CN113004146B - 一种烯醇醚催化氧化制备烯醛的方法 - Google Patents

一种烯醇醚催化氧化制备烯醛的方法 Download PDF

Info

Publication number
CN113004146B
CN113004146B CN202110308008.4A CN202110308008A CN113004146B CN 113004146 B CN113004146 B CN 113004146B CN 202110308008 A CN202110308008 A CN 202110308008A CN 113004146 B CN113004146 B CN 113004146B
Authority
CN
China
Prior art keywords
enol ether
ether
cdcl
nmr
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110308008.4A
Other languages
English (en)
Other versions
CN113004146A (zh
Inventor
陶云海
朱全
张玉顺
黄飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Biohome Technology Co ltd
Yunnan University YNU
Original Assignee
Kunming Biohome Technology Co ltd
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Biohome Technology Co ltd, Yunnan University YNU filed Critical Kunming Biohome Technology Co ltd
Priority to CN202110308008.4A priority Critical patent/CN113004146B/zh
Publication of CN113004146A publication Critical patent/CN113004146A/zh
Application granted granted Critical
Publication of CN113004146B publication Critical patent/CN113004146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/30Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom
    • C07D211/32Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/26Radicals substituted by doubly bound oxygen or sulfur atoms or by two such atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/54Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/72Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 spiro-condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及烯醛制备技术领域,提供了一种烯醇醚催化氧化制备烯醛的方法。本发明将钯催化剂、铜盐、溶剂和烯醇醚混合进行催化氧化反应,得到烯醛。本发明以铜盐为氧化剂,以水和乙腈的混合溶剂为反应溶剂,并将混合溶剂中水和乙腈的体积比控制在3~7:3~7,在本发明特定比例的混合溶剂中,催化氧化反应可以顺利进行,且能避免钯黑沉淀的生成。本发明提供的方法步骤简单,所用试剂成本低,无需使用危险试剂,且底物适应性广、催化剂用量少。进一步的,本发明还加入十八烷硫醇促进催化氧化反应的进行,在钯催化剂用量极低时,通过加入十八烷硫醇可以大幅提高烯醛产率。

Description

一种烯醇醚催化氧化制备烯醛的方法
技术领域
本发明涉及烯醛制备技术领域,尤其涉及一种烯醇醚催化氧化制备烯醛的方法。
背景技术
α,β-不饱和醛(烯醛)是有机合成的重要中间体,可以用于制备香料或药物,用途广泛。
Saegusa氧化反应是一种可以将碳-碳单键转变为碳-碳双键的反应,该反应由京都大学的三枝武夫和伊藤嘉彦在1978年发现,最初报道的方法是先将酮转化为相应的烯醇硅醚,然后在醋酸钯和对苯醌的作用下,将烯醇硅醚进行催化氧化,从而生成α,β-不饱和羰基化合物(即α,β-不饱和酮)。该反应的主要原理为:二价钯与烯醇硅醚双键配位,随后三甲基硅基与醋酸根形成三甲基硅基醋酸酯离去,同时形成烯醇钯物种,接着发生β-氢消除得到钯氢物种的烯酮络合物,最后钯氢物种发生还原消除,得到产物的同时生成醋酸和零价钯。Saegusa氧化法已成为烯醇硅醚转化为烯酮的标准方法,但通过Saegusa氧化制备烯醛的报道较少。
Saegusa等还报道了一例使用乙酸钯和苯醌对三甲基硅醚进行催化氧化合成烯醛的反应,反应式如式I所示。但是该方法底物适应性较差,仅适用于硅醚类底物,且该反应使用的氧化剂为苯醌,苯醌具有高毒性,易挥发、升华,对眼睛、皮肤、黏膜有强烈刺激性,价格较高;此外,该反应的钯催化剂用量高达底物摩尔量的50%,反应的成本较高。
Figure BDA0002987901720000011
发明内容
有鉴于此,本发明的目的在于提供一种烯醇醚催化氧化制备烯醛的方法。本发明提供的是一种新型的Saegusa氧化法,该方法步骤简单,无需使用危险试剂、底物适应性广,且催化剂用量少、反应条件温和,所用试剂的成本低。
为了实现上述发明目的,本发明提供以下技术方案:
一种烯醇醚催化氧化制备烯醛的方法,包括以下步骤:
将钯催化剂、铜盐、溶剂和烯醇醚混合进行催化氧化反应,得到烯醛;所述钯催化剂为氯化钯、乙酸钯和三氟乙酸钯中的一种或几种;所述铜盐为乙酸铜、硫酸铜、三氟乙酸铜和氯化铜中的一种或几种;所述溶剂为水和乙腈的混合溶剂;所述混合溶剂中水和乙腈的体积比为3~7:3~7。
优选的,所述钯催化剂的用量为烯醇醚中所含烯醚基团摩尔量的100ppm~10%;所述铜盐和烯醇醚中所含烯醚基团的摩尔比为0.75~3:1。
优选的,所述烯醇醚中所含烯醚基团的摩尔量和溶剂的用量之比为1mmol:2~20mL。
优选的,所述混合的方法具体为:将钯催化剂溶于乙腈中,得到钯催化剂溶液;将铜盐分散于水中,得到铜盐的水混悬液;将所述钯催化剂溶液和烯醇醚依次加入到铜盐的水混悬液中。
优选的,所述混合时,还包括加入添加剂,所述添加剂为十八烷硫醇。
优选的,所述十八烷硫醇的用量为钯催化剂摩尔量的1~100%。
优选的,所述烯醇醚包括含酯基的烯醇醚、烯醇硅醚、含羟基的烯醇醚、含链烷基或环烷基的烯醇醚、含取代链烷基或取代环烷基的烯醇醚、含烯基的烯醇醚、含苯基的烯醇醚或含取代苯基的烯醇醚。
优选的,所述烯醇醚包括含保护基的烯醇醚。
优选的,所述烯醇醚具有以下结构中的任一种:
Figure BDA0002987901720000021
Figure BDA0002987901720000031
式a~式s中:n为≥0的整数,R为甲基或乙基,R1为H、烷基、苯基、取代苯基或酰基;R2为烷基;R3为烷基,R4为H、烷基、烷氧基、苯基、取代苯基、叔丁基二甲基硅氧基、二恶茂基、或
Figure BDA0002987901720000032
R5为H或烷基;R6~R20独立地为H、烷基、烷氧基、酰氧基、苯基或取代苯基。
优选的,所述催化氧化反应的温度为20~100℃,反应时间为0.5~72h。
本发明提供了一种烯醇醚催化氧化制备烯醛的方法,包括以下步骤:将钯催化剂、铜盐、溶剂和烯醇醚混合进行催化氧化反应,得到烯醛;所述钯催化剂为氯化钯、乙酸钯和三氟乙酸钯中的一种或几种;所述铜盐为乙酸铜、硫酸铜、三氟乙酸铜和氯化铜中的一种或几种;所述溶剂为水和乙腈的混合溶剂;所述混合溶剂中水和乙腈的体积比为3~7:3~7。钯催化反应的机理基本相同,都需要经历Pd(II)-Pd(0)-Pd(II)循环,若Pd(0)不稳定,则会聚集成钯黑沉淀,导致反应中断;本发明利用铜盐为氧化剂,利用水和乙腈的混合溶剂为反应溶剂,并将混合溶剂中水和乙腈的体积比控制在3~7:3~7,在本发明特定比例的混合溶剂中,Pd(II)和底物能够溶解,反应可以顺利进行,且乙腈可以和Pd(0)配位从而稳定Pd(0),避免钯黑沉淀的生成;此外,在本发明特定比例的混合溶剂中,铜盐可以发生一定程度的溶解,溶解的铜盐足够将Pd(0)氧化为Pd(II),从而进一步避免钯黑沉淀的生成,促进反应的进行。本发明提供的方法步骤简单,所用试剂成本低,无需使用危险试剂,且底物适应性广,适用于各种结构的烯醇醚。
进一步的,本发明提供的方法催化剂用量少,钯催化剂的用量仅为烯醇醚摩尔量的100ppm~10%,并且当以氯化钯为催化剂、以乙酸铜为氧化剂时,本发明提供的方法在极低的催化剂用量条件下具有较高的烯醛产率。
进一步的,本发明还加入十八烷硫醇促进催化氧化反应的进行,在钯催化剂用量极低时,通过加入十八烷硫醇可以大幅提高烯醛产率。
进一步的,本发明提供的方法反应条件温和,反应时间较短,无需苛刻的反应条件,容易进行工业化生产。
具体实施方式
本发明提供了一种烯醇醚催化氧化制备烯醛的方法,包括以下步骤:
将钯催化剂、铜盐、溶剂和烯醇醚混合进行催化氧化反应,得到烯醛;所述钯催化剂为氯化钯(PdCl2)、乙酸钯(Pd(OAc)2)和三氟乙酸钯(Pd(TFA)2)中的一种或几种;所述铜盐为乙酸铜(Cu(OAc)2)、硫酸铜(CuSO4)、三氟乙酸铜(Cu(OTFA)2)和氯化铜(CuCl2)中的一种或几种;所述溶剂为水和乙腈的混合溶剂;所述混合溶剂中水和乙腈的体积比为3~7:3~7。
在本发明中,所述钯催化剂优选为氯化钯,所述铜盐优选为乙酸铜;氯化钯的催化活性大于乙酸钯和三氟乙酸钯,当以氯化钯为催化剂、以乙酸铜为氧化剂时,本发明提供的方法烯醛产率更高。
在本发明中,所述钯催化剂的用量优选为烯醇醚中所含烯醚基团摩尔量的100ppm~10%,更优选为300ppm~6%,进一步优选为500ppm~2%;所述铜盐和烯醇醚中所含烯醚基团的摩尔比优选为0.75~3:1,更优选为1~2.5:1,进一步优选为2:1。
在本发明中,所述混合溶剂中水和乙腈的体积比优选为4~6:4~6,更优选为1:1。在本发明中,当混合溶剂中乙腈的比例过高时,铜盐在混合溶剂中无法溶解,不能将Pd(0)氧化为Pd(II),造成催化氧化反应无法进行;当混合溶剂中乙腈的比例过低时,Pd(II)和底物(即烯醇醚)无法溶解在混合溶剂中,造成反应无法进行;本发明将混合溶剂中水的体积分数控制在上述范围内,能够保证铜盐、Pd(II)和底物的溶解,且乙腈可以和Pd(0)配位,从而稳定Pd(0),溶解的铜盐可以将Pd(0)氧化为Pd(II),从而促进催化氧化反应的进行。
在本发明中,所述烯醇醚中所含烯醚基团的摩尔量和溶剂的用量之比优选为1mmol:2~20mL,更优选为1mmol:5~15mL,进一步优选为1mmol:6~10mL,最优选为1mmol:8mL。
在本发明中,所述混合的方法具体优选为:将钯催化剂溶于乙腈中,得到钯催化剂溶液;将铜盐分散于水中,得到铜盐的水混悬液;将所述钯催化剂溶液和烯醇醚依次加入到铜盐的水混悬液中。
在本发明中,所述混合时,优选还包括加入添加剂,所述添加剂优选为十八烷硫醇(ODT);所述十八烷硫醇的用量优选为钯催化剂摩尔量的1~100%,更优选为5~50%,进一步优选为10~20%;在本发明的具体实施例中,当加入十八烷硫醇时,优选将钯催化剂和十八烷硫醇同时溶解于乙腈中,然后将钯催化剂和十八烷硫醇的混合溶液加入铜盐的水混悬液中,之后再加入烯醇醚。在本发明中,所述十八烷硫醇能够促进催化反应的进行,大幅提高烯醛产率。
在本发明中,所述烯醇醚优选包括含酯基的烯醇醚、烯醇硅醚、含羟基的烯醇醚、含链烷基或环烷基的烯醇醚、含取代链烷基或取代环烷基的烯醇醚、含烯基的烯醇醚或含苯基或取代苯基的烯醇醚。
在本发明中,所述烯醇醚还优选为含有保护基的烯醇醚。
在本发明中,所述烯醇醚优选具有以下结构中的任一种:
Figure BDA0002987901720000051
Figure BDA0002987901720000061
式a~式s中:n为≥0的整数,优选为1~30,更优选为5~20,进一步优选为10~15,R为甲基或乙基,R1为H、烷基、苯基、取代苯基或酰基;R2为烷基;R3为烷基,R4为H、烷基、烷氧基、苯基、取代苯基、叔丁基二甲基硅氧基、二恶茂基、或
Figure BDA0002987901720000062
R5为H或烷基;R6~R20独立地为H、烷基、烷氧基、酰氧基、苯基或取代苯基;在本发明的具体实施例的上述取代基中,所述烷基的碳原子数优选为1~10,更优选为5~8,所述烷基可以为直链烷基或支链烷基,具体优选为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基或2,2,4-三甲基丁基;所述烷氧基优选为甲氧基,所述酰基优选为乙酰基;所述取代苯基优选为苄基、甲氧基苯基、乙酰氧基苯基、异丙基苯基或叔丁基苯基。
在本发明的具体实施例中,所述烯醇醚优选具有以下结构中的一种:
Figure BDA0002987901720000071
Figure BDA0002987901720000081
式1~式45中:Et表示乙基、Me表示甲基、Ac表示乙酰基、Bn表示苄基、TBDMSO表示叔丁基二甲基硅氧基,Boc表示叔丁氧羰基,n-Bu表示正丁基,t-Bu表示叔丁基。
本发明对上述烯醇醚的来源没有特殊要求,采用市售商品或采用本领域技术人员熟知的方法制备均可。
在本发明中,所述催化氧化反应的温度优选为20~100℃,更优选为40~80℃,进一步优选为60℃,反应时间优选为0.5~72h,更优选为1~48h,进一步优选为5~24h,更进一步优选为6~10h;在本发明的具体实施例中,优选使用TLC监测至反应完全。
以式1所示结构的化合物为例,所述催化氧化反应的反应式如式A所示:
Figure BDA0002987901720000082
催化氧化反应完成后,本发明优选将所得产物料液进行后处理,得到烯醛。在本发明中,所述后处理的方法优选为:将产物料液中的乙腈蒸除,得到剩余物,将所述剩余物用乙酸乙酯萃取,得到有机层;将所述有机层依次进行盐水洗涤、无水硫酸钠干燥和浓缩,得到粗产物;将所述粗产物进行硅胶柱层析,得到烯醛。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
以乙酸9-甲氧基-8-壬烯-1-酯(式1所示化合物)为底物进行催化氧化,制备烯醛,所得烯醛结构如式A中所示。
制备步骤如下:将钯催化剂溶解于乙腈中,得到钯催化剂的乙腈溶液,将Cu(OAc)2分散于水中,得到Cu(OAc)2的水混悬液,将钯催化剂的乙腈溶液加入到Cu(OAc)2的水混悬液中,然后加入乙酸9-甲氧基-8-壬烯-1-酯(214mg,1mmol),控制反应温度,进行催化氧化反应,反应完成后加入外标(十四烷),蒸除乙腈后,用乙酸乙酯萃取反应混合物,有机层用盐水洗涤、无水硫酸钠干燥后通过GC进行分析。
Cu(OAc)2的用量、反应温度、反应时间以及乙腈和水(乙腈和水的总量为8mL)的用量比见表1;反应所得烯醛的产率见表1,将反应按照编号依次记为反应1~反应14。
表1乙酸9-甲氧基-8-壬烯-1-酯催化氧化反应条件及产率
Figure BDA0002987901720000091
Figure BDA0002987901720000101
表1中:反应1~12中,使用的钯催化剂为Pd(OAc)2,反应13使用的钯催化剂为Pd(TFA)2,反应14使用的钯催化剂为PdCl2;表1中的产率为GC产率。
根据表1中的数据可以看出,使用乙酸钯、三氟乙酸钯和氯化钯为催化剂时,均可以实现乙酸9-甲氧基-8-壬烯-1-酯催化氧化制备烯醛,根据反应1~反应4可以看出,反应温度升高,可以提高烯醛的产率;根据反应5~反应6可以看出,降低乙酸铜用量的情况下,延长反应时间,可以提高烯醛的产率;根据反应7~12可以看出,当水和乙腈的体积比超出本发明中3~7:3~7的比例范围时(实验7、8、11、12),反应的烯醛产率极低。此外,根据表1中的数据可以看出,当使用氯化钯为催化剂时,在反应温度为60℃,反应时间为6h的条件下,所得烯醛的产率最高。
反应1~14所得烯醛的核磁谱图数据如下:
1H NMR(600MHz,CDCl3):δ9.47(d,J=7.9Hz,1H),6.81(dt,J=13.9,6.8Hz,1H),6.08(ddd,J=15.6,7.9,1.0Hz,1H),4.02(t,J=6.7Hz,2H),2.31(m,2H),2.01(s,3H),1.63-1.55(m,2H),1.52-1.45(m,2H),1.38-1.30(m,4H).13C{1H}NMR(151MHz,CDCl3):δ194.1,171.3,158.6,133.1,64.5,32.6,28.8,28.5,27.8,25.7,21.0.
对比例1
将实施例1中的乙腈分别替换为N-甲基吡咯烷酮(NMP)、二氧六环(Dioxane)、丙酮(acetone)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和四氢呋喃(THF),按照实施例1中的方法进行催化氧化反应,反应条件、水和有机溶剂的用量比以及烯醛产率见表2。
表2不同混合溶剂条件下催化氧化反应的条件以及烯醛收率
Figure BDA0002987901720000102
表2中的产率为GC产率。
根据表2中的数据可以看出,采用N-甲基吡咯烷酮、二氧六环、丙酮、二甲基甲酰胺、二甲基亚砜或四氢呋喃和水的混合溶剂进行反应时,在60℃条件下反应21h,烯醛的产率仍然极低,催化氧化反应基本没有进行。
实施例2
将实施例1中的乙酸铜分别替换为硫酸铜、三氟乙酸铜和氯化铜,按照实施例1中的方法进行催化氧化反应,反应条件如下:PdCl2的用量为底物摩尔量的0.2%,氧化剂(硫酸铜、三氟乙酸铜和氯化铜)用量为底物摩尔量的2倍,乙腈用量为4mL,H2O用量为4mL,反应温度为60℃,反应时间为6h,反应所得烯醛的产率见表3。
表3不同氧化剂条件下所得烯醛的产率
Figure BDA0002987901720000111
表3中的收率为GC收率。
根据表3中的数据可以看出,在以硫酸铜、三氟乙酸铜和氯化铜为氧化剂的条件下进行催化氧化反应,均可以得到相应结构的烯醛。
实施例3
以乙酸9-甲氧基-8-壬烯-1-酯(式1所示化合物)为底物进行催化氧化,制备烯醛,所得烯醛结构如式A中所示。
将反应记为反应1~反应13,其中反应1~反应7的制备步骤和实施例1相同;
反应8~13中加入添加剂,添加剂分别为十八烷硫醇(ODT)、LiCl、溴代十六烷基三甲胺(CTAB)、聚乙烯吡咯烷酮(PVP,平均分子量为10000)和聚醚酰亚胺材料(PEI,平均分子量为10000);制备步骤为:将钯催化剂和添加剂溶解于乙腈中,得到钯催化剂和添加剂的乙腈溶液,将Cu(OAc)2分散于水中,得到Cu(OAc)2的水混悬液,将钯催化剂和添加剂的乙腈溶液加入到Cu(OAc)2的水混悬液中,然后加入乙酸9-甲氧基-8-壬烯-1-酯(214mg,1mmol),控制反应温度,进行催化氧化反应,反应完成后加入外标(十四烷),蒸除乙腈后,用乙酸乙酯萃取反应混合物,有机层用盐水洗涤、无水硫酸钠干燥后通过GC进行分析。
反应1~13中使用的钯催化剂种类、催化剂用量、添加剂种类及用量、烯醛产率见表4。
表4不同钯催化剂和添加剂条件下的反应条件及烯醛产率
Figure BDA0002987901720000121
表4中,钯催化剂用量为钯催化剂摩尔量占乙酸9-甲氧基-8-壬烯-1-酯摩尔量的百分数,表4中的产率为GC产率。
根据表4中反应1~反应7的数据可以看出,在没有使用添加剂的情况下,当氯化钯用量为底物摩尔量的0.1%时,烯醛的产率能够达到80%,氯化钯用量为底物摩尔量的500ppm时,烯醛的产率为55%,氯化钯的用量继续降低时,烯醛的产率也降低;当使用乙酸钯为催化剂时,在各个催化剂用量条件下,烯醛的产率均低于以氯化钯为催化剂时的烯醛产率,说明在本发明的反应条件下,氯化钯的催化活性更高;根据表4中反应8~反应13中的数据可以看出,加入十八烷硫醇后,当氯化钯用量为底物摩尔量的500ppm时,烯醛的产率大幅提高,且当十八烷硫醇的用量为氯化钯摩尔量的10%时,烯醛的产率可以提高到81%;当添加剂为LiCl、CTAB、PVP和PEI时,对烯醛的产率没有影响或有负面影响。
实施例4
采用上述方案中式2~式45化合物为底物进行催化氧化实验,上述共44种化合物,依次记为反应1~反应44,反应步骤如下:
将钯催化剂和十八烷硫醇溶解于乙腈中,得到钯催化剂和十八烷硫醇的乙腈溶液,将Cu(OAc)2分散于水中,得到Cu(OAc)2的水混悬液,将钯催化剂和十八烷硫醇的乙腈溶液加入到Cu(OAc)2的水混悬液中,然后加入底物,控制反应温度为60℃,进行催化氧化反应,TLC监测反应完全后,蒸除乙腈,剩余物用乙酸乙酯萃取3次,有机相用盐酸洗涤、无水硫酸钠干燥后浓缩,得到粗产物,将粗产物进行硅胶柱层析纯化,得到产物,计算产率。
具体反应条件以及所烯醛的结构、产率见表5。
表5不同底物下的反应条件及烯醛产率
Figure BDA0002987901720000131
Figure BDA0002987901720000141
Figure BDA0002987901720000151
上述反应中:实验1~13和实验15~44的反应条件为:底物用量为1mmol,乙酸铜用量为底物摩尔量的2倍,乙腈用量为4mL,水用量为4mL,十八烷硫醇用量为氯化钯摩尔量的10%,反应温度为为60℃;实验14的反应条件为:底物用量为1mmol,乙腈用量为8mL,水用量为8mL,乙酸铜摩尔量为底物摩尔量的4倍,其他条件和实验1~13、15~44相同,实验14所用底物中含有两个烯醚基,所以乙腈、水、乙酸铜的用量均加倍。
此外,表5中的产率为分离产率。
根据表5中的结果可以看出,在氯化钯用量为500pp~2%的范围内,各种不同的结构的烯醇醚均可以通过催化氧化得到烯醛,且产率较高。其中含酯基、羟基、苄基的烯醇醚底物(实验1~11、13~14)、硅醚(实验12)、含烷基或烯基的底物(实验15~20)均能在极低催化剂用量条件下得到较高的烯醛产率。苯乙醛类衍生的烯醇醚(实验21和22)在极低催化剂用量下能以高产率生成对应烯醛,可能是因为这两种产物的共轭效应。含支链的苯乙醛衍生类烯醇醚(实验23)在2%催化剂用量下以高产率得到对应烯醛。甲氧基亚甲基环己烷类烯醇醚(实验24~29)和甲氧基亚甲基环庚烷(实验30)在很低的催化剂用量(0.2~1%)下以高产率产生了对应烯醛。此外,根据实验31可以看出,本发明的反应条件也耐受Boc保护的烯醇醚。在4-取代苯基-2-丁酮(实验32~34)的反应中,本发明的反应具有较高的区域选择性,每个反应以高产率生成一种产物。然而,在甲基烷基酮为底物时,反应得到两个烯醛异构体,没有区域选择性(实验35)。从苯丙酮衍生的烯醇醚(实验36~40),在低催化剂用量下以良好产率生成对应烯醛。最后,根据实验41~44可以看出,该反应可以中等产率生成3,3’-双取代烯醛,并具有中等的立体选择性。
综合以上结果可以看出,本发明提供的反应具有非常广的底物适应性,且本发明首次在极低的催化剂用量、简单的实验条件下实现了烯醇醚的催化氧化。
表5中实验1~44所得烯醛的核磁谱图数据如下:
实验1:1H NMR(600MHz,CDCl3):δ9.47(d,J=7.8Hz,1H),6.80(dt,J=15.5,6.8Hz,1H),6.09(dd,J=15.6,7.9Hz,1H),4.09(q,J=7.1Hz,2H),2.39-2.26(m,4H),1.82-1.78(m,2H),1.22(t,J=7.2Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ193.9,173.0,157.2,133.5,60.5,33.5,32.0,23.1,14.3.
实验2:1H NMR(600MHz,CDCl3):δ9.46(d,J=7.9Hz,1H),6.80(dt,J=15.5,6.7Hz,1H),6.08(dd,J=15.6,7.9Hz,1H),3.63(s,3H),2.35-2.28(m,4H),1.72-1.40(m,4H).13C{1H}NMR(151MHz,CDCl3):δ194.1,173.8,158.1,133.3,51.6,33.7,32.4,27.3,24.4.
实验3:1H NMR(600MHz,CDCl3):δ9.46(d,J=7.8Hz,1H),6.83(dt,J=15.7,6.5Hz,1H),6.09(dd,J=15.7,7.8Hz,1H),4.10(q,J=7.1Hz,2H),2.62(m,2H),2.49(m,2H),1.21(t,J=7.2Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ193.8,172.1,156.1,133.4,121.6,60.8,32.2,27.7,14.2.
实验4:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),6.82(dt,J=15.6,6.7Hz,1H),6.11(ddt,J=15.6,7.8,1.4Hz,1H),4.06(t,J=6.5Hz,2H),2.44-2.26(m,2H),2.03(s,3H),1.70-1.63(m,2H),1.61-1.53(m,2H).13C{1H}NMR(151MHz,CDCl3):δ194.0,171.2,157.9,133.4,64.0,32.3,28.2,24.4,21.0.
实验5:1H NMR(600MHz,CDCl3):δ9.48(d,J=7.9Hz,1H),6.83(dt,J=15.6,6.8Hz,1H),6.09(ddd,J=15.6,7.9,1.3Hz,1H),4.02(t,J=6.7Hz,2H),2.33-2.29(m,2H),2.02(s,3H),1.63-1.56(m,2H),1.51-1.45(m,2H),1.34-1.24(m,10H).13C{1H}NMR(151MHz,CDCl3):δ194.2,171.3,159.0,133.1,64.7,32.8,29.4,29.3,29.3,29.2,28.7,27.9,26.0,21.1.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C14H24O3Na,263.1618;found 263.1616.
实验6:1H NMR(600MHz,CDCl3):δ9.48(d,J=7.2Hz,1H),6.82(dt,J=14.5,6.8Hz,1H),6.09(dd,J=15.6,7.9Hz,1H),4.04(t,J=6.6Hz,2H),2.56-2.46(m,1H),2.32(td,J=8.0,1.3Hz,2H),1.67-1.55(m,2H),1.55-1.44(m,2H),1.38-1.32(m,4H),1.14(d,J=7.0Hz,6H).13C{1H}NMR(151MHz,CDCl3):δ194.1,177.3,158.6,133.2,64.2,34.1,32.7,28.8,28.6,27.8,25.8,19.1(2C).HRMS(ESI-TOF)m/z:[M+H]+Calcd for C13H23O3,226.1642;found 227.1644.
实验7:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.8Hz,1H),6.82(dt,J=15.6,6.7Hz,1H),6.11(dd,J=15.6,7.8,1H),4.06(t,J=6.4Hz,2H),2.57-2.44(m,1H),2.36(dt,J=8.2,1.5Hz,2H),1.71-1.63(m,2H),1.62-1.51(m,2H),1.14(d,J=7.0Hz,6H).13C{1H}NMR(151MHz,CDCl3):δ194.0,177.2,157.8,133.4,63.8,34.1,32.3,28.3,24.4,19.1(2C).HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C11H18O3Na,221.1148;found 221.1150.
实验8:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),7.45-7.27(m,5H),6.84(dt,J=15.5,6.8Hz,1H),6.11(dd,J=15.6,7.9Hz,1H),4.50(s,2H),3.46(t,J=6.5Hz,2H),2.32(td,J=7.8,1.0Hz,2H),1.64-1.59(m,2H),1.46-1.54(m,2H),1.43-1.39(m,4H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.0,138.7,133.1,128.4(2C),127.7,127.6(2C),73.0,70.3,32.7,29.7,29.0,27.8,26.0.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C16H23O2,247.1693;found 247.1690.
实验9:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),7.38-7.24(m,5H),6.83(dt,J=15.5,6.8Hz,1H),6.11(ddt,J=15.6,7.9,1.3Hz,1H),4.50(s,2H),3.49(t,J=6.0Hz,2H),2.39-2.31(m,2H),1.70-1.57(m,4H).13C{1H}NMR(151MHz,CDCl3):δ194.2,158.6,138.5,133.2,128.5(2C),127.7,127.7(2C),73.0,69.8,32.5,29.3,24.7.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C14H18O2Na,241.1199;found 241.1198.
实验10:1H NMR(600MHz,CDCl3):δ9.51(d,J=7.9Hz,1H),7.40-7.23(m,5H),6.88(dt,J=15.7,6.7Hz,1H),6.18(ddt,J=15.7,7.9,1.5Hz,1H),4.53(s,2H),3.64(t,J=6.2Hz,2H),2.64(m,2H).13C{1H}NMR(151MHz,CDCl3):δ194.1,155.4,137.9,134.2,128.5(2C),127.9,127.8(2C),67.9,33.1.
实验11:1H NMR(600MHz,CDCl3):δ9.47(d,J=7.9Hz,1H),6.82(dt,J=15.4,6.8Hz,1H),6.08(dd,J=15.6,7.9Hz,1H),4.81(t,J=4.8Hz,1H),3.97-3.88(m,2H),3.85-3.77(m,2H),2.30(m,2H),1.65-1.58(m,2H),1.51-1.44(m,2H),1.23-1.40(m,10H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.1,133.1,104.7,64.9,34.0,32.8,29.5,29.4,29.3,29.2(2C),27.9,24.1.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C14H24O3Na,263.1618;found263.1617.
实验12:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),6.84(dt,J=15.5,6.8Hz,1H),6.11(dd,J=15.6,7.9Hz,1H),3.59(t,J=6.5Hz,2H),2.33(td,J=8.0,1.3Hz,2H),1.58-1.43(m,4H),1.43-1.26(m,4H),0.88(s,9H),0.03(s,6H).13C{1H}NMR(151MHz,CDCl3):δ194.2,158.9,133.2,63.2,32.8,29.1,28.0,26.1(3C),25.8,25.7,18.5,-5.1(2C).HRMS(ESI-TOF)m/z:[M+H]+Calcd for C15H32O2Si,270.2088;found 270.2087.
实验13:1H NMR(600MHz,CDCl3):δ9.45(d,J=7.9Hz,1H),6.82(dt,J=13.9,6.8Hz,1H),6.08(dd,J=15.6,7.9Hz,1H),3.59(t,J=8.3Hz,2H),2.31(dt,J=6.6,6.6Hz,2H),1.65-1.42(m,4H),1.38-1.31(m,4H).13C{1H}NMR(151MHz,CDCl3):δ194.3,159.0,133.0,62.8,32.7,32.6,29.0,27.8,25.6.HRMS(ESI-TOF)m/z:[M+Na]+Calcd forC9H16O2Na,179.1043;found 179.1041.
实验14:1H NMR(600MHz,CDCl3):δ9.47(d,J=7.8Hz,2H),6.81(dt,J=15.6,6.8Hz,2H),6.09(ddt,J=15.6,7.8,1.5Hz,2H),2.44-2.23(m,4H),1.58-1.50(m,4H).13C{1H}NMR(151MHz,CDCl3):δ193.9,157.7,133.3,32.4,27.4.
实验15:1H NMR(600MHz,CDCl3):δ9.48(d,J=7.9Hz,1H),6.84(dt,J=15,7.2Hz,1H),6.11(ddt,J=15.6,7.9,1.4Hz,1H),2.32(dt,J=7.2,7.2Hz,2H),1.53-1.41(m,2H),1.35-1.21(m,6H),0.87(t,J=7.2,3H).13C{1H}NMR(151MHz,CDCl3):δ194.4,159.3,133.1,32.9,31.6,28.9,27.9,22.6,14.1.
实验16:1H NMR(600MHz,CDCl3):δ9.50(d,J=7.9,1H),6.84(dt,J=13.2,7.2Hz,1H),6.11(ddt,J=15.6,7.9,0.7Hz,1H),2.33(m,2H),1.53-1.42(m,2H),1.35-1.22(m,14H),0.87(t,J=6.8Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.1,133.1,32.8,32.0,29.7,29.6,29.5,29.4,29.2,28.0,22.8,14.2.
实验17:1H NMR(600MHz,CDCl3):δ9.50(d,J=7.9Hz,1H),6.84(dt,J=14.9,6.8Hz,1H),6.11(dd,J=15.6,7.9Hz,1H),2.32(dt,J=7.2,7.2Hz,2H),1.56-1.44(m,2H),1.31-1.23(m,22H),0.87(t,J=6.9Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.1,133.1,32.9,32.1,29.8,29.8,29.8(2C),29.7,29.6,29.5(2C),29.3,28.0,22.8,14.2.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C17H33O,253.2526;found 253.2525.
实验18:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),6.84(dt,J=15.5,6.8Hz,1H),6.10(dd,J=15.6,7.9Hz,1H),5.79(ddt,J=16.9,10.2,6.7Hz,1H),4.98(dd,J=17.1,1.5Hz,1H),4.92(dd,J=10.2,0.9Hz,1H),2.31(dt,J=7.2,7.2Hz,2H),2.03(dt,J=7.2,7.2Hz,2H),1.52-1.46(m,2H),1.40-1.22(m,8H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.0,139.2,133.1,114.4,33.8,32.8,29.3,29.2,29.1,29.0,27.9.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C12H20ONa,203.1406;found 203.1405.
实验19:1H NMR(600MHz,CDCl3):δ9.49(d,J=7.9Hz,1H),6.84(dt,J=15.5,6.8Hz,1H),6.11(dd,J=15.6,7.9Hz,1H),5.30-5.35(m,2H),2.32(dt,J=7.2,7.2Hz,2H),2.07-1.95(m,4H),1.52-1.46(m,2H),1.39-1.21(m,16H),0.88(t,J=7.1Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.2,159.1,133.1,130.0,130.0,32.9,32.1,29.9,29.6,29.6,29.5,29.4,29.3,28.0,27.3,27.0,22.5,14.1.
实验20:1H NMR(600MHz,CDCl3):δ9.48(d,J=7.9Hz,1H),6.75(dd,J=15.6,8.5Hz,1H),6.06(dd,J=15.6,7.9Hz,1H),2.62-2.52(m,1H),1.42(dd,J=14.1,7.9Hz,1H),1.32(dd,J=14.1,3.9Hz,1H),1.08(d,J=6.8Hz,3H),0.88(s,9H).13C{1H}NMR(151MHz,CDCl3):δ194.4,166.4,130.7,50.6,34.3,31.4,30.1(3C),22.5.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C10H19O,154.1430;found 154.1431.
实验21:1H NMR(600MHz,CDCl3):δ9.70(d,J=7.7Hz,1H),7.59–7.54(m,2H),7.47(d,J=16.0Hz,1H),7.44-7.9(m,3H),6.72(dd,J=15.9,7.7Hz,1H).13C{1H}NMR(151MHz,CDCl3):δ193.8,152.9,134.1,131.4,129.2,128.7,128.6.
实验22:1H NMR(600MHz,CDCl3):δ9.62(d,J=7.7Hz,1H),7.50(d,J=8.6Hz,2H),7.39(d,J=15.8Hz,1H),6.92(d,J=8.7Hz,2H),6.58(dd,J=15.8,7.7Hz,1H),3.82(s,3H).13C{1H}NMR(151MHz,CDCl3):δ193.7,162.3,152.8,130.4,126.8,126.5,114.6,55.5.
实验23:E/Z=5:3.E:1H NMR(600MHz,CDCl3):δ10.18(d,J=7.9Hz,1H),7.62-7.22(m,5H),6.39(dd,J=7.9,1.2Hz,1H),2.57(d,J=1.0Hz,3H).13CNMR(151MHz,CDCl3):δ191.40,157.79,140.60,130.19,128.84,127.33,126.35,7,16.46.Z:1H NMR(600MHz,CDCl3):δ9.46(d,J=8.2Hz,1H),7.42-7.27(m,5H),6.13(d,J=8.2Hz,1H),2.30(s,3H).13C{1H}NMR(151MHz,CDCl3):δ193.5,162.3,138.5,129.2,128.5,128.4,26.5.
实验24:1H NMR(600MHz,CDCl3):δ9.50(s,1H),7.37-7.33(m,2H),7.27-7.20(m,3H),6.90(m,1H),2.90-2.83(m,1H),2.71-2.63(m,1H),2.56-2.41(m,2H),2.28-2.19(m,1H),2.09-2.03(m,1H),1.78-1.70(m,1H).13C{1H}NMR(151MHz,CDCl3):δ194.0,150.5,145.7,141.5,128.7(2C),126.9(2C),126.6,39.9,34.5,28.8,22.0.
实验25:1H NMR(600MHz,CDCl3):δ9.40(s,1H),6.80(m,1H),2.49-2.35(m,2H),2.09-1.88(m,3H),1.35-1.28(m,1H),1.12-1.03(m,1H),0.88(s,9H).13C{1H}NMR(151MHz,CDCl3):δ194.2,152.1,141.6,44.1,32.3,28.4,27.2(3C),23.0,22.6.
实验26:1H NMR(600MHz,CDCl3):δ9.40(s,1H),6.81-6.71(m,1H),2.47-2.33(m,2H),2.08-2.00(m,1H),1.95-1.87(m,1H),1.84-1.78(m,1H),1.62-1.54(m,1H),1.31-1.38(m,2H),1.29-1.24(m,2H),1.20-1.13(m,1H),0.89(t,J=7.2Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.3,151.3,141.7,38.4,33.2,33.2,27.7,21.3,20.1,14.4.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C10H17O,153.1274;found 153.1274.
实验27:1H NMR(600MHz,CDCl3):δ9.40(s,1H),6.78-6.75(m,1H),2.47-2.33(m,2H),2.08-2.00(m,1H),1.95-1.87(m,1H),1.86-1.80(m,1H),1.52-1.45(m,1H),1.36-1.28(m,2H),1.20-1.12(m,1H),0.91(t,J=7.5Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.4,151.4,141.8,35.3,33.0,29.0,27.5,21.4,11.6.HRMS(ESI-TOF)m/z:[M+H]+Calcd forC9H15O,139.1117;found 139.1118.
实验28:1H NMR(600MHz,CDCl3):δ9.43(s,1H),6.67(t,J=3.6Hz,1H),3.97(s,4H),2.55(m,2H),2.49-2.43(m,2H),1.76(t,J=6.6Hz,2H).13C{1H}NMR(151MHz,CDCl3):δ193.2,147.4,140.8,107.6,64.7(2C),37.0,30.2,20.5.
实验29:1H NMR(600MHz,CDCl3):δ9.38(s,1H),6.76(m,1H),3.90(t,4H),2.43-2.35(m,2H),2.09-1.95(m,2H),1.88-1.83(m,1H),1.77-1.66(m,4H),1.53-1.41(m,3H),1.36-1.26(m,2H),1.24-1.13(m,2H).13C{1H}NMR(151MHz,CDCl3):δ194.1,151.3,141.6,109.0,64.3,64.3,40.9,38.3,34.8(2C),30.5,27.3,26.9,25.2,21.9.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C15H23O3,251.1642;found 251.1645.
实验30:1H NMR(600MHz,CDCl3):δ9.37(s,1H),6.69(t,J=8.2Hz,1H),2.47-2.34(m,4H),1.69-1.63(m,2H),1.53-1.38(m,6H).13C{1H}NMR(151MHz,CDCl3):δ194.5,154.7,145.0,28.8,28.7,27.5,26.2,26.0,22.0.
实验31:1H NMR(600MHz,CDCl3):δ9.99(dd,J=7.9,2.4Hz,1H),5.90(d,J=7.8Hz,1H),3.57-3.51(m,4H),2.77(t,J=5.5,2H),2.34(t,J=5.6,2H),1.46(s,9H).13C{1H}NMR(151MHz,CDCl3):δ189.9,162.0,154.5,126.8,80.3,44.7(broadsignal),36.7,29.3,28.5(3C).
实验32:1H NMR(600MHz,CDCl3):δ9.4(s,1H),7.17(d,J=8.4Hz,2H),6.99(d,J=8.4Hz,2H),6.19(s,1H),6.00(s,1H),2.76(t,J=7.8Hz,2H),2.55(t,J=7.8Hz,2H),2.28(s,3H).13C{1H}NMR(151MHz,CDCl3):δ194.6,169.7,149.2,149.1,138.8,134.9,129.4(2C),121.5(2C),33.5,29.9,21.2.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C13H14O3Na,241.0835;found 241.0835.
实验33:1H NMR(600MHz,CDCl3):δ9.54(s,1H),7.09(d,J=8.4Hz,2H),6.82(d,J=8.5Hz,2H),6.18(s,1H),5.99(s,1H),3.78(s,3H),2.72(d,J=8.5Hz,2H),2.54(d,J=8.5Hz,2H).13C{1H}NMR(151MHz,CDCl3):δ194.7,158.0,149.4,134.8,133.3,129.4(2C),113.8(2C),55.3,33.1,30.0.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C12H14O2Na,213.0886;found 213.0886.
实验34:1H NMR(600MHz,CDCl3):δ9.53(s,1H),6.89-6.56(m,3H),6.19(d,J=9.0Hz,1H),6.00(d,J=9.2Hz,1H),5.91(s,2H),2.69(t,J=8.7Hz,2H),2.52(t,J=8.3Hz,2H).13C{1H}NMR(151MHz,CDCl3):δ194.6,149.1,147.6,145.8,136.0,134.8,121.2,108.9,108.1,100.8,33.7,30.1.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C12H12O3Na,227.0679;found 227.0678.
实验35:1H NMR(600MHz,CDCl3):δ9.52(s,1H),9.38(s,1.4H),6.48(t,J=7.3Hz,1.4H),6.22(s,1H),5.96(s,1H),2.33(q,J=7.4Hz,2.8H),2.21(t,J=7.6Hz,2H),1.72(s,4.2H),1.44–1.40(m,2H),1.34-1.29(m,8H),1.28–1.22(m,11.2H),0.87(t,J=7.2Hz,4.2H),0.85(t,J=7.1Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ195.5,194.9,155.2,150.6,139.4,134.0,31.9,31.7,29.4,29.2,29.1(2C),28.5,27.9,27.9,22.7,22.7,14.2,14.1,9.3.
实验36:1H NMR(600MHz,CDCl3):δ9.83(s,1H),7.54-7.33(m,5H),6.64(d,J=3.1Hz,1H),6.19(d,J=3.6Hz,1H).13C{1H}NMR(151MHz,CDCl3):δ193.2,148.6,135.9,128.9(2C),128.5(2C),128.2,128.2.
实验37:1H NMR(600MHz,CDCl3):δ9.61(s,1H),7.45-7.13(m,5H),6.71(t,J=7.6Hz,1H),2.35-2.40(m,2H),1.11(t,J=7.5Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.0,158.1,143.5,132.6,129.5(2C),128.3(2C),128.0,23.3,13.4.
实验38:1H NMR(600MHz,CDCl3):δ9.60(s,1H),7.32(dd,J=7.5,8.4Hz,1H),6.89(d,J=8.4Hz,1H),6.84(q,J=7.0Hz,1H),6.74(d,J=7.5Hz,1H),6.71(s,1H),3.81(s,3H),2.00(d,J=7.1Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ193.5,159.6,151.3,145.1,133.8,129.4,122.0,115.3,113.5,55.3,16.1.HRMS(ESI)calcd for[C11H12O2+H]+calcd176.0910,found 177.0911.HRMS(ESI-TOF)m/z:[M+H]+Calcd for C11H13O2,176.0910;found 177.0911.
实验39:1H NMR(600MHz,CDCl3):δ9.59(s,1H),7.14-7.09(m,2H),6.96-6.92(m,2H),6.79(q,J=7.1Hz,1H),3.81(s,3H),2.01(d,J=7.1Hz,3H).13C{1H}NMR(151MHz,CDCl3):δ194.0,159.3,151.1,144.5,130.8(2C),124.4,113.8(2C),55.3,16.1.
实验40:1H NMR(600MHz,CDCl3):δ9.69(s,1H),8.22(m,1H),7.28-7.18(m,3H),7.02(t,J=4.7Hz,1H),2.82(t,J=8.0Hz,2H),2.59(td,J=7.9,4.8Hz,2H).13C{1H}NMR(151MHz,CDCl3):δ192.7,153.0,138.1,135.8,129.4,128.4,127.7,126.7,125.9,27.1,24.4.
实验41:1H NMR(600MHz,CDCl3):δ9.95(dd,J=8.1,1.7Hz,0.5H),9.85(dd,J=8.2,1.7Hz,0.5H),5.86-5.81(m,1H),5.09-5.00(m,1H),2.55(t,J=7.5Hz,1H),2.23-2.14(m,7.3Hz,3H),2.13(s,1.5H),1.95(d,J=1.1Hz,1.5H),1.64(s,3H),1.57(s,1.5H),1.55(s,1.5H).13C{1H}NMR(151MHz,CDCl3):δ191.4,190.9,164.0,163.9,133.7,132.9,128.7,127.5,122.6,122.3,40.6,32.6,27.1,25.8,25.7,25.7,25.1,17.8,17.8,17.6.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C10H16ONa,175.1093;found 175.1095.
实验42:1H NMR(600MHz,CDCl3):δ10.12(d,J=8.1Hz,0.35H),10.00(d,J=8.1Hz,0.65H),7.34(m,2H),7.11(m,2H),6.03(d,J=8.1Hz,0.35H),5.89(d,J=8.1Hz,0.65H),3.88(s,0.7H),3.47(s,1.3H),2.14(s,1.95H),1.91(s,1.05H),1.32(s,9H).13C{1H}NMR(151MHz,CDCl3):δ191.6,191.1,150.0,134.3,133.9,129.3,129.0,128.4,125.8,125.7,46.5,38.0,34.6,31.5(3C),25.0,17.6.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C15H20ONa,239.1406;found 239.1408.
实验43:1H NMR(600MHz,CDCl3):δ10.13(d,J=8.1Hz,0.33H),10.00(d,J=8.1Hz,0.67H),7.23-7.05(m,4H),6.03(d,J=7.8Hz,0.33H),5.89(dd,J=8.1,1.1Hz,0.67H),3.87(s,0.66H),3.47(s,1.34),2.89(m,1H),2.15(s,2H),1.90(s,1H),1.25(d,J=6.9Hz,6H).13C{1H}NMR(151MHz,CDCl3):δ191.5,191.0,162.9,147.7,134.6,134.3,129.2,129.2,128.7,128.4,126.9,126.9,46.6,38.0,33.8,33.8,24.9,24.1(2C),17.5.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C14H18ONa,225.1250;found 225.1251.
实验44:1H NMR(600MHz,CDCl3):δ10.07(d,J=7.9Hz,0.25H),9.97(d,J=8.0Hz,0.75H),6.76-6.58(m,3H),6.00(d,J=7.9Hz,0.25H),5.93(s,2H),5.85(ddd,J=8.0,2.3,1.1Hz,0.75H),3.80(s,0.5H),3.39(s,1.5H),2.11(d,J=1.1Hz,2.25H),1.87(d,J=1.2Hz,0.75H).13C{1H}NMR(150MHz,CDCl3):δ191.4,190.8,162.5,148.0,146.7,130.7,129.2,128.4,122.4,121.8,109.5,109.1,108.6,108.5,101.2,101.1,46.6,38.1,24.7,17.3.HRMS(ES)calcd for[C12H12O3+Na]+calcd227.0679,found 227.0679.HRMS(ESI-TOF)m/z:[M+Na]+Calcd for C12H12O3Na,227.0679;found 227.0679.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种烯醇醚催化氧化制备烯醛的方法,其特征在于,包括以下步骤:
将钯催化剂、铜盐、溶剂和烯醇醚混合进行催化氧化反应,得到烯醛;所述钯催化剂为氯化钯、乙酸钯和三氟乙酸钯中的一种或几种;所述铜盐为乙酸铜、硫酸铜、三氟乙酸铜和氯化铜中的一种或几种;所述溶剂为水和乙腈的混合溶剂;所述混合溶剂中水和乙腈的体积比为3~7:3~7;所述混合时,还包括加入添加剂,所述添加剂为十八烷硫醇。
2.根据权利要求1所述的方法,其特征在于,所述钯催化剂的用量为烯醇醚中所含烯醚基团摩尔量的100ppm~10%;所述铜盐和烯醇醚中所含烯醚基团的摩尔比为0.75~3:1。
3.根据权利要求1所述的方法,其特征在于,所述烯醇醚中所含烯醚基团的摩尔量和溶剂的用量之比为1mmol:2~20mL。
4.根据权利要求1所述的方法,其特征在于,所述混合的方法具体为:将钯催化剂溶于乙腈中,得到钯催化剂溶液;将铜盐分散于水中,得到铜盐的水混悬液;将所述钯催化剂溶液和烯醇醚依次加入到铜盐的水混悬液中。
5.根据权利要求1所述的方法,其特征在于,所述十八烷硫醇的用量为钯催化剂摩尔量的1~100%。
6.根据权利要求1所述的方法,其特征在于,所述烯醇醚包括含酯基的烯醇醚、烯醇硅醚、含羟基的烯醇醚、含链烷基或环烷基的烯醇醚、含取代链烷基或取代环烷基的烯醇醚、含烯基的烯醇醚、含苯基的烯醇醚或含取代苯基的烯醇醚。
7.根据权利要求1所述的方法,其特征在于,所述烯醇醚包括含保护基的烯醇醚。
8.根据权利要求1、6或7所述的方法,其特征在于,所述烯醇醚具有以下结构中的任一种:
Figure FDA0004182784260000011
Figure FDA0004182784260000021
式a~式s中:n为≥0的整数,R为甲基或乙基,R1为H、烷基、苯基、取代苯基或酰基;R2为烷基;R3为烷基,R4为H、烷基、烷氧基、苯基、取代苯基、叔丁基二甲基硅氧基、二恶茂基、或
Figure FDA0004182784260000022
R5为H或烷基;R6~R20独立地为H、烷基、烷氧基、酰氧基、苯基或取代苯基。
9.根据权利要求1~7任意一项所述的方法,其特征在于,所述催化氧化反应的温度为20~100℃,反应时间为0.5~72h。
CN202110308008.4A 2021-03-23 2021-03-23 一种烯醇醚催化氧化制备烯醛的方法 Active CN113004146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110308008.4A CN113004146B (zh) 2021-03-23 2021-03-23 一种烯醇醚催化氧化制备烯醛的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110308008.4A CN113004146B (zh) 2021-03-23 2021-03-23 一种烯醇醚催化氧化制备烯醛的方法

Publications (2)

Publication Number Publication Date
CN113004146A CN113004146A (zh) 2021-06-22
CN113004146B true CN113004146B (zh) 2023-05-30

Family

ID=76405323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110308008.4A Active CN113004146B (zh) 2021-03-23 2021-03-23 一种烯醇醚催化氧化制备烯醛的方法

Country Status (1)

Country Link
CN (1) CN113004146B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117510316A (zh) * 2023-11-07 2024-02-06 江苏宁录科技股份有限公司 一种果树害虫性信息素(9e,11z)-9,11-十六碳二烯醛的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1159114A (fr) * 1951-09-11 1958-06-23 Eastman Kodak Co Procédé de préparation d'aldéhydes polyéniques et ses applications notamment àla préparation de la vitamine a
BE634738A (zh) * 1962-07-11 1900-01-01

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王宗睦等.《现代有机化学基础-术语和概念》.吉林大学出版社,1994,第117页. *

Also Published As

Publication number Publication date
CN113004146A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Sassaman et al. General ether synthesis under mild acid-free conditions. Trimethylsilyl iodide catalyzed reductive coupling of carbonyl compounds with trialkylsilanes to symmetrical ethers and reductive condensation with alkoxysilanes to unsymmetrical ethers
JP6101636B2 (ja) バナジウム錯体を用いたファルネサールの製造方法
CN113004146B (zh) 一种烯醇醚催化氧化制备烯醛的方法
EP3978466B1 (en) Dialkoxyalkenyl alkoxymethyl ether compound and a process for preparing a terminal conjugated alkadienal compound from the same
JP4503109B2 (ja) 重合性脂環式化合物
Rossi et al. Stereocontrolled synthesis of carbon–carbon double bond locked analogues of strobilurins which are characterized by a trans-1, 2-disubstituted cyclopropane ring
CN109956850A (zh) 3,7-二甲基-7-辛烯醇和3,7-二甲基-7-辛烯基羧酸酯化合物的生产方法
Kang et al. Three-component coupling reaction: palladium-catalyzed coupling of norbornadiene and iodonium salts or diazonium salts with organostannanes, alkynes, and sodium tetraphenylborate
WO2001074828A1 (fr) Diphosphines chirales hydrosolubles
JP3841907B2 (ja) 重合性トリオルガノシリル不飽和カルボキシレートの製造法
EP2404891B1 (en) Preparation method of acylbenzenes
KR100403417B1 (ko) 에폭사이드 유도체로부터 말로네이트 유도체 또는β-케토에스테르를 제조하기 위한 방법
Knölker et al. Enantioselective synthesis of calcitriol A-ring fragments
Tamao et al. Solvolytic cleavage of alkenylpentafluorosilicates catalyzed by copper (II) acetate. A stereoselective synthesis of (E)-alkenyl ethers from alkynes
JP3847653B2 (ja) キラルジルコニウム触媒とアンチ選択性非対称アルドール反応方法
CA2316157C (en) Process for the preparation of vitamin d analogues
JP2548590B2 (ja) 共役ジエンの選択的酸化カルボニル化方法
JP3492368B2 (ja) アルキル化剤およびα,β−不飽和ケト化合物にアルキル基を1,4−付加する方法
West et al. Alkynylquinones. Synthesis of 2-alkynyl-5-methoxy-1, 4-benzoquinones
CN118047669A (zh) 一种铁催化醌类化合物甲基化的方法
JP3788525B2 (ja) スカンジウム−パーフルオロアルカンスルホニルイミド錯体およびその製造方法
JP3726315B2 (ja) ケトン酸エステルの精製法
US6353123B1 (en) Process and intermediates useful to produce vitamin D analogs
US20120197036A1 (en) Method for manufacturing ketone
US4235785A (en) 4-Acetyl-2-alkoxy-7,7-dimethyl-3-oxabicyclo[4.1.0]heptane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant