CN112979994A - pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法 - Google Patents

pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法 Download PDF

Info

Publication number
CN112979994A
CN112979994A CN202110355038.0A CN202110355038A CN112979994A CN 112979994 A CN112979994 A CN 112979994A CN 202110355038 A CN202110355038 A CN 202110355038A CN 112979994 A CN112979994 A CN 112979994A
Authority
CN
China
Prior art keywords
miniemulsion
pickering
water
oil
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110355038.0A
Other languages
English (en)
Other versions
CN112979994B (zh
Inventor
张震乾
林永周
刘芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202110355038.0A priority Critical patent/CN112979994B/zh
Publication of CN112979994A publication Critical patent/CN112979994A/zh
Application granted granted Critical
Publication of CN112979994B publication Critical patent/CN112979994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/08Homopolymers or copolymers of vinyl-pyridine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明提供了pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,属于细乳液技术领域。本发明将碳酸盐溶液和可形成pH值响应型聚合物的单体溶液混合得预分散液;将预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动超声,同时滴加水溶性钙水溶液。再次超声波震荡一定时间,形成了Pickering反相(油包水型)细乳液。先向其中滴加酸至特定pH,超声后转相为Pickering(水包油型)细乳液,再滴加碱溶液至特定pH,超声后再次形成Pickering反相细乳液。本发明通过改变细乳液pH值实现Pickering细乳液油包水型转相为水包油型或者水包油型转相为油包水型,在流体运输等产业存在广阔应用前景。

Description

pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法
技术领域
本发明提供了纳米杂化碳酸钙实现pH转相Pickering细乳液,以pH值响应型聚合物和纳米级碳酸钙形成杂化体以稳定Pickering(水包油型)细乳液,并通过改变细乳液pH值实现Pickering细乳液水包油型转相为油包水型或者油包水型转相为水包油型。此方法涉及胶体分散、建筑涂料、流体运输、食品和化妆品等领域。
背景技术
乳液转相是乳液内外相发生反转的现象,转相后乳液的流体粘度发生明显变化。转相技术已经用于食品、涂料、化妆品和医药等行业;在原油开采和运输过程中,转相也是经常遇到的问题之一,转相有利于提高原油的开采和运输经济性。
常规乳液分散常常使用表面活性剂作为稳定剂,而Pickering乳液使用固体粒子作为稳定剂。Pickering(反相)细乳液是指固体乳化剂为稳定剂,通过高速剪切或超声粉碎,使分散相形成液滴,均匀分散在连续相中,Pickering(反相)细乳液通常可以稳定存在较长时间。Pickering(反相)细乳液液滴尺寸通常为50-500纳米,因此要求固体稳定剂尺寸更小;为了防止液滴之间凝并,还要加入助稳定剂维持液滴间的表面张力。
碳酸钙是一种无机化合物,化学式为CaCO3,俗称灰石、石灰石、石粉、大理石等。碳酸钙呈中性,基本上不溶于水,溶于盐酸。它是地球上常见物质之一,存在于霰石、方解石、白垩、石灰岩、大理石、石灰华等岩石内,亦为动物骨骼或外壳的主要成分。碳酸钙也是重要的建筑材料,工业上用途甚广。碳酸钙颗粒形状规则,可视为单分散粉体,但可以是多种形状,如纺锤形、立方形、针形、链形、球形、片形和四角柱形。这些不同形状的碳酸钙可由控制反应条件制得。一般制备方法得到的碳酸钙尺寸是微米级,Pickering(反相)细乳液需要的固体粒子一般为纳米级的固体粒子或胶粒。因此需要采用特殊的制备方法才能得到可以稳定Pickering(反相)细乳液的碳酸钙纳米固体乳化剂。例如采用在位合成方法等以获得纳米级别且分散性能良好的碳酸钙。
pH值响应型聚合物是在不同pH值显示出聚集态差别的一些大分子。通过pH值响应型聚合物和纳米级碳酸钙形成杂化体以稳定Pickering(反相)细乳液,并通过改变细乳液pH值实现Pickering细乳液水包油型转相为油包水型或者油包水型转相为水包油型。以上方法在建筑涂料、流体运输、食品和化妆品等产业存在广阔应用前景。此方法有明确的实用价值和创新性。
发明内容
本发明目的是采用pH值响应型聚合物和纳米级碳酸钙形成杂化体以稳定Pickering反相(油包水型)细乳液,并通过改变细乳液pH值实现Pickering反相(油包水型)细乳液转相为Pickering细乳液(水包油型)或者水包油型转相为油包水型,在不同领域均具有广阔应用前景。
为了实现上述目的,本发明的技术方案为:pH转相杂化体稳定的Pickering细乳液,按照下述制备步骤进行:
(1)预分散液的制备:
常温下,将定量的水溶性碳酸盐A溶解在去离子水中,形成A水溶液。将定量的单体B溶于溶剂中形成B溶液。将A溶液和B溶液混合后置于磁力搅拌器中搅拌混合,得预分散液。
步骤(1)A水溶液中的水溶性碳酸盐是碳酸钠、碳酸钾和碳酸铵等水溶性碳酸盐中的一种;B溶液是丙烯酸二甲氨基乙酯(DMAEA)、烯丙基胺盐酸盐或4-乙烯基吡啶的苯、甲苯、煤油或C4溶剂形成的溶液。
步骤(1)A水溶液中碳酸盐A和去离子水的质量比为3-5:100;B溶液中单体B和溶剂的质量比为3-5:100;A水溶液和B溶液的质量比为75-125:100。
(2)水包油型Pickering细乳液的形成:
室温下,取步骤(1)定量的预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动超声;同时采用恒定速度滴加水溶性钙C水溶液。滴加完成后,再次超声波震荡一定时间,初步形成了水包油型Pickering细乳液。
步骤(2)所述方法中可溶性钙C水溶液为氯化钙或硝酸钙等5%质量浓度的钙盐水溶液;滴加速度为C溶液百分之五质量单位/分钟。C水溶液和步骤(1)预分散液质量比例为5-10:100。
步骤(2)滴加完成后超声波震荡时间为20分钟,超声功率为500W。
(3)油包水型Pickering反相细乳液的形成:
将定量的紫外光引发剂加入在超声波振荡器中的步骤(2)制备的水包油型Pickering细乳液中,开启紫外光源,启动超声。单体B被引发聚合,一定时间后细乳液颜色发生转变,形成油包水型Pickering反相细乳液。
步骤(3)所述方法紫外光引发剂为2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮和2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮等丙酮类,用量为步骤(2)制备的Pickering细乳液质量的0.1-0.3%;光源为300纳米紫外光,照射时间2小时;超声波时间2小时,功率500W。
(4)通过改变pH值实现Pickering反相细乳液转相成Pickering细乳液:
将定量的水性酸滴加至步骤(3)形成的油包水型Pickering反相细乳液中,启动超声一定时间,可发现步骤(3)油包水型反相细乳液液体颜色发生转变,再次形成水包油型Pickering细乳液。
步骤(4)滴加的水性酸为0.1%质量浓度的盐酸、硫酸或硝酸,滴加至步骤(3)形成Pickering反相细乳液液滴pH值至4-6。超声波时间0.5小时,功率500W。
(5)通过改变pH值实现Pickering细乳液再次转相成Pickering反相细乳液:
将定量的水性碱滴加至步骤(4)形成的水包油型Pickering细乳液中至指定pH值,启动超声一定时间,可发现Pickering细乳液液体颜色发生转变,再次形成油包水型反相Pickering反相细乳液。
步骤(5)滴加的水性碱为0.1%质量浓度的氢氧化钠或氢氧化钾,滴加至步骤(4)形成Pickering细乳液液滴pH值至7-9。超声波时间0.5小时,功率500W。
通过细乳液pH值的调节,使Pickering细乳液油包水型转相为水包油型或者水包油型转相为油包水型,实现油包水型和水包油型之间多次转相。
本发明的优点在于本发明利用pH值响应型聚合物和纳米级碳酸钙形成杂化体以稳定Pickering(反相)细乳液,并通过改变细乳液pH值实现Pickering细乳液油包水型转相为水包油型或者水包油型转相为油包水型。具有以下优点:
1、pH值响应型聚合物和纳米级碳酸钙在位形成杂化体过程简单易操作;
2、pH值可以改变水包油型或者油包水型Pickering细乳液;
3、形成的Pickering反相细乳液明显降低了Pickering细乳液粘度。
具体实施方式
下面结合实例,对本发明作进一步的详细说明。
实施例1
(1)预分散液的制备:
常温下,将3克的碳酸钠溶解在100克去离子水中,形成碳酸钠水溶液。将3克单体二甲胺乙基丙烯酸酯溶于100克苯溶剂中形成二甲胺乙基丙烯酸酯的苯溶液。将75克碳酸钠水溶液溶液和100克二甲胺乙基丙烯酸酯的苯溶液混合后置于磁力搅拌器中搅拌混合,得预分散液。
(2)Pickering细乳液的形成:
室温下,将步骤(1)制备的100克预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动500W功率超声;同时采用0.25克/分钟速度滴加5克5%质量浓度的氯化钙水溶液。滴加完成后,再次超声波震荡20分钟,初步形成了Pickering(水包油型)细乳液,乳液颜色呈乳白色,液滴Z均粒径250纳米,粘度为650mPa·s(GB/T 2794-1995标准,采用DVII Pro旋转粘度计,150r/min,25℃)。
(3)Pickering反相细乳液的形成:
将0.1克2-羟基-2-甲基-1-苯基丙酮紫外光引发剂加入在超声波振荡器中的步骤(2)制备的100克Pickering细乳液中,开启300纳米紫外光源,启动500W功率超声。单体二甲胺乙基丙烯酸酯被引发聚合,照射时间2小时;超声波时间2小时。细乳液颜色发生转变,形成Pickering反相细乳液(油包水型),乳液颜色呈半透明色,液滴Z均粒径200纳米,粘度为150mPa·s。
(4)Pickering反相细乳液转相成Pickering细乳液:
将0.1%质量浓度的盐酸滴加至步骤(3)形成的100克Pickering反相细乳液中,形成Pickering反相细乳液液滴pH值至4。启动超声0.5小时,功率500W,可发现反相细乳液液体颜色发生转变,再次形成Pickering细乳液,乳液颜色呈乳白色,液滴Z均粒径270纳米,粘度为780mPa·s。
(5)Pickering细乳液再次转相成Pickering反相细乳液:
将0.1%质量浓度的氢氧化钠至步骤(4)形成的Pickering细乳液中至pH值至7,启动超声0.5小时,功率500W,可发现Pickering细乳液液体颜色发生转变,再次形成Pickering反相细乳液,乳液颜色呈半透明色,液滴Z均粒径220纳米,粘度为180mPa·s。
实施例2
(1)预分散液的制备:
常温下,将6克的碳酸钾溶解在120克去离子水中,形成碳酸钾水溶液。将5克单体烯丙基胺盐酸盐溶于100克甲苯溶剂中形成烯丙基胺盐酸钠的甲苯溶液。将125克碳酸钾水溶液溶液和100克烯丙基胺盐酸盐的甲苯溶液混合后置于磁力搅拌器中搅拌混合,得预分散液。
(2)Pickering细乳液的形成:
室温下,将步骤(1)制备的100克预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动500W功率超声;同时采用0.5克/分钟速度滴加10克5%质量浓度的硝酸钙水溶液。滴加完成后,再次超声波震荡20分钟,初步形成了Pickering(水包油型)细乳液,乳液颜色呈乳白色,液滴Z均粒径160纳米,粘度为400mPa·s。
(3)Pickering反相细乳液的形成:
将0.3克1-羟基环己基苯基甲酮紫外光引发剂加入在超声波振荡器中的步骤(2)制备的100克Pickering细乳液中,开启300纳米紫外光源,启动500W功率超声。单体烯丙基胺盐酸盐被引发聚合,照射时间2小时;超声波时间2小时。细乳液颜色发生转变,形成Pickering反相细乳液(油包水型),乳液颜色呈半透明色,液滴Z均粒径130纳米,粘度为70mPa·s。
(4)Pickering反相细乳液转相成Pickering细乳液:
将0.1%质量浓度的硝酸滴加至步骤(3)形成的100克Pickering反相细乳液中,形成Pickering反相细乳液液滴pH值至6。启动超声0.5小时,功率500W,可发现反相细乳液液体颜色发生转变,再次形成Pickering细乳液,乳液颜色呈乳白色,液滴Z均粒径180纳米,粘度为450mPa·s。
(5)Pickering细乳液再次转相成Pickering反相细乳液:
将0.1%质量浓度的氢氧化钾至步骤(4)形成的Pickering细乳液中至pH值至9,启动超声0.5小时,功率500W,可发现Pickering细乳液液体颜色发生转变,再次形成Pickering反相细乳液,乳液颜色呈半透明色,液滴Z均粒径140纳米,粘度为80mPa·s。
实施例3
(1)预分散液的制备:
常温下,将5克的碳酸铵溶解在125克去离子水中,形成碳酸铵水溶液。将4克单体4-乙烯基吡啶溶于100克煤油溶剂中形成4-乙烯基吡啶的煤油溶液。将115克碳酸铵水溶液溶液和100克4-乙烯基吡啶的煤油溶液混合后置于磁力搅拌器中搅拌混合,得预分散液。
(2)Pickering细乳液的形成:
室温下,将步骤(1)制备的100克预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动500W功率超声;同时采用0.3克/分钟速度滴加6克5%质量浓度的硝酸钙水溶液。滴加完成后,再次超声波震荡20分钟,初步形成了Pickering(水包油型)细乳液,乳液颜色呈乳白色,液滴Z均粒径180纳米,粘度为450mPa·s。
(3)Pickering反相细乳液的形成:
将0.2克1-羟基环己基苯基甲酮紫外光引发剂加入在超声波振荡器中的步骤(2)制备的100克Pickering细乳液中,开启300纳米紫外光源,启动500W功率超声。单体4-乙烯基吡啶被引发聚合,照射时间2小时;超声波时间2小时。细乳液颜色发生转变,形成Pickering反相细乳液(油包水型),乳液颜色呈半透明色,液滴Z均粒径140纳米,粘度为80mPa·s。
(4)Pickering反相细乳液转相成Pickering细乳液:
将0.2%质量浓度的硝酸滴加至步骤(3)形成的100克Pickering反相细乳液中,形成Pickering反相细乳液液滴pH值至5。启动超声0.5小时,功率500W,可发现反相细乳液液体颜色发生转变,再次形成Pickering细乳液,乳液颜色呈乳白色,液滴Z均粒径200纳米,粘度为570mPa·s。
(5)Pickering细乳液再次转相成Pickering反相细乳液:
将0.1%质量浓度的氢氧化钾至步骤(4)形成的Pickering细乳液中至pH值至8,启动超声0.5小时,功率500W,可发现Pickering细乳液液体颜色发生转变,再次形成Pickering反相细乳液,乳液颜色呈半透明色,液滴Z均粒径150纳米,粘度为100mPa·s。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的修改都应该在本发明的保护范围之内。

Claims (8)

1.一种pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于,所述制备方法为:
(1)预分散液的制备:
常温下,将定量的水溶性碳酸盐A溶解在去离子水中,形成A水溶液;将定量的单体B溶于溶剂中形成B溶液;将A溶液和B溶液混合后置于磁力搅拌器中搅拌混合,得预分散液;
其中单体B为丙烯酸二甲氨基乙酯、烯丙基胺盐酸盐或4-乙烯基吡啶;
(2)Pickering细乳液的形成:
室温下,将步骤(1)的预分散液置于带有紫外光源的超声波振荡器震荡腔内,启动超声;同时采用恒定速度滴加水溶性钙C水溶液,滴加完成后,再次超声波震荡一定时间,初步形成了水包油(O/W)型Pickering细乳液;
(3)Pickering反相细乳液的形成:
将紫外光引发剂加入在超声波振荡器中的步骤(2)制备的Pickering细乳液中,开启紫外光源,启动超声;单体B被引发聚合,分别照射、超声一定时间后细乳液颜色发生转变,形成油包水(W/O)型Pickering反相细乳液;
(4)通过改变pH值实现Pickering反相细乳液转相成Pickering细乳液;
将定量的水性酸滴加至步骤(3)形成的Pickering反相细乳液中,调节pH,启动超声一定时间,使步骤(3)的油包水(W/O)型Pickering反相细乳液转变形成水包油(O/W)型Pickering细乳液;
(5)通过改变pH值实现Pickering细乳液转相成Pickering反相细乳液;
再将定量的水性碱滴加步骤(4)形成的水包油(O/W)型Pickering细乳液中至指定pH值,启动超声一定时间,水包油型Pickering细乳液液体颜色发生转变,再次形成油包水(W/O)型Pickering反相细乳液。
2.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(1)所述的水溶性碳酸盐为碳酸钠、碳酸钾和碳酸铵中的一种;A水溶液中碳酸盐A和去离子水的质量比为3-5:100;B溶液中单体B和溶剂的质量比为3-5:100;溶剂为苯、甲苯、煤油或C4溶剂;A水溶液和B溶液的质量比为75-125:100。
3.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(2)所述的可溶性钙C水溶液为氯化钙或硝酸钙水溶液,质量浓度为5%;可溶性钙C水溶液和步骤(1)预分散液质量比例为5-10:100。
4.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(2)滴加完成后超声波震荡时间为20分钟,超声功率为500W。
5.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(3)所述紫外光引发剂为2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯基甲酮和2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮中的一种。
6.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(3)紫外光引发剂用量为步骤(2)制备的Pickering细乳液质量的0.1-0.3%;光源为300纳米紫外光,照射时间2小时;超声波时间2小时,功率500W。
7.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(4)滴加的水性酸为0.1%质量浓度的盐酸、硫酸或硝酸;滴加至步骤(3)形成油包水型Pickering反相细乳液液滴pH值至4-6;超声波时间0.5小时,功率500W。
8.根据权利要求1所述pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法,其特征在于:步骤(5)滴加的水性碱为0.1%质量浓度的氢氧化钠或氢氧化钾,滴加至步骤(4)形成水包油型Pickering细乳液液滴pH值至7-9;超声波时间0.5小时,功率500W。
CN202110355038.0A 2021-04-01 2021-04-01 pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法 Active CN112979994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110355038.0A CN112979994B (zh) 2021-04-01 2021-04-01 pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110355038.0A CN112979994B (zh) 2021-04-01 2021-04-01 pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法

Publications (2)

Publication Number Publication Date
CN112979994A true CN112979994A (zh) 2021-06-18
CN112979994B CN112979994B (zh) 2022-03-01

Family

ID=76338695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110355038.0A Active CN112979994B (zh) 2021-04-01 2021-04-01 pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法

Country Status (1)

Country Link
CN (1) CN112979994B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861329A (zh) * 2021-08-30 2021-12-31 苏州赫伯特电子科技有限公司 一种低成本W/C反相胶束及其反相Pickering乳液聚合的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150190774A1 (en) * 2012-06-08 2015-07-09 Imerys Minerals Limited Microcapsules
CN107475309A (zh) * 2017-09-22 2017-12-15 江南大学 一种氧化还原刺激响应型Pickering乳状液中酶催化有机化学反应的方法
CN107868161A (zh) * 2017-12-07 2018-04-03 张振 一种聚合物空心微胶囊的制备方法和其应用
CN110016150A (zh) * 2019-04-16 2019-07-16 常州大学 大分子自组装稳定Pickering反相细乳液的方法
CN110200937A (zh) * 2019-05-21 2019-09-06 淮阴工学院 含缓释性能的多孔杂化微球的制备方法
CN111992151A (zh) * 2020-07-07 2020-11-27 淮阴工学院 pH刺激响应性缓释杂化微球的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150190774A1 (en) * 2012-06-08 2015-07-09 Imerys Minerals Limited Microcapsules
CN107475309A (zh) * 2017-09-22 2017-12-15 江南大学 一种氧化还原刺激响应型Pickering乳状液中酶催化有机化学反应的方法
CN107868161A (zh) * 2017-12-07 2018-04-03 张振 一种聚合物空心微胶囊的制备方法和其应用
CN110016150A (zh) * 2019-04-16 2019-07-16 常州大学 大分子自组装稳定Pickering反相细乳液的方法
CN110200937A (zh) * 2019-05-21 2019-09-06 淮阴工学院 含缓释性能的多孔杂化微球的制备方法
CN111992151A (zh) * 2020-07-07 2020-11-27 淮阴工学院 pH刺激响应性缓释杂化微球的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861329A (zh) * 2021-08-30 2021-12-31 苏州赫伯特电子科技有限公司 一种低成本W/C反相胶束及其反相Pickering乳液聚合的制备方法
CN113861329B (zh) * 2021-08-30 2022-12-02 苏州赫伯特电子科技有限公司 一种低成本W/C反相胶束及其反相Pickering乳液聚合的制备方法

Also Published As

Publication number Publication date
CN112979994B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Liendo et al. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review
US20170362528A1 (en) Rapidly inverting water-in-oil polymer emulsions
AU2013363280B2 (en) Reversibly coagulatable and redispersable polymer including at least one monomer including a switchable-amphiphilic functional group and methods of using the same
Haaj et al. Starch nanoparticles produced via ultrasonication as a sustainable stabilizer in Pickering emulsion polymerization
Juang et al. Ultrasound-assisted production of W/O emulsions in liquid surfactant membrane processes
EP2718362B1 (en) An environmentally friendly dispersion system used in the preparation of inverse emulsion polymers
CN108948246B (zh) 固体颗粒改性转相并稳定Pickering反相细乳液的方法
Song et al. Effect of pH and temperatures on the fast precipitation vaterite particle size and polymorph stability without additives by steamed ammonia liquid waste
CN112979994B (zh) pH转相杂化碳酸钙稳定的Pickering细乳液的制备方法
Adil et al. Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review
CN103468028B (zh) 一种高效钙浆分散剂及其制备方法
US9951593B2 (en) Use of organoclay as emulsifier in polymeric gels for water permeability reduction
RU2655391C1 (ru) Способ получения наноразмерного катализатора на основе смешанного оксида железа для интенсификации добычи тяжелого углеводородного сырья и катализатор, полученный этим способом
US6964994B1 (en) Polyreactions in non-aqueous miniemulsions
US10351756B2 (en) Water shut-off method for porous formations
Muñoz-Espí et al. Application of Nanoemulsions in the Synthesis of Nanoparticles
CN110817964B (zh) 管状纳米钨酸铋及其制备方法
CN105567182A (zh) 一种可实现多次相转变的pH值调控的可逆乳状液及其制备方法
Jie et al. Foam stability performance enhanced with rice husk ash nanoparticles
Rahman et al. Surfactant and nanoparticle synergy: towards improved foam stability
CN110016150B (zh) 大分子自组装稳定Pickering反相细乳液的方法
Takács et al. Structure–Stability Relationship in Aqueous Colloids of Latex Particles and Gemini Surfactants
JP2005290481A (ja) 超臨界二酸化炭素中でのマイクロエマルジョンを利用した金属ナノ微粒子の製造方法
CN107117639B (zh) 一种超声辅助制备球霰石型碳酸钙纳米组装结构的方法
Li et al. Effective stabilization of pickering emulsion using a smart material with V-shaped surface structure via controlled polymerization: Its multi-responsive behavior, recyclable process and applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant