CN112960979A - 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法 - Google Patents

一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法 Download PDF

Info

Publication number
CN112960979A
CN112960979A CN202110212307.8A CN202110212307A CN112960979A CN 112960979 A CN112960979 A CN 112960979A CN 202110212307 A CN202110212307 A CN 202110212307A CN 112960979 A CN112960979 A CN 112960979A
Authority
CN
China
Prior art keywords
temperature
thermistor material
slurry
powder
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110212307.8A
Other languages
English (en)
Other versions
CN112960979B (zh
Inventor
高博
陈肖伊
李晓卉
康鑫
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN202110212307.8A priority Critical patent/CN112960979B/zh
Publication of CN112960979A publication Critical patent/CN112960979A/zh
Application granted granted Critical
Publication of CN112960979B publication Critical patent/CN112960979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法,该热敏电阻材料是将二氧化锆分别与三氧化二钬或三氧化二镧按照化学计量比混合,经过湿法球磨、冷等静压成型、高温烧结,即可得到锆酸盐体系高温负温度系数热敏电阻材料,该材料电性能参数为B500℃/1500℃=11281‑16706K±1.65%,ρ1500℃=1.06‑2.63×103Ω·cm±1.4%,在温度区间500℃‑1500℃内具有明显的负温度系数特性,材料电性能稳定,一致性好,老化性能稳定,对氧分压不敏感,是适合制造用于高温测量以及不同氧气氛下温度监控的热敏电阻材料。

Description

一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法
技术领域
本发明涉及一种锆酸盐体系高温负温度系数热敏电阻材料,该热敏电阻材料在500℃-1500℃范围内具有明显的负温度系数特性和氧分压不敏感特性,属于半导体传感器领域。
背景技术
随着深海探索、军事和航空航天、汽车电子工业的蓬勃发展,对具有高精度并能承受恶劣环境的传感、监控和控制系统的敏感元器件需求不断增长,材料在极端环境下应用也越来越多。作为热敏元器件之一,NTC(negative temperature coefficient)热敏电阻有着随着温度的升高,电阻呈指数下降的特性。在制造温度传感器、温度补偿、稳压、超高频率检测设备,金属热电偶,抑制浪涌电流等方面,具有很大的发展潜力。然而传统的尖晶石型NTC适用温度范围为-60-300℃,在高温下相结构及其不稳定,温度300℃以上长期使用会出现显著老化现象,不能实现精准测量。钙钛矿结构的热敏电阻材料在温度800℃及以上高温环境下长期应用相结构会发生变化,电阻率漂移严重,高温相稳定性仍有待提高。因此,开发出更高应用温度的新型高温NTC材料成为热敏材料研究的热点。
开发高温NTC热敏电阻材料的关键的挑战是,此类材料必须具在高温、高压和严重氧化/腐蚀的恶劣环境下仍然保持稳定的物理、化学和热性能。然而传统的尖晶石型NTC适用温度范围为-60-300℃,在高温下相结构及其不稳定,温度300℃以上长期使用会出现显著老化现象,不能实现精准测量。钙钛矿结构的热敏电阻材料在温度800℃及以上高温环境下长期应用由于元素挥发,晶界副反应等导致相结构会发生变化,电阻率漂移严重,高温相稳定性仍有待提高。另外,已知大多数报道的材料的最高温度上限只有温度800℃,少数材料能达到1000℃。同时,当温度上升到温度上限时电阻仅有数十欧姆,限制了它们在高温环境中的实际应用,此外,这些材料还存在老化特性差以及电学性能易受富氧环境影响,提高热敏电阻材料在更高温度下的老化寿命以及氧气氛下的稳定性是迫切需要解决的问题。
发明内容
本发明的目的在于,提供一种锆酸盐体系高温负温度系数热敏电阻材料,该热敏电阻材料是将二氧化锆分别与三氧化二钬或三氧化二镧按照化学计量比混合,经过湿法球磨、冷等静压成型、高温烧结,即可得到锆酸盐体系高温负温度系数热敏电阻材料,该材料电性能参数为B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%,在温度区间500℃-1500℃内具有明显的负温度系数特性,材料电性能稳定、一致性好、老化性能稳定、对氧分压不敏感,是适合制造用于高温测量以及不同氧气氛下温度监控的热敏电阻材料。
本发明所述的一种锆酸盐体系高温负温度系数热敏电阻材料,该热敏电阻材料的化学通式为:A2Zr2O7,其中A=La或Ho,由原料二氧化锆与三氧化二钬或三氧化二镧混合烧制而成,具体操作按下列步骤进行:
a、按A2Zr2O7的组成,称取二氧化锆分别与三氧化二钬或三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1-2h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧6-7小时,得到烧绿石结构A2Zr207(A=La、Ho)粉体;
c、将步骤a中得到的粉体以15-25kg/cm2的压力进行压块成型,时间为1-2min,将成型的块体进行冷等静压,在压强为250-300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得热敏电阻材料;
d、将步骤c得到的热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1-2h,即得到电性能参数为:B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%的锆酸盐体系高温负温度系数热敏电阻材料。
一种锆酸盐高温负温度系数热敏电阻材料的制备方法,按下列步骤进行:
a、按A2Zr2O7的组成,称取二氧化锆分别与三氧化二钬或三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1-2h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧6-7小时,得到烧绿石结构A2Zr207(A=La、Ho)粉体;
c、将步骤a中得到的粉体以15-25kg/cm2的压力进行压块成型,时间为1-2min,将成型的块体进行冷等静压,在压强为250-300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得热敏电阻材料;
d、将步骤c得到的热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1-2h,即得到电性能参数为:B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%的锆酸盐体系高温负温度系数热敏电阻材料。
本发明所述的锆酸盐体系高温负温度系数热敏电阻材料,该热敏电阻材料是将二氧化锆分别与三氧化二钬或三氧化二镧按照A2Zr207(A=La、Ho)化学计量比混合,经过湿法球磨、冷等静压成型、高温烧结,即可得到锆酸盐体系材料,该体系材料电性能参数为B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%。可通过改变A位阳离子,从而得到一系列的A2Zr2O7型高温负温度系数热敏电阻材料。
本发明所述的锆酸盐体系高温负温度系数热敏电阻材料,该热敏电阻材料其创新点主要有:
(1)本发明所获得的锆酸盐体系A2Zr207(A=La、Ho)高温负温度系数热敏电阻材料在较高的温度范围500℃-1500℃内具有典型的NTC特性,在高温环境中性能稳定。
(2)该材料电阻率几乎与氧分压的变化无关,且在高温环境下也能保持较高的电阻率,依然达到千欧级别,有利于其在高温环境的实际应用。
该材料电性能稳定、一致性好、老化性能稳定、对氧分压不敏感,是适合制造用于高温测量以及不同氧气氛下温度监控的热敏电阻材料。
附图说明
图1为本发明A2Zr207(A=La、Ho)材料的电阻率与温度的关系图。
图2为本发明A2Zr207(A=La、Ho)材料的电阻率与氧分压的关系图。
具体实施方式
实施例1
a、按La2Zr2O7的组成,称取二氧化锆与三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧6小时,得烧绿石结构La2Zr207粉体;
c、将步骤b中得到的粉体以15kg/cm2的压力进行压块成型,时间为1min,将成型的块体进行冷等静压,在压强为250MPa保压3min,然后将块体在温度1600℃下烧结10h,即得到La2Zr207高温负温度系数热敏电阻材料;
d、将步骤c得到的La2Zr207高温负温度系数热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火2h,即得到电性能参数为:B500℃/1500℃=16982K,ρ1500℃=1.045×103Ω·cm的La2Zr207高温负温度系数热敏电阻材料。
实施例2
a、按La2Zr2O7的组成,称取二氧化锆与三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨2h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧7小时,得烧绿石结构La2Zr207粉体;
c、将步骤b中得到的粉体以20kg/cm2的压力进行压块成型,时间为2min,将成型的块体进行冷等静压,在压强为300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得到La2Zr207高温负温度系数热敏电阻材料;
d、将步骤c得到的La2Zr207高温负温度系数热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1h,即得到电性能参数为:B500℃/1500℃=16430K,ρ1500℃=1.075×103Ω·cm的La2Zr207高温负温度系数热敏电阻材料。
实施例3
a、按Ho2Zr2O7的组成,称取二氧化锆与三氧化二钬进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1h,得到粉体;
b、将步骤a中得到的粉体在1400℃下煅烧7小时,得烧绿石结构的Ho2Zr2O7粉体;
c、将步骤b中得到的粉体以18kg/cm2的压力进行压块成型,时间为1min,将成型的块体进行冷等静压,在压强为280MPa保压3min,然后将块体在温度1600℃下烧结10h,即得到Ho2Zr2O7高温负温度系数热敏电阻材料;
d、将步骤c得到的Ho2Zr2O7高温负温度系数热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1h,即得到电性能参数为:B500℃/1500℃=11094K,ρ1500℃=2.67×103Ω·cm的Ho2Zr2O7高温负温度系数热敏电阻材料。
实施例4
a、按Ho2Zr2O7的组成,称取二氧化锆与三氧化二钬进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨2h,得到粉体;
b、将步骤a中得到的粉体在1400℃下煅烧6小时,得烧绿石结构的Ho2Zr2O7粉体;
c、将步骤b中得到的粉体以22kg/cm2的压力进行压块成型,时间为2min,将成型的块体进行冷等静压,在压强为300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得到Ho2Zr2O7高温负温度系数热敏电阻材料;
d、将步骤c得到的Ho2Zr2O7高温负温度系数热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火2h,即得到电性能参数为:B500℃/1500℃=11467K,ρ1500℃=2.59×103Ω·cm的Ho2Zr2O7高温负温度系数热敏电阻材料。
实施例5
将实施例1-4获得的任意一种锆酸盐系负温度系数热敏电阻材料,通过改变A位阳离子,从而得到锆酸盐型高温负温度系数热敏电阻材料。材料制备方法简单、体积小、电性能稳定、一致性好、老化性能稳定、对氧分压不敏感,是两种适合制造用于高温测量以及不同氧气氛下温度监控的热敏电阻材料。

Claims (2)

1.一种锆酸盐体系高温负温度系数热敏电阻材料,其特征在于,该热敏电阻材料的化学通式为:A2Zr2O7,其中A=La或Ho,由原料二氧化锆与三氧化二钬或三氧化二镧混合烧制而成,具体操作按下列步骤进行:
a、按A2Zr2O7的组成,称取二氧化锆分别与三氧化二钬或三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1-2h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧6-7小时,得到烧绿石结构A2Zr207(A=La、Ho)粉体;
c、将步骤a中得到的粉体以15-25kg/cm2的压力进行压块成型,时间为1-2min,将成型的块体进行冷等静压,在压强为250-300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得热敏电阻材料;
d、将步骤c得到的热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1-2h,即得到电性能参数为:B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%的锆酸盐体系高温负温度系数热敏电阻材料。
2.一种锆酸盐高温负温度系数热敏电阻材料的制备方法,其特征在于按下列步骤进行:
a、按A2Zr2O7的组成,称取二氧化锆分别与三氧化二钬或三氧化二镧进行混合,置于玛瑙球磨罐中,以分析纯无水乙醇为分散介质,湿磨12h,将湿磨后的浆料在温度150℃下烘干,取出研磨1-2h,得到粉体;
b、将步骤a中得到的粉体在温度1400℃下煅烧6-7小时,得到烧绿石结构A2Zr207(A=La、Ho)粉体;
c、将步骤a中得到的粉体以15-25kg/cm2的压力进行压块成型,时间为1-2min,将成型的块体进行冷等静压,在压强为250-300MPa保压3min,然后将块体在温度1600℃下烧结10h,即得热敏电阻材料;
d、将步骤c得到的热敏电阻材料正反两面涂覆铂浆电极,然后在温度900℃下退火1-2h,即得到电性能参数为:B500℃/1500℃=11281-16706K±1.65%,ρ1500℃=1.06-2.63×103Ω·cm±1.4%的锆酸盐体系高温负温度系数热敏电阻材料。
CN202110212307.8A 2021-02-25 2021-02-25 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法 Active CN112960979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110212307.8A CN112960979B (zh) 2021-02-25 2021-02-25 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110212307.8A CN112960979B (zh) 2021-02-25 2021-02-25 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法

Publications (2)

Publication Number Publication Date
CN112960979A true CN112960979A (zh) 2021-06-15
CN112960979B CN112960979B (zh) 2023-05-16

Family

ID=76286133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110212307.8A Active CN112960979B (zh) 2021-02-25 2021-02-25 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法

Country Status (1)

Country Link
CN (1) CN112960979B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101699A1 (en) * 2001-04-03 2004-05-27 Robert Vassen Heat insulating layer based on la2zr2o7 for high temperatures
CN101033078A (zh) * 2007-02-01 2007-09-12 天津大学 La2Zr2O7基体Zr位掺杂的高电导率质子导体材料及其制备方法
CN102070335A (zh) * 2009-11-25 2011-05-25 中国科学院上海硅酸盐研究所 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
CN103396119A (zh) * 2013-08-25 2013-11-20 中国人民解放军国防科学技术大学 一种单相烧绿石型La2Zr2O7纳米粉体的制备方法
CN110218087A (zh) * 2019-07-05 2019-09-10 威海市科博乐汽车电子有限公司 负温度系数热敏电阻材料的制备方法
CN111548159A (zh) * 2020-05-16 2020-08-18 中国科学院新疆理化技术研究所 一种锆酸盐体系负温度系数热敏电阻材料及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040101699A1 (en) * 2001-04-03 2004-05-27 Robert Vassen Heat insulating layer based on la2zr2o7 for high temperatures
CN101033078A (zh) * 2007-02-01 2007-09-12 天津大学 La2Zr2O7基体Zr位掺杂的高电导率质子导体材料及其制备方法
CN102070335A (zh) * 2009-11-25 2011-05-25 中国科学院上海硅酸盐研究所 一种烧绿石结构稀土锆酸盐材料及其制备方法与应用
CN103396119A (zh) * 2013-08-25 2013-11-20 中国人民解放军国防科学技术大学 一种单相烧绿石型La2Zr2O7纳米粉体的制备方法
CN110218087A (zh) * 2019-07-05 2019-09-10 威海市科博乐汽车电子有限公司 负温度系数热敏电阻材料的制备方法
CN111548159A (zh) * 2020-05-16 2020-08-18 中国科学院新疆理化技术研究所 一种锆酸盐体系负温度系数热敏电阻材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘树信等: "原位合成La_2Zr_2O_7-YSZ复合材料及高温热稳定性研究", 《中国粉体技术》 *
王铀等: "新型锆酸盐基热障涂层材料的研究进展", 《中国表面工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880578A (zh) * 2021-11-05 2022-01-04 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法
CN113880578B (zh) * 2021-11-05 2022-11-01 宁波大学 一种高光学质量的Ho2Zr2O7磁光陶瓷的制备方法

Also Published As

Publication number Publication date
CN112960979B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN111548159A (zh) 一种锆酸盐体系负温度系数热敏电阻材料及制备方法
Sahoo et al. CaTiO 3 nano ceramic for NTCR thermistor based sensor application
WO2006032872A1 (en) Piezoelectric materials
CN110903087B (zh) 一种低b高阻型宽温区高温热敏电阻材料及其制备方法和应用
Song et al. Chemical Diffusivity of BaTiO3− δ: IV, Acceptor‐Doped Case
CN112960979B (zh) 一种锆酸盐体系高温负温度系数热敏电阻材料及制备方法
CN110550947A (zh) 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
CN109133201A (zh) 基于多组分a位共掺杂镍基钙钛矿氧化物材料及使用方法
CN112876238B (zh) 一种锡酸盐体系负温度系数热敏电阻材料及其制备方法
Kozuka et al. Sr x La 1− x MnO 3: n-type oxides with phase stability at high temperatures in air
CN108863350B (zh) 一种钛酸铋基钙钛矿相热敏陶瓷复合材料及其制备方法和用途
Qu et al. Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO 3 perovskite-type NTC ceramic systems
CN112110727B (zh) 一种氟化物掺杂的高温负温度系数热敏电阻材料及制备方法
CN113956038A (zh) 一种铈掺杂钙钛矿型高温热敏陶瓷电阻材料及其制备方法
CN115894029B (zh) 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料
CN112939602B (zh) 一种钛酸盐体系负温度系数热敏电阻材料及制备方法
CN113004039A (zh) 一种钨青铜型高温热敏电阻材料及其制备方法
CN113979728A (zh) 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法
CN112759391A (zh) 一种镱掺杂ntc型高温热敏电阻陶瓷材料及其制备方法和应用
CN116023140B (zh) 基于高熵稀土锡酸盐的氧不敏感型负温度系数热敏材料
CN111484327B (zh) 一种温区和b值可调的锶、铈、铌和钨四元系热敏电阻材料及其制备方法
JPWO2020090309A1 (ja) サーミスタ焼結体および温度センサ素子
CN116947466A (zh) 一种高熵稀土铬酸盐高温型负温度系数热敏材料
CN114426431B (zh) 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法
CN116190024A (zh) 一种复合高温钙钛矿负温度系数热敏电阻及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant