance ultraviolet photodetectors through controlled growth of ZnO lateral nanowires
CN211295123U (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器
Yang et al. High-gain and fast-response metal-semiconductor-metal structured organolead halide perovskite photodetectors
Zhang et al. Facilely Achieved Self‐Biased Black Silicon Heterojunction Photodiode with Broadband Quantum Efficiency Approaching 100%
Zhang et al. Fast decay time and low dark current mechanism in TiO 2 ultraviolet detector
Zhao et al. Effect of fabrication temperature on the manufacturability of lateral ZnO nanowire array UV sensor
CN110808294B (zh) 二维铌酸锶纳米片紫外光电晶体管探测器
Bai et al. Realization of a high-Responsivity ultraviolet sensor base on ZnO nanowires modified by Au nanoparticles
Зейниденов et al. Influence of structural features of ZnO films on optical and photoelectric characteristics of inverted polymer solar elements
CN110690316A (zh) 一种基于核壳结构GaN-MoO3纳米柱的自供电紫外探测器及其制备方法
Fedorov et al. Narrow-spectrum photosensitive structures based on J-aggregates of cyanine dyes
TWI837016B (zh) 有機/無機複合結構、其製造方法及感測裝置
RU197989U1 (ru) Фоторезистор на основе композитного материала, состоящего из полимера поли(3-гексилтиофена) и наночастиц кремния p-типа проводимости

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant