CN112964705B - 一种快速比色和荧光点亮双模检测乙二胺的试剂 - Google Patents

一种快速比色和荧光点亮双模检测乙二胺的试剂 Download PDF

Info

Publication number
CN112964705B
CN112964705B CN202110167358.3A CN202110167358A CN112964705B CN 112964705 B CN112964705 B CN 112964705B CN 202110167358 A CN202110167358 A CN 202110167358A CN 112964705 B CN112964705 B CN 112964705B
Authority
CN
China
Prior art keywords
reagent
ethylenediamine
strong base
detection
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110167358.3A
Other languages
English (en)
Other versions
CN112964705A (zh
Inventor
祖佰祎
柯于雷
窦新存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN202110167358.3A priority Critical patent/CN112964705B/zh
Publication of CN112964705A publication Critical patent/CN112964705A/zh
Application granted granted Critical
Publication of CN112964705B publication Critical patent/CN112964705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/775Indicator and selective membrane

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种快速比色和荧光点亮双模检测乙二胺的试剂,该试剂是由邻苯二甲醛类化合物、强碱、巯基类化合物和溶剂制成,本发明所述的检测试剂对乙二胺具有比色和荧光点亮双模检测的功能,该试剂本身为无色透明溶液,与乙二胺接触后3 s变为裸眼可视的黄色,在468 nm蓝光激发下,荧光由无点亮为绿色荧光。本试剂具有极低的检测限和较好的选择性,检测过程无需复杂的分析设备,实现了乙二胺的快速痕量检测。此外,该试剂制备简单,弥补了探针分子合成繁琐的不足。因此,本试剂的开发可为危险化学品痕量检测领域提供有效的技术支撑。

Description

一种快速比色和荧光点亮双模检测乙二胺的试剂
技术领域
本发明属于分析检测领域,提供了一种快速比色和荧光点亮双模检测乙二胺的试剂。
背景技术
乙二胺是最简单的二胺,化学名称为1,2-二氨基乙烷,它既可以用作活性染料、农药杀菌剂、精细化工的中间体,又可以用作乳化稳定剂、抗电剂和环氧树脂的固化剂,被广泛用于学术研究和工业生产中。但是乙二胺具有易挥发性和急性毒性,其蒸汽和溶液可通过呼吸道或者皮肤摄入进入人体,对眼睛、皮肤和呼吸道有较强的腐蚀性,且可引起一系列疾病,如急性肾损伤、精神障碍和恶性肿瘤等。此外,乙二胺作为常用的液态敏感剂,可与硝基甲烷以一定比例混合直接形成液体炸药,其威力较TNT强,具有各组分储存运输安全、隐蔽性强、制备简单、爆炸威力巨大等特点。因此,针对乙二胺进行高灵敏快速检测具有重要意义。
目前,已发展出一系列乙二胺检测的分析技术,包括高效液相色谱-紫外联用技术(American Industrial Hygiene Association Journal,1985,46,225–229)、气相色谱-质谱联用技术(Fresenius J.Anal.Chem.1988,331,744–756)、电化学分析技术(Journal ofMaterials Science,2015,50,4288-4299)、荧光分析技术等,其中荧光分析技术由于具有实时监测、灵敏度较高和操作简单等优点受到广泛关注。到目前为止,科研人员已经设计并合成多种荧光探针用于乙二胺的检测。如,天津工业大学Li Huanrong教授课题组设计的Tb(acacn)@ZYc稀土类配合物实现对乙二胺蒸汽的检测;四川大学的Lin Pu教授课题组设计的三氟甲基酮类荧光探针实现对乙二胺的荧光检测(Chemistry–A European Journal,2016,22,12061-12067、European Journal of Organic Chemistry,2016,201635,5868-5875);Kulathu Iyer Sathiyanarayanan教授课题组设计的邻二氰基类荧光探针用于乙二胺的比率荧光检测(Dyes and Pigments,2020,178,108346)等,这些特异性检测乙二胺的荧光探针其合成过程复杂繁琐且灵敏度不足。此外,荧光分析技术作为一种单通道信号传感检测技术,其特异性仍不足,容易受到其他干扰物以及环境因素的影响,检测准确性有待提高。
与单通道荧光检测方法不同,比色和荧光双通道传感提供了另一种输出信号,即颜色变化,可将外部干扰降至最低,具有更强的抗干扰性。比色和荧光双通道传感不但具有灵敏度高和抗干扰能力强等特点,而且便于肉眼观察目标,在实际应用中非常有利于现场实时监测。到目前为止,利用比色和荧光点亮双模技术检测乙二胺的相关研究较少,仅Madurai Kamaraj大学的Sivakumar Shanmugam教授课题组在2017年设计合成了基于β-酮硫醚硼络合物的比色/荧光双模探针,但其灵敏度较差,且这种荧光分子合成过程复杂,成本较高,不利于实际应用。因此,针对乙二胺,开发易制备、低成本、高灵敏度的比色和荧光双模检测试剂尤为重要。
本发明开发了一种可快速比色和荧光点亮双模检测乙二胺的试剂,其检测原理为邻苯二甲醛类化合物与乙二胺在巯基类物质的作用下直接快速生成黄色且具有绿色荧光的多元杂环化合物,从而实现对乙二胺的比色荧光点亮双模检测。本试剂具有快速、灵敏、高选择性、稳定性好、操作简单及利于推广应用等特点。
发明内容
本发明目的在于,提供一种快速比色和荧光点亮双模检测乙二胺的试剂,该试剂由邻苯二甲醛类化合物、强碱、巯基类物质和溶剂制成,巯基类物质可活化邻苯二甲醛类化合物上的醛基,使其在常温下与乙二胺反应生成黄色且具有绿色荧光的多元杂环化合物。本发明所述的检测试剂对乙二胺具有比色和荧光点亮双模检测的效果,其本身为无色透明溶液,与乙二胺接触后3s立即变为黄色,且在468nm蓝光激发下,荧光从无点亮为绿色荧光,具有极低的检测限(裸眼检测限2μM,紫外-可见检测限为41.7nM,荧光检测限0.16nM)。此外,该试剂具有较好的选择性,不受常见的胺类物质(如氨基酸、伯胺、仲胺等)、易制爆原料(H2O2、NaNO2、KClO4)及生活日用品(汽油、煤油、柴油、香水、花露水)的干扰。该试剂弥补了检测乙二胺的探针分子合成复杂、灵敏度低等不足,为危险化学品检测领域提供有效的技术手段。
本发明所述的一种快速比色和荧光点亮双模检测乙二胺的试剂,其特征在于该试剂由邻苯二甲醛类化合物、强碱、巯基类化合物和溶剂构成,其中:
邻苯二甲醛类化合物为邻苯二甲醛、2,3-萘二甲醛或邻乙酰基苯甲醛,邻苯二甲醛类化合物在试剂中的含量为1mM-500mM;
强碱为氢氧化钠、氢氧化钾或氢氧化钙,强碱质量浓度为0.1%-5%;
巯基类物质为十二硫醇、巯基乙酸苄酯、巯基丁二酸、3-巯基丙酸或丙烯基硫醇,巯基类化合物在试剂中的含量为1mM-500mM;
溶剂为超纯水、二氯甲烷、甲醇、乙酸乙酯中的一种或任意两种溶剂的混合物;
具体操作按下列步骤进行:
a、首先配置强碱溶液,将强碱为氢氧化钠、氢氧化钾或氢氧化钙溶解在溶剂为超纯水、二氯甲烷、甲醇、乙酸乙酯中的一种或任意两种溶剂的混合物中,配置成强碱质量浓度为0.1%-5%的混合液;
b、将邻苯二甲醛类化合物和巯基类物质溶解在步骤a配制的混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
本发明所述的一种快速比色和荧光点亮双模检测乙二胺的试剂,将该试剂应用于乙二胺检测的具体方法如下:
量取乙二胺溶解在甲醇中,配制成的浓度为5μM、10μM、20μM、30μM、40μM、50μM、60μM、80μM、100μM、200μM和300μM的乙二胺甲醇溶液;
用移液枪量取1.8mL同一配比的双模检测试剂于试剂瓶,分别加入200μL不同浓度的乙二胺甲醇溶液,3s后用数码相机记录反应前后的比色检测图像和荧光检测图像,测定试剂的裸眼识别检测限;
或用移液枪量取1.8mL双模检测试剂置于石英比色皿中,再加入不同浓度的乙二胺甲醇溶液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,测定双模检测试剂在检测不同浓度乙二胺后的紫外-可见吸收光谱。再以最大吸光度为纵坐标,乙二胺浓度为横坐标,拟合得到一元一次方程,从而确定双模检测试剂的紫外检测限;
或用移液枪量取1.8mL双模检测试剂置于石英比色皿中,再加入不同浓度的乙二胺甲醇溶液200μL,用荧光光谱仪进行荧光发射光谱扫描,测定双模检测试剂在检测不同浓度乙二胺后的荧光发射光谱。再以最大荧光发射峰强度为纵坐标,乙二胺浓度为横坐标,拟合得到一元一次方程,从而确定双模检测试剂的荧光检测限。
本发明所述的一种快速比色和荧光点亮双模检测乙二胺试剂,主要针对危险化学品乙二胺进行检测,解决了当前无法针对乙二胺直接、快速、可视化、高灵敏检测的难题。
与现有技术相比,本发明的有益效果是:
1.本发明所使用的试剂原料均可通过商业市场购买得到;
2.本发明的检测试剂能够高灵敏、高选择性的检测乙二胺;
3.本发明的检测试剂反应快速,3s就可以在比色和荧光通道实现对乙二胺的检测;
4.本发明的检测试剂检测乙二胺,无需复杂的分析设备,可以直接裸眼识别检测;
5.本发明的检测试剂无需将待测物进行任何的前期处理,操作简单,方便推广应用,本试剂检测限低、抗干扰性强和反应时间短,完全可以实现低成本、实时比色和荧光点亮检测乙二胺目的。
附图说明
图1为本发明邻苯二甲醛和巯基丁二酸在超纯水溶剂中的浓度分别为4mM和8mM,氢氧化钠浓度为0.4%,与15μM乙二胺甲醇溶液反应前后的紫外-可见吸收光谱图和荧光发射光谱图,其中插图为相机拍摄的反应前后试剂颜色及荧光变化照片;
图2为本发明邻苯二甲醛和巯基丁二酸在超纯水溶剂中的浓度分别为4mM和8mM,氢氧化钠浓度为0.4%,与0.5μM-30μM的乙二胺反应后所得紫外-可见吸收光谱谱图,其中图2右为以乙二胺浓度为横坐标,468nm处的吸收值为纵坐标,拟合得到的一元一次方程;
图3为本发明邻苯二甲醛和巯基丁二酸在超纯水溶剂中的浓度分别为4mM和8mM,氢氧化钠浓度为0.4%,与0.5μM-30μM的乙二胺反应后所得荧光发射光谱图,其中图3右为以乙二胺浓度为横坐标,525nm处的荧光发射峰强度为纵坐标,拟合得到的一元一次方程;
图4为本发明邻苯二甲醛和巯基丁二酸在超纯水溶剂中的浓度分别为4mM和8mM,氢氧化钠浓度为0.4%,与0.5μM-30μM的乙二胺甲醇溶液反应后数码相机拍摄所得的比色和荧光图像。
图5为本发明邻苯二甲醛和巯基丁二酸在超纯水溶剂中的浓度分别为4mM和8mM,氢氧化钠浓度为0.4%,分别与浓度为50μM的乙二胺、甘氨酸、β-丙氨酸、L-谷氨酰胺、L-精氨酸、L-苯丙氨酸、色氨酸、脯氨酸、氨水、氯化铵、尿素、肼、苯胺、丙烯酰胺、乙醇胺、乙胺、H2O2、NaNO2、KClO4、汽油、煤油、柴油、香水、花露水等物质反应的比色照片(图5左)和荧光照片(图5右)。
具体实施方式
下面通过具体实施例对本发明做进一步的说明,但发明不限制于这些实施例。
实施例1
a、首先配置强碱溶液,将强碱为氢氧化钠溶解在溶剂甲醇中,配置成氢氧化钠质量浓度为0.5%的混合液;
b、室温下,将4mmol邻苯二甲醛和8mmol巯基丁二酸溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的100μM乙二胺甲醇标准液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,通过对比反应前后谱图可以看出,468nm处出现了明显的吸收峰;对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂由无色变为黄色;用荧光光谱仪进行荧光发射光谱扫描,通过对比反应前后谱图可以看出,在525nm处出现了明显的荧光发射峰,在暗场环境下对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂的荧光由无变为绿色荧光,通过颜色变化和荧光变化共同判断试剂检测出乙二胺。
实施例2
a、首先配置强碱溶液,将强碱为氢氧化钾溶解在溶剂为超纯水中,配置成氢氧化钾质量浓度为0.1%的混合液;
b、室温下,将30mmol邻苯二甲醛和130mmol 3-巯基丙酸溶解在步骤a配制的混合溶液1000mL中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的不同浓度乙二胺标准甲醇溶液200μL,测试加入不同乙二胺浓度后的紫外-可见吸收光谱,从紫外-可见吸收光谱图中可以看出:随着乙二胺浓度的增加,位于468nm处的吸收峰强度逐渐增大,当乙二胺浓度为0.5μM-30μM时,位于468nm处的吸收峰强度随乙二胺浓度的增加而呈很好的线性关系增加,拟合线性方程可得y=0.0360x+0.0015,根据检测限计算方程式:检测限=3σ/K,其中σ为所使用紫外-可见分光光度计的标准偏差,本发明所用紫外-可见分光光度计的标准偏差σ=0.0005(n=15),K为拟合曲线的斜率,即K=0.0360,所以,经计算本试剂的紫外检测限为41.7nM。
实施例3
a、首先配置强碱溶液,将强碱为氢氧化钙溶解在溶剂为超纯水中,配置成氢氧化钙质量浓度为0.2%的混合液;
b、室温下,将30mmol邻苯二甲醛和130mmol 3-巯基丙酸溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的不同浓度乙二胺标准甲醇溶液200μL,测试加入不同乙二胺浓度后的荧光发射光谱,从荧光发射光谱图中可以看出:随着乙二胺浓度的增加位于525nm处的荧光发射峰强度逐渐增大,当乙二胺浓度为0.5μM-30μM时,位于525nm处的荧光发射峰强度随乙二胺浓度的增加而呈很好的线性关系增加,拟合线性方程可得y=54842x+8623,根据检测限计算方程式:检测限=3σ/K,其中σ为所使用荧光光谱仪的标准偏差,本发明所用紫外-可见分光光度计的标准偏差σ=3(n=11),K为拟合曲线的斜率,即K=54842,所以,经计算本试剂的荧光检测限为0.16nM。
实施例4
a、首先配置强碱溶液,将强碱为氢氧化钠溶解在溶剂为体积比为3:7的二氯甲烷和乙酸乙酯的混合物中,配置成氢氧化钠质量浓度为5%的混合液;
b、室温下,将20mmol邻乙酰基苯甲醛和1mmol丙烯基硫醇溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于试剂瓶中,再加入已配制的不同浓度乙二胺甲醇标准溶液200μL,在标准灯箱中拍摄不同浓度乙二胺反应后的比色照片;在暗场环境,468nm蓝光照射下拍摄不同乙二胺反应后的荧光照片,从图中可以看出:在比色通道检测中,所配制的试剂对于乙二胺的裸眼识别检测限为2μM;在荧光通道检测中,所配制的试剂对于乙二胺的裸眼识别检测限为0.5μM;
实施例5
a、首先配置强碱溶液,将强碱为氢氧化钾溶解在溶剂为甲醇中,配置成氢氧化钾质量浓度为0.8%的混合液;
b、室温下,将65mmol邻乙酰基苯甲醛和80mmol巯基乙酸苄酯溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
用移液枪量取180μL的检测试剂于96孔板中,分别加入20μL的50μM不同潜在干扰物,包括甘氨酸、β-丙氨酸、L-谷氨酰胺、L-精氨酸、L-苯丙氨酸、色氨酸、脯氨酸、氨水、氯化铵、尿素、肼、苯胺、丙烯酰胺、乙醇胺、乙胺、H2O2、NaNO2、KClO4、汽油、煤油、柴油、香水、花露水等,3s后在室内光源条件下使用数码相机拍摄比色照片,在暗场条件,468nm蓝光条件下拍摄荧光照片。从数码照片可以看出,双模试剂仅在乙二胺存在时,颜色由无色变为黄色,荧光从无到绿色荧光,其他干扰物均不响应,证明双模试剂均有良好的选择性。
实施例6
a、首先配置强碱溶液,将强碱为氢氧化钠溶解在溶剂为乙酸乙酯中,配置成氢氧化钠质量浓度为1.5%的混合液;
b、室温下,将500mmol邻乙酰基苯甲醛和500mmol十二硫醇溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的200μM乙二胺甲醇标准液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,通过对比反应前后谱图可以看出,468nm处出现了明显的吸收峰,对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂由无色变为了黄色;用荧光光谱仪进行荧光发射光谱扫描,通过对比反应前后谱图可以看出,在525nm处出现了明显的荧光发射峰,在暗场环境下对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂的荧光由无到绿色荧光,通过颜色变化和荧光变化共同判断试剂检测出乙二胺。
实施例7
a、首先配置强碱溶液,将强碱为氢氧化钠溶解在溶剂为二氯甲烷中,配置成氢氧化钠质量浓度为3%的混合液;
b、室温下,将25mmol邻乙酰基苯甲醛和35mmol巯基丁二酸溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的60μM乙二胺甲醇标准液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,通过对比反应前后谱图可以看出,468nm处出现了明显的吸收峰,对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂由无色变为了黄色;用荧光光谱仪进行荧光发射光谱扫描,通过对比反应前后谱图可以看出,在525nm处出现了明显的荧光发射峰,在暗场环境下对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂的荧光由无到绿色荧光,通过颜色变化和荧光变化共同判断试剂检测出乙二胺。
实施例8
a、首先配置强碱溶液,将强碱为氢氧化钙溶解在溶剂为二氯甲烷中,配置成氢氧化钙质量浓度为2%的混合液;
b、室温下,将1mmol 2,3-萘二甲醛和8mmol十二硫醇溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的300μM乙二胺甲醇标准液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,通过对比反应前后谱图可以看出,468nm处出现了明显的吸收峰;对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂由无色变为黄色;用荧光光谱仪进行荧光发射光谱扫描,通过对比反应前后谱图可以看出,在525nm处出现了明显的荧光发射峰,在暗场环境下对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂的荧光由无变为绿色荧光,通过颜色变化和荧光变化共同判断试剂检测出乙二胺。
实施例9
a、首先配置强碱溶液,将强碱为氢氧化钠溶解在溶剂为体积比为3:7的二氯甲烷和乙酸乙酯的混合物中,配置成氢氧化钠质量浓度为5%的混合液;
b、室温下,将20mmol邻乙酰基苯甲醛和1mmol丙烯基硫醇溶解在步骤a配制的1000mL混合溶液中,搅拌20min,即得到比色和荧光点亮双模检测乙二胺的试剂。
将配置好的检测试剂量取1.8mL置于石英比色皿中,再加入已配制的50μM乙二胺甲醇标准液200μL,用紫外-可见分光光度计进行紫外-可见吸收光谱扫描,通过对比反应前后谱图可以看出,468nm处出现了明显的吸收峰;对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂由无色变为黄色;用荧光光谱仪进行荧光发射光谱扫描,通过对比反应前后谱图可以看出,在525nm处出现了明显的荧光发射峰,在暗场环境下对反应前后的试剂进行直接拍照,对比反应前后试剂照片可以看出反应后试剂的荧光由无变为绿色荧光,通过颜色变化和荧光变化共同判断试剂检测出乙二胺。
虽然上述实施方式描述了本发明,应当理解的是,在不违背本发明的精神的前提下,本发明中的试剂组分比例可以调动,用于其它领域中的乙二胺测试同样适用,且这些变动同样属于本发明的范围。

Claims (1)

1.一种快速比色和荧光点亮双模检测乙二胺的试剂,其特征在于该试剂由邻苯二甲醛类化合物、强碱、巯基类化合物和溶剂构成,其中:
邻苯二甲醛类化合物为邻苯二甲醛、2,3-萘二甲醛或邻乙酰基苯甲醛,邻苯二甲醛类化合物在试剂中的含量为1 mM-500 mM;
强碱为氢氧化钠、氢氧化钾或氢氧化钙,强碱质量浓度为0.1%-5%;
巯基类物质为十二硫醇、巯基乙酸苄酯、巯基丁二酸、3-巯基丙酸或丙烯基硫醇,巯基类化合物在试剂中的含量为1 mM-500 mM;
溶剂为超纯水、二氯甲烷、甲醇、乙酸乙酯中的一种或任意两种溶剂的混合物;
具体操作按下列步骤进行:
a、首先配置强碱溶液,将强碱为氢氧化钠、氢氧化钾或氢氧化钙溶解在溶剂为超纯水、二氯甲烷、甲醇、乙酸乙酯中的一种或任意两种溶剂的混合物中,配置成强碱质量浓度为0.1%-5%的混合液;
b、将邻苯二甲醛类化合物和巯基类物质溶解在步骤a配制的混合溶液中,搅拌20 min,即得到比色和荧光点亮双模检测乙二胺的试剂。
CN202110167358.3A 2021-02-07 2021-02-07 一种快速比色和荧光点亮双模检测乙二胺的试剂 Active CN112964705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110167358.3A CN112964705B (zh) 2021-02-07 2021-02-07 一种快速比色和荧光点亮双模检测乙二胺的试剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110167358.3A CN112964705B (zh) 2021-02-07 2021-02-07 一种快速比色和荧光点亮双模检测乙二胺的试剂

Publications (2)

Publication Number Publication Date
CN112964705A CN112964705A (zh) 2021-06-15
CN112964705B true CN112964705B (zh) 2022-06-03

Family

ID=76275099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110167358.3A Active CN112964705B (zh) 2021-02-07 2021-02-07 一种快速比色和荧光点亮双模检测乙二胺的试剂

Country Status (1)

Country Link
CN (1) CN112964705B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503147A (en) * 1981-10-22 1985-03-05 Kikkoman Corporation Monomethylamine-oxidizing enzyme
CA2039702A1 (en) * 1989-08-21 1991-02-22 Janos M. Varga Immobilisation of ligands by radio-derivatized polymers
CN101050247A (zh) * 2007-04-21 2007-10-10 中国科学院新疆理化技术研究所 苯乙烯马来酸酐酯化物及其制备方法和用途
WO2010010242A2 (fr) * 2008-07-25 2010-01-28 Universite De Provence Aix Marseille 1 Kit de détection de groupements fonctionnels carboxyliques, thiols et amines.
CN101793642A (zh) * 2009-12-17 2010-08-04 东北农业大学 豆酱中生物胺的分离和液相色谱柱柱前衍生化方法
FR2955668A1 (fr) * 2010-01-28 2011-07-29 Univ Provence Aix Marseille 1 Kit de detection de groupements fonctionnels carboxyliques
CN102146077A (zh) * 2011-01-13 2011-08-10 上海大学 芴并咪唑衍生物及其制备方法
CN103201626A (zh) * 2010-08-20 2013-07-10 伦敦大学玛丽皇后西域学院 蛋白质原位检测试剂
CN110790863A (zh) * 2019-12-05 2020-02-14 中国科学院新疆理化技术研究所 一种具有高透明和强酸碱稳定性能的水凝胶

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3052403A1 (en) * 2016-07-04 2018-01-11 Gary David Mcknight Novel technology to coat fertilizer and improve fertilizer efficiency and their associated methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503147A (en) * 1981-10-22 1985-03-05 Kikkoman Corporation Monomethylamine-oxidizing enzyme
CA2039702A1 (en) * 1989-08-21 1991-02-22 Janos M. Varga Immobilisation of ligands by radio-derivatized polymers
CN101050247A (zh) * 2007-04-21 2007-10-10 中国科学院新疆理化技术研究所 苯乙烯马来酸酐酯化物及其制备方法和用途
WO2010010242A2 (fr) * 2008-07-25 2010-01-28 Universite De Provence Aix Marseille 1 Kit de détection de groupements fonctionnels carboxyliques, thiols et amines.
CN101793642A (zh) * 2009-12-17 2010-08-04 东北农业大学 豆酱中生物胺的分离和液相色谱柱柱前衍生化方法
FR2955668A1 (fr) * 2010-01-28 2011-07-29 Univ Provence Aix Marseille 1 Kit de detection de groupements fonctionnels carboxyliques
CN103201626A (zh) * 2010-08-20 2013-07-10 伦敦大学玛丽皇后西域学院 蛋白质原位检测试剂
CN102146077A (zh) * 2011-01-13 2011-08-10 上海大学 芴并咪唑衍生物及其制备方法
CN110790863A (zh) * 2019-12-05 2020-02-14 中国科学院新疆理化技术研究所 一种具有高透明和强酸碱稳定性能的水凝胶

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Formation and instability of o-phthalaldehyde derivatives of amino acids;M.C.Garcia Alvarez-Coque;《Analytical Biochemistry》;19891231;第1-7页 *
分离检测生物活性物质的荧光标记试剂与分子探针及其应用;王红等;《化学进展》;20070524(第05期);第152-157页 *

Also Published As

Publication number Publication date
CN112964705A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Singh et al. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples
Yue et al. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green
Bose et al. Fluorescence spectroscopy and its applications: A Review
Yue et al. A green carbon dots-based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite–thiol reaction
Zhang et al. Dicyanovinyl-based fluorescent sensors for dual mechanism amine sensing
Li et al. Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food
CN110684525B (zh) 一种基于聚集诱导发光效应的比色-荧光探针及其制备方法和用途
Cao et al. Ratiometric fluorescent nanosystem based on upconversion nanoparticles for histamine determination in seafood
CN107024461A (zh) 一种荧光/比色双探针快速检测食品中亚硝酸盐的方法
Zhang et al. Combination of imine bond and samarium emitter enables turn-off fluorescence detection of hydrazine in vapor and water samples
Dey et al. FRET-based ‘ratiometric’molecular switch for multiple ions with efficacy towards real-time sampling and logic gate applications
Jiang et al. Smartphone-based dual inverse signal MOFs fluorescence sensing for intelligent on-site visual detection of malachite green
Yardımcı Spectrophotometric and smartphone-based facile green chemistry approach to determine nitrite ions using green tea extract as a natural source
CN112964705B (zh) 一种快速比色和荧光点亮双模检测乙二胺的试剂
CN117659999A (zh) 一种双荧光信号检测铜离子含量的荧光传感器的制备方法及其使用方法
CN110412000B (zh) 基于十元瓜环检测l-色氨酸的荧光探针及其检测方法
CN116120918A (zh) 一种检测亚硝酸盐的双模态纳米探针及其制备方法与应用
CN103555334B (zh) 一种CdTe/ZnS核壳量子点及其制备方法与应用
CN106518792A (zh) 一种氰离子荧光传感器分子及其合成和应用
CN108956595B (zh) 一种高稳定快速比色检测铵根的试剂
Li et al. Facile synthesis of highly luminescent rod-like terbium-based metal–organic frameworks for sensitive detection of olaquindox
CN115015209A (zh) 一种测定水样中土霉素的荧光分析方法
KR102613289B1 (ko) 아세테이트 착물 및 아세테이트 정량화 방법
CN109632736A (zh) 一种检测马兜铃酸a荧光传感器的制备方法
Qi et al. Fluorescent silica nanoparticle-based probe for the detection of ozone via fluorescence resonance energy transfer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant