CN112973657A - 一种分子印迹二氧化钛光催化剂的制备方法 - Google Patents

一种分子印迹二氧化钛光催化剂的制备方法 Download PDF

Info

Publication number
CN112973657A
CN112973657A CN202110213166.1A CN202110213166A CN112973657A CN 112973657 A CN112973657 A CN 112973657A CN 202110213166 A CN202110213166 A CN 202110213166A CN 112973657 A CN112973657 A CN 112973657A
Authority
CN
China
Prior art keywords
solution
tio
ethylparaben
powder
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110213166.1A
Other languages
English (en)
Other versions
CN112973657B (zh
Inventor
张良晓
朱雷
汪恂
陶秀梅
刘显
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202110213166.1A priority Critical patent/CN112973657B/zh
Publication of CN112973657A publication Critical patent/CN112973657A/zh
Application granted granted Critical
Publication of CN112973657B publication Critical patent/CN112973657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种分子印迹二氧化钛光催化剂的制备方法,包括以下步骤:(1)将无水乙醇和去离子水搅拌均匀得到溶液A;(2)将尼泊金乙酯、钛酸正四丁酯、冰醋酸溶于无水乙醇中,搅拌均匀形成溶液B;(3)然后将溶液A缓慢滴加进溶液B中,滴加结束后继续搅拌均匀得到白色溶胶;(4)将白色溶胶陈化后形成凝胶;(5)将凝胶烘干并研磨成粉末;(6)将研磨后的粉末经马弗炉经升温反应后保温,即得MIP‑TiO2粉末。本发明原料廉价易得,工艺简单、绿色环保,所制备的光催化剂纯度高,对污染物的去除效率高。

Description

一种分子印迹二氧化钛光催化剂的制备方法
技术领域
本发明属于催化剂技术领域,具体涉及一种分子印迹二氧化钛光催化剂的制备方法。
背景技术
尼泊金乙酯(化学式为C9H10O3,又名羟苯乙酯)具有抗菌、成本低、化学性质稳定等特点,常用于医药、食品和化妆品(PPCPs)等行业。然而,尼泊金乙酯的雌激素活性具有内分泌干扰作用以及存在致癌的可能性。尼泊金乙酯属于难降解有机物,污水处理厂常规的水处理工艺并不能有效的处理尼泊金乙酯,容易导致水环境长期污染。TiO2是一种无毒无害的物质,同时也具有良好的光催化活性。但TiO2对于有机物的降解不具备选择性,对于毒性高、浓度低的有机物无法很好的降解,制约了TiO2的应用。
目前尚未见将分子印迹技术与纳米TiO2材料相结合以制备催化剂的报道。
发明内容
为了解决上述技术问题,本发明提供一种分子印迹二氧化钛(MIP-TiO2)光催化剂的制备方法及其应用。
本发明将分子印迹技术与纳米TiO2材料相结合,可以提高TiO2处理有机物的选择性以及处理能力。本发明的光催化剂光照反应40min就可以将污染物去除超过90%,几乎将污染物全部去除。本发明在制备MIP-TiO2粉末的过程中,利用马弗炉进行一定升温速率升温,起到减少催化剂粉体颗粒的团聚作用,以保证最佳的催化活性,并采用阶梯式保温,第一阶段保温温度为200℃保温1h,第二阶段为700℃保温2h,200℃以后是粉体从无定型板钛矿逐渐转变到锐钛矿以及金红石矿型的关键期,在200℃保温一定时间,可使受热更均匀,减少团聚体晶核的产生,700℃决定了粉体的矿相,700℃保温得到的粉体为锐钛矿相、金红石矿相混晶结构的TiO2,具有较高的催化活性。其中,200℃是保温停留温度,700℃是煅烧温度。在200℃保温1h是为了减少团聚的发生;在700℃保温2h是为了催化剂的矿相成型,形成的最佳的矿型转化,利于形成最佳活性的催化剂。
本发明提供的技术方案如下:
本发明提供一种分子印迹二氧化钛光催化剂的制备方法,包括以下步骤:
(1)将无水乙醇和去离子水搅拌均匀得到溶液A;
(2)将尼泊金乙酯(印记分子)、钛酸正四丁酯(功能单体)、冰醋酸溶于无水乙醇中,搅拌均匀形成溶液B;
(3)将溶液A缓慢滴加进溶液B中,滴加结束后继续搅拌均匀得到白色溶胶;
(4)将白色溶胶陈化后形成凝胶;
(5)将凝胶烘干并研磨成粉末;
(6)将研磨后的粉末经马弗炉经升温反应后保温,即得MIP-TiO2粉末。
进一步,所述步骤(2)中钛酸正四丁酯、冰醋酸和无水乙醇的体积比为2:1:4。
进一步,所述步骤(2)中钛酸正四丁酯与尼泊金乙酯的摩尔比为4-6:1。
进一步,所述步骤(3)中溶液A与溶液B的体积比为41:140。
进一步,所述步骤(4)中陈化时间为24~48h。
进一步,所述步骤(5)中凝胶的烘干温度为60~80℃,烘干时间为8-12h。
进一步,所述步骤(6)中马弗炉的升温速率为3℃/min。
进一步,所述步骤(6)中保温分为两个阶段。
更进一步,所述步骤(6)中第一阶段为200℃保温1h,第二阶段为700℃保温2h。
本发明的另一目的在于提供利用上述方法制备的分子印迹二氧化钛光催化剂。
本发明的有益效果如下:
本发明提供的方法所需原料都是常见的材料,成本低廉、易得。本发明提供的方法简单,反应条件温和、绿色环保,所制备的催化剂纯度高,对污染物的去除效率高。本发明在MIP-TiO2粉末的制备过程中,采用阶梯式保温工艺,该工艺能够较大程度地减少团聚体晶核地产生,保证催化剂的品质,提高催化活性。
附图说明
图1为制备方法流程图;
图2为催化剂性能测试装置图;图中,1-磁力搅拌,2-石英玻璃管,3-冷阱,4-汞灯,5-进水口,6-出水口;
图3为含不同用量的尼泊金乙酯的催化剂的去除率曲线图;
图4为MIP-TiO2光催化剂在不同pH条件下对尼泊金乙酯的处理效果;
图5为不同催化剂对尼泊金乙酯的去除率曲线图;
图6为对比实施例1制备的TiO2催化剂的XRD图;
图7为实施例3制备的MIP-TiO2催化剂的XRD图;
图8为对比实施例1和实施例3的N2吸附-脱附等温线图;
图9为对比实施例1和实施例3的孔径分布曲线图。
具体实施方式
下面结合具体实施例对本发明进一步说明,本发明的内容完全不限于此。
实施例1
制备分子印迹二氧化钛光催化剂
步骤如下:
(1)将20mL无水乙醇、0.5mL去离子水搅拌均匀得到混合溶液A;
(2)将1.6277g尼泊金乙酯、20mL钛酸正四丁酯、10mL冰醋酸溶于40mL无水乙醇,搅拌均匀形成混合溶液B;
(3)将溶液A液缓慢滴加进溶液B中,滴加结束后继续搅拌2h得到白色溶胶;
(4)将白色溶胶陈化48h后形成凝胶;
(5)将凝胶在60℃的条件下烘干8~12h,然后将烘干后的凝胶研磨20~30min成粉末状态;
(6)将研磨后的粉末经马弗炉3℃/min的升温速率在200℃保温1h,在700℃保温2h后即得分子印迹二氧化钛光催化剂。
本实施例中,钛酸正四丁酯(功能单体)和尼泊金乙酯(印迹分子)的摩尔比为6:1。
实施例2-5
制备分子印迹二氧化钛光催化剂
制备方法同实施例1,不同在于尼泊金乙酯的加入量不同。
实施例2尼泊金乙酯的加入量为1.7756g。钛酸正四丁酯(功能单体)和尼泊金乙酯(印迹分子)的摩尔比为5.5:1。
实施例3尼泊金乙酯的加入量为1.9532g。钛酸正四丁酯(功能单体)和尼泊金乙酯(印迹分子)的摩尔比为5:1。
实施例4尼泊金乙酯的加入量为2.1702g。钛酸正四丁酯(功能单体)和尼泊金乙酯(印迹分子)的摩尔比为4.5:1。
实施例5尼泊金乙酯的加入量为2.4415g。钛酸正四丁酯(功能单体)和尼泊金乙酯(印迹分子)的摩尔比为4:1。
对比实施例1
制备不含尼泊金乙酯的TiO2催化剂
制备步骤如下:
(1)将20mL无水乙醇、0.5mL去离子水搅拌均匀得到溶液A;
(2)将20mL钛酸正四丁酯、10mL冰醋酸溶于40mL无水乙醇中,搅拌均匀形成溶液B;
(3)将溶液A液缓慢滴加进溶液B中,滴加结束后继续搅拌2h得到白色溶胶;
(4)将白色溶胶陈化48h后形成凝胶;
(5)将凝胶在60℃的条件下烘干8~12h;然后将烘干后的凝胶研磨20~30min成粉末状态;
(6)将研磨后的粉末再经马弗炉3℃/min的升温速率在200℃保温1h,在700℃保温2h后后可得到TiO2粉末。
实施例6
本实施例为不同尼泊金乙酯配比所制得MIP-TiO2的性能实验,具体步骤如下:
分别取150mg不同尼泊金乙酯配比所制得的MIP-TiO2,分别加入50mL,10mg/L的尼泊金乙酯溶液中。反应过程的光源采用500W的汞灯,光源距石英玻璃管距离约为10cm,反应器如图2所示。每隔8min取一次样,在9000r/min下离心6min,取其上清液。采用分光光度计测量上清液的吸光度。
实验结果如图3所示,由图3可知,当功能单体和印迹分子的摩尔比为5:1时,去除率最高,可达96.27%。因此,最佳的尼泊金乙酯配比为5:1。
实施例7
本实施例为溶液初始pH对吸附性能影响的实验,具体步骤如下:
本实例取用的光催化剂为最佳尼泊金乙酯配比(5:1,实施例3)所制备的MIP-TiO2。取150mg MIP-TiO2,分别加入50mL,10mg/L的尼泊金乙酯溶液中,调节溶液pH为1.5、3.0、8.0、10.0,未经调节的溶液pH为5.7。反应过程的光源采用500W的汞灯,光源距石英玻璃管距离约为10cm,反应器如图2所示。每隔8min取一次样,在9000r/min下离心6min,取其上清液。采用分光光度计测量上清液的吸光度。
如图4所示为MIP-TiO2光催化剂在不同pH条件下对尼泊金乙酯的处理效果。从图中可知,当pH=5.7(pH未经调节)时对尼泊金乙酯的降解率最高,随着pH的降低,对尼泊金乙酯的降解率急剧下降,表明在酸性条件下会抑制对尼泊金乙酯的降解。在碱性条件下,对尼泊金乙酯的降解率逐渐下降,但相比于在酸性条件下较平缓。
实施例8
本实施例为实施例3和对比实施例1所制得光催化剂的性能试验及其表征性能,具体试验步骤如下:
分别取TiO2和MIP-TiO2各150mg,分别加入50mL,10mg/L的尼泊金乙酯溶液中。反应过程的光源采用500W的汞灯,光源距石英玻璃管距离约为10cm,在暗光、紫外等条件下反应一定时间,反应器如图2所示。每隔8min取一次样,在9000r/min下离心6min,取其上清液。采用分光光度计测量上清液的吸光度。
结果如图5所示,在空白实验组中会有少量的尼泊金乙酯被降解,降解率为1.15%。在黑暗条件下,TiO2和MIP-TiO2对尼泊金乙酯的降解率较低。TiO2对尼泊金乙酯的吸附率为1.28%,MIP-TiO2对尼泊金乙酯的吸附率为2.68%,结果表明MIP-TiO2对尼泊金乙酯的吸附效果稍强于TiO2。在光照条件下,TiO2对尼泊金乙酯的降解率为80.74%,MIP-TiO2对尼泊金乙酯的降解率为96.27%,MIP-TiO2较TiO2提升了15.53%。
催化剂的表征
图6、7分别TiO2、MIP-TiO2的XRD图。由图可知,两种样品均为锐钛矿相、金红石矿相的混晶结构。在25.281°、37.800°、48.049°、27.446°、36.085°、54.322°等处存在较强的衍射峰。其中,25.281°、37.800°、48.049°与锐钛矿相的(101)、(004)、(200)晶面相对应;27.446°、36.085°、54.322°处衍射峰与金红石矿相的(100)、(101)、(211)晶面相对应,说明样品均为锐钛矿相、金红石矿相的混晶结构。金红石的含量可用下式计算得出:
FR=1/[1+0.79(IA/IR)]
式中:IA-锐钛矿相(101)晶面的衍射强度;IR-金红石矿相(110)晶面的衍射强度;FR-金红石的含量。
经计算TiO2、MIP-TiO2的金红石矿的含量分别为62.6%、78.5%,表明加入印迹分子有助于金红石矿的形成。锐钛矿相、金红石矿相混晶结构的TiO2有较高的催化活性。
图8、9为TiO2、MIP-TiO2的BET图。
表1 BET测试数据
Figure BDA0002952173860000061
由图8可知,TiO2、MIP-TiO2两种样品在0.6~1.0相对压力下均出现H3型回滞环,属于IUPAC中IV等温线,表明两种样品均存在介孔结构。
由图9可知,TiO2、MIP-TiO2两种样品的孔分布比较相似,主要集中分布在5~10nm,属于介孔的范围。由表1可知,TiO2、MIP-TiO2的平均孔径分别为5.9382nm和8.5784nm,与上述分析一致,由图9可知在孔径范围内,MIP-TiO2的峰值要大于TiO2,表明MIP-TiO2在范围内的孔体积比TiO2大;TiO2、MIP-TiO2的总孔容分别为4.584mm3/g和14.234mm3/g,MIP-TiO2的总孔容是TiO2的3.10倍,MIP-TiO2存在更多的孔结构,有助于对污染物的吸附;此外,TiO2和MIP-TiO2的比表面积分别为1.7897m2/g和3.4810m2/g,MIP-TiO2的比表面积是TiO2的1.94倍,表明分子印迹的形成会使得颗粒比表面积增大,比表面积增大有助于提高催化剂与污染物的接触面,提高催化剂的活性。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (10)

1.一种分子印迹二氧化钛光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将无水乙醇和去离子水搅拌均匀得到溶液A;
(2)将尼泊金乙酯、钛酸正四丁酯、冰醋酸溶于无水乙醇中,搅拌均匀形成溶液B;
(3)然后将溶液A缓慢滴加进溶液B中,滴加结束后继续搅拌均匀得到白色溶胶;
(4)将白色溶胶陈化后形成凝胶;
(5)将凝胶烘干并研磨成粉末;
(6)将研磨后的粉末经马弗炉经升温反应后保温,即得MIP-TiO2粉末。
2.根据权利要求1所述的方法,其特征在于:所述步骤(1)中无水乙醇和去离子水的体积比为40:1。
3.根据权利要求1所述的方法,其特征在于:所述步骤(2)中钛酸正四丁酯、冰醋酸和无水乙醇的体积比为2:1:4;所述钛酸正四丁酯与尼泊金乙酯的摩尔比为4-6:1。
4.根据权利要求1所述的方法,其特征在于:所述步骤(3)中溶液A与溶液B的体积比为41:140。
5.根据权利要求1所述的方法,其特征在于:所述步骤(4)中陈化时间为24-48h。
6.根据权利要求1所述的方法,其特征在于:所述步骤(5)中凝胶的烘干温度为60~80℃,烘干时间为8-12h。
7.根据权利要求1所述的方法,其特征在于:所述步骤(6)中马弗炉的升温速率为3℃/min。
8.根据权利要求1所述的方法,其特征在于:所述步骤(6)中保温分为两个阶段。
9.根据权利要求8所述的方法,其特征在于:所述步骤(6)中第一阶段为200℃保温1h,第二阶段为700℃保温2h。
10.一种分子印迹二氧化钛光催化剂,其特征在于:采用权利要求1-9任一项所述的方法制备。
CN202110213166.1A 2021-02-25 2021-02-25 一种分子印迹二氧化钛光催化剂的制备方法 Active CN112973657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110213166.1A CN112973657B (zh) 2021-02-25 2021-02-25 一种分子印迹二氧化钛光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110213166.1A CN112973657B (zh) 2021-02-25 2021-02-25 一种分子印迹二氧化钛光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN112973657A true CN112973657A (zh) 2021-06-18
CN112973657B CN112973657B (zh) 2022-06-14

Family

ID=76350777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110213166.1A Active CN112973657B (zh) 2021-02-25 2021-02-25 一种分子印迹二氧化钛光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112973657B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578364A (zh) * 2021-08-05 2021-11-02 哈尔滨工业大学 一种分子印记光催化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972639A (zh) * 2010-09-30 2011-02-16 中国石油大学(华东) 分段煅烧法制备高活性二氧化钛光催化剂的方法
CN102836700A (zh) * 2012-05-29 2012-12-26 云南大学 一种介孔印迹TiO2的制备方法及用途
CN108083331A (zh) * 2017-12-29 2018-05-29 广东惠云钛业股份有限公司 一种金红石型二氧化钛超细粉的制备方法
CN109574333A (zh) * 2018-12-06 2019-04-05 东南大学 一种铜修饰氮掺杂二氧化钛材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972639A (zh) * 2010-09-30 2011-02-16 中国石油大学(华东) 分段煅烧法制备高活性二氧化钛光催化剂的方法
CN102836700A (zh) * 2012-05-29 2012-12-26 云南大学 一种介孔印迹TiO2的制备方法及用途
CN108083331A (zh) * 2017-12-29 2018-05-29 广东惠云钛业股份有限公司 一种金红石型二氧化钛超细粉的制备方法
CN109574333A (zh) * 2018-12-06 2019-04-05 东南大学 一种铜修饰氮掺杂二氧化钛材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周婉媛等: ""印迹型TiO2光催化剂的制备及性能研究"", 《武汉理工大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578364A (zh) * 2021-08-05 2021-11-02 哈尔滨工业大学 一种分子印记光催化材料及其制备方法和应用
CN113578364B (zh) * 2021-08-05 2023-08-22 哈尔滨工业大学 一种分子印记光催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112973657B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Amini et al. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles
CN101711988B (zh) NaBiO3/BiOCl异质结光催化剂及其制备方法
He et al. Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability
Hosseini et al. Elimination of dibenzothiophene from transportation fuel by combined photocatalytic and adsorptive method
CN112916045A (zh) 一种负载ZnO-TiO2磁性氧化石墨烯/壳聚糖复合材料的制备方法
CN112973657B (zh) 一种分子印迹二氧化钛光催化剂的制备方法
CN111001400B (zh) 一种二氧化钛材料及其制备方法
CN110624527A (zh) 三维有色二氧化钛光催化材料的制备方法及其产品和应用
CN104785304A (zh) 一种新型纳米异质结太阳能光催化剂的制备及应用
CN107970951B (zh) 一种花状介孔结构CdS-ZnO复合材料的制备方法
Yuying et al. Microemulsion synthesis of nanosized SiO2/TiO2 particles and their photocatalytic activity
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN1594102A (zh) 一种二氧化钛介孔材料的制备方法
CN114433107B (zh) 一种Co3O4/Bi4O7/Bi2O3异质结光催化剂及其应用
Yusuff Photocatalytic degradation of cationic dye in aqueous solution by TiO2 nanoparticle immobilized on termite hill soil
Chen et al. Integrating modeling and experimental method for narrowing the optimum phase composition in P25 photocatalyst for typical aromatic pollutants degradation
Ooi et al. Properties and Photocatalytic Behaviour of Vanadia Loaded Titania Supported on MCM-41 Synthesized using Different Surfactants for Degradation of Methylene Blue
TWI428183B (zh) Preparation of Modified Titanium Dioxide with Better Degradation Efficiency
Nguyen et al. Removal of ß-naphthol in Water via Photocatalytic Degradation over N-TiO 2/SiO 2 Nanocomposite under Simulated Solar Light Irradiation.
CN108325511B (zh) 一种纳米亚稳态/锐钛矿混晶氧化钛水溶胶的制备方法及应用
CN107126966B (zh) 一种共掺杂型纳米二氧化钛的制备方法
Gilja et al. Influence of Titanium Dioxide Preparation Method on Photocatalytic Degradation of Organic Dyes
CN116422327B (zh) 二氧化钛@钼酸银纳米光催化材料的制备及产品和应用
CN114682249B (zh) 一种负载型Mo-Ti双掺杂TiO2光催化剂及其制备和应用
Zhang et al. Photocatalytic degradation of ethyl paraben wastewater by mixed crystal molecularly imprinted TiO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant