CN114426431B - 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法 - Google Patents

一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法 Download PDF

Info

Publication number
CN114426431B
CN114426431B CN202210171239.XA CN202210171239A CN114426431B CN 114426431 B CN114426431 B CN 114426431B CN 202210171239 A CN202210171239 A CN 202210171239A CN 114426431 B CN114426431 B CN 114426431B
Authority
CN
China
Prior art keywords
ceramic material
oxygen
layered structure
deficient perovskite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210171239.XA
Other languages
English (en)
Other versions
CN114426431A (zh
Inventor
张惠敏
秦晴
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN202210171239.XA priority Critical patent/CN114426431B/zh
Publication of CN114426431A publication Critical patent/CN114426431A/zh
Application granted granted Critical
Publication of CN114426431B publication Critical patent/CN114426431B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法,该材料是采用三氧化二钇,三氧化二钐,碳酸钡,四氧化三钴经混合球磨、预烧、研磨、等静压成型、高温烧结,即得到有序缺氧型钙钛矿层状Y‑Sm‑Ba‑Co‑O材料体系,并进行了电阻测试,结果表明:其电阻率ρ60K=3×105‑8×105Ω·cm,其材料常数B40/180=688‑826K。该材料体系可用于40‑180K的深低温温区。

Description

一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法
技术领域
本发明涉及一种用于深低温的有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法。
背景技术
负温度系数(NTC)热敏电阻是利用材料的电阻率随温度变化的敏感程度所具有的特性而制成的器件,其电阻随着温度的升高而降低,NTC热敏电阻也广泛的应用于电路和电子元件的保护以及流速,射线测量仪器与应用领域。深低温用NTC热敏电阻也常常被用于深空探测方面,在红外遥感器方面,可以通过低温制冷对电子的能级跃迁产生抑制,可以失实现高灵敏度的探测;在大型科学仪器、量子通讯方、超导电子学、低温半导体电子学等等领域广泛应用。
近年来,为了制得低温高性能NTC热敏电阻,科技工作者也开发一些新的材料,如有序缺氧型钙钛矿Ln-Ba-Co-O,该结构由平行于(010)的单层角共CoO6八面体组成,它们主要通过沿a→的角共CoO5金字塔的双带进行相互连接,Co原子位于八面体位置和位于金字塔位置的氧原子以及阴离子空位排列有序。
以尖晶石结构为主的NTC热敏陶瓷材料,相对来说室温电阻率会偏大并且电阻值不容易调控,因为这些过渡金属氧化物的挥发温度比较低,所以在制备和烧结的过程中比较容易产生原材料的成分的挥发,重复性较低。除此之外,降低尖晶石结构的电阻率,导致温度系数降低。从尖晶石的结构角度分析,尖晶石结构的八面体和四面体的阳离子都会随时间的变化从而缓慢变化,重新排布也会引起结构弛豫现象的产生,致使热敏陶瓷的不稳定性,从而导致材料的老化,影响材料的性能和使用寿命。
常用的NTC热敏电阻中,热敏电阻主要是利用锰,钴,镍,镁和铜等两种或者两种以上的过渡金属的氧化物所组成,通过制备和烧结等工艺从而制成半导体陶瓷电阻,如在中国发明专利CN006667B公布的Co-Fe-O陶瓷系列体系,这些热敏陶瓷体系的组成都是至少含有两种或者两种以上的过渡金属的氧化物,并且以尖晶石的立方结构为主相。
发明内容
本发明的目的是,提供一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法,该材料是采用三氧化二钇,三氧化二钐,碳酸钡,四氧化三钴经混合球磨、预烧、研磨、等静压成型、高温烧结,即得到层状Y-Sm-Ba-Co-O材料体系,并进行了电阻测试,结果表明:其电阻率ρ60K=3×105-8×105Ω·cm,其材料常数B40/180=688-826K。该材料体系可用于40-180K的深低温温区。
本发明所述的一种有序缺氧型钙钛矿层状结构热敏陶瓷材料,该材料的组成为Y-Sm-Ba-Co-O,采用高温固相法制成,具体操作按下列步骤进行:
a、按重量百分比将Y2O3:Sm2O3:BaCO3:Co3O4=5%-20%:5%-20%:15%-25%:60%-50%进行准确称量,采用球磨法研磨12-24h,于温度700-1100℃下预烧1-6h,得到粉体;
b、将步骤a预烧后的粉体研磨6-12h,并在300-350Mpa等静压1-5min,得到坯体;
c、将步骤b获得的坯体在温度1100-1300℃烧结1-6h,即得到有序缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
一种有序缺氧型钙钛矿层状结构热敏陶瓷材料的制备方法,按下列步骤进行:
a、按重量百分比Y2O3:Sm2O3:BaCO3:Co3O4=5%-20%:5%-20%:15%-25%:60%-50%进行准确称量,采用球磨法研磨12-24h,于温度700-1100℃下预烧1-6h,得到粉体;
b、将步骤a预烧后的粉体研磨6-12h,并在300-350Mpa等静压1-5min,得到坯体;
c、将步骤b获得的坯体在温度1100-1300℃烧结1-6h,即得到有序缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
本发明所述的一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法,所涉及的NTC热敏材料组成为Y-Sm-Ba-Co-O,是由于Y3+和Ba2+阳离子呈一定比列排列,沿c排列成交替层,氧空位位于Y3+层的水平面,形成六边隧道,这种结构非常灵活,因此它可以接受可变数量的氧气,它导致了长程和短程超结构的形成。
本发明所述的一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法,是由[CoO2]-[BaO]-[CoO2]-[YOδ]层状结构组成,其中的Co离子Co3+在低温(T<150K)时,会出现铁磁磁耦合现象,Co3+离子也会驱动铁磁的有序性产生,在40K下反铁磁基质中,超顺铁磁的形成和钴离子的种类有关,Co3+在低温下处于低自旋状态(LS),O-2P轨道和Co-3d轨道之间存在较强的极化费米能级,费米能级附近电荷的转移隙较窄,温度降低也会导致近LS中的部分Co离子发生持续的跃迁,以Y-Ba-Co-O为基底,因为Co本身的满足深低温热敏电阻的一些性能可以调节材料的室温电阻率和温度常数,并且不同半径的离子的引入也会影响材料的烧结性。
本发明所述的一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法,其优点和特色主要表现在:是一种很有特色的缺氧型双层状类钙钛矿结构,结构层之间可以接受可变数量的氧气,灵活度很高,可以调控氧气对周围离子的影响,容易实现低温目标。缺氧型钙钛矿层状材料,材料常数和低温下的电阻率可以通过改变掺杂离子而获得。
附图说明
图1为Y-Sm-Ba-Co-O材料的SEM图。
具体实施方式
实施例1
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 5%,Sm2O3 20%,BaCO3 25%,Co3O4 50%,进行准确称量,采用球磨法研磨12h于温度1100℃下预烧1h,得到粉体;
b、将步骤a预烧后的粉体研磨12h,并在300Mpa等静压5min,得到坯体;
c、将步骤b获得的坯体在温度1100℃烧结6h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极进行电阻测试,其电阻率ρ60K=8×105Ω·cm,材料常数B40/180=826K。
实施例2
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 8%,Sm2O3 17%,BaCO3 17%,Co3O4 58%,进行准确称量,采用球磨法研磨14.4h,于温度1020℃下预烧2h,得到粉体;
b、将步骤a预烧后的粉体研磨10.8h,并在310Mpa等静压4.2min,得到坯体;
c、将步骤b获得的坯体在温度1140℃烧结5h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极并进行电阻测试,其电阻率ρ60K=6×105Ω·cm,其材料常数B40/180=823K。
实施例3
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 11%,Sm2O3 14%,BaCO3 19%,Co3O4 56%,进行准确称量,采用球磨法研磨16.8h,于温度940℃下预烧3h,得到粉体;
b、将步骤a预烧后的粉体研磨9.6h,并在320Mpa等静压3.4min,得到坯体;
c、将步骤b获得的坯体在温度1180℃烧结4h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极,并进行电阻测试,其电阻率ρ60K=4.7×105Ω·cm,其材料常数B40/180=790K。
实施例4
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 14%,Sm2O3 11%,BaCO3 21%,Co3O4 54%,进行准确称量,采用球磨法研磨19.2h,于温度860℃下预烧4h,得到粉体;
b、将步骤a预烧后的粉体研磨8.4h,并在330Mpa等静压2.6min,得到坯体;
c、将步骤b获得的坯体在温度1220℃烧结3h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极进行电阻测试,其电阻率ρ60K=3.4×105Ω·cm,其材料常数B40/180=760K。
实施例5
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 17%,Sm2O3 8%,BaCO3 23%,Co3O4 52%,进行准确称量,采用球磨法研磨21.6h,于温度780℃下预烧5h,得到粉体;
b、将步骤a预烧后的粉体研磨7.2h,并在340Mpa等静压1.8min,得到坯体;
c、将步骤b获得的坯体在温度1260℃烧结2h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极进行电阻测试,其电阻率ρ60K=3.2×105Ω·cm,材料常数B40/180=724K。
实施例6
a、将Y2O3、Sm2O3、BaCO3和Co3O4按重量百分比Y2O3 20%,Sm2O3 5%,BaCO3 15%,Co3O4 60%,进行准确称量,采用球磨法研磨小24h,于温度700℃下预烧6h,得到粉体;
b、将步骤a预烧后的粉体研磨6h,并在350Mpa等静压1min,得到坯体;
c、将步骤b获得的坯体在温度1300℃烧结1h,即得到缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
将烧结缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料进行涂覆电极,并进行电阻测试,其电阻率ρ60K=3×105Ω·cm,材料常数B40/180=688K。

Claims (2)

1.一种有序缺氧型钙钛矿层状结构热敏陶瓷材料,其特征在于该材料的组成为Y-Sm-Ba-Co-O,采用高温固相法制成,具体操作按下列步骤进行:
a、按重量百分比将Y2O3:Sm2O3: BaCO3:Co3O4 =5%-20%:5%-20%:15%-25%:60%-50%进行准确称量,采用球磨法研磨12-24h,于温度700-1100℃下预烧1-6h,得到粉体;
b、将步骤a预烧后的粉体研磨6-12h,并在300-350Mpa等静压1-5min,得到坯体;
c、将步骤b获得的坯体在温度1100-1300℃烧结1-6h,即得到有序缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
2.一种有序缺氧型钙钛矿层状结构热敏陶瓷材料的制备方法,其特征在于按下列步骤进行:
a、按重量百分比Y2O3:Sm2O3: BaCO3:Co3O4 =5%-20%:5%-20%:15%-25%:60%-50%进行准确称量,采用球磨法研磨12-24h,于温度700-1100℃下预烧1-6h,得到粉体;
b、将步骤a预烧后的粉体研磨6-12h,并在300-350Mpa等静压1-5min,得到坯体;
c、将步骤b获得的坯体在温度1100-1300℃烧结1-6h,即得到有序缺氧型钙钛矿Y-Sm-Ba-Co-O层状结构热敏陶瓷材料。
CN202210171239.XA 2022-02-24 2022-02-24 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法 Active CN114426431B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210171239.XA CN114426431B (zh) 2022-02-24 2022-02-24 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210171239.XA CN114426431B (zh) 2022-02-24 2022-02-24 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN114426431A CN114426431A (zh) 2022-05-03
CN114426431B true CN114426431B (zh) 2023-02-24

Family

ID=81312561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210171239.XA Active CN114426431B (zh) 2022-02-24 2022-02-24 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN114426431B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106255A (ja) * 1997-09-30 1999-04-20 Kyocera Corp 誘電体磁器組成物およびその製造方法
US6503861B1 (en) * 1999-01-14 2003-01-07 Kyocera Corporation Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
CN1397959A (zh) * 2002-07-25 2003-02-19 华南理工大学 钛酸钡基电压非线性电阻及其制备方法
CN111116197A (zh) * 2020-01-03 2020-05-08 山东国瓷功能材料股份有限公司 一种铌酸钡体系微波介质陶瓷材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106255A (ja) * 1997-09-30 1999-04-20 Kyocera Corp 誘電体磁器組成物およびその製造方法
US6503861B1 (en) * 1999-01-14 2003-01-07 Kyocera Corporation Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
CN1397959A (zh) * 2002-07-25 2003-02-19 华南理工大学 钛酸钡基电压非线性电阻及其制备方法
CN111116197A (zh) * 2020-01-03 2020-05-08 山东国瓷功能材料股份有限公司 一种铌酸钡体系微波介质陶瓷材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Effects of La3+ doping on the crystal structures, densities, microstructures and thermosensitive characteristics of the LaxBa1−xCoO3−δ (0 ≤ x ≤ 0.1) ceramics for low temperature NTC resistances";Zhenhua Hu 等;《J Mater Sci: Mater Electron》;20171231;第17606-17610页 *

Also Published As

Publication number Publication date
CN114426431A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN112876232B (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN101544493A (zh) 一种ntc电阻材料及制作方法
CN104987059B (zh) 一种基于氧化铜的新型ntc热敏电阻材料
WO2021065541A1 (ja) 温度センサ素子および温度センサ素子の製造方法
KR101260048B1 (ko) 전도성 입자가 분산된 부온도계수(ntc) 필름 및 이의 제조방법
EP3696827B1 (en) Thermistor sintered body and temperature sensor element
CN114426431B (zh) 一种有序缺氧型钙钛矿层状结构热敏陶瓷材料及制备方法
EP0799808A1 (en) Semiconducting ceramic compounds having negative resistance-temperature characteristics with critical temperatures
Yao et al. Effect of La2O3 addition on copper‐nickel manganese thermistors for low‐temperature applications
Qu et al. Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO 3 perovskite-type NTC ceramic systems
CN117897783A (zh) 温度传感器元件及温度传感器
EP1597738B1 (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JP3331447B2 (ja) サーミスタ用磁器組成物の製造方法
Chanel et al. Microstructure and electrical properties of Ni–Zn manganite ceramics
CN113979728A (zh) 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法
Yuan et al. Electrical Properties of Sr1–xB ixFe0. 6Sn0. 4O3 Thermistor Ceramics
Park et al. Effect of Al~ 2O~ 3 Addition on the Microstructure and the Electrical Stability of MnNiCoO~ 4 NTC Thermistors
JPWO2020090489A1 (ja) サーミスタ焼結体および温度センサ素子
CN116655367B (zh) 一种负温度系数热敏陶瓷材料及其制备方法
JPH05129667A (ja) 熱電半導体素子とその製造方法
Zheng et al. Preparation of ultra-fine cobalt–nickel manganite powders and ceramics derived from mixed oxalate
JP3088039B2 (ja) 熱電半導体素子
Wiendartun et al. The effect of sintering temperature on electrical characteristics of Fe2TiO5/Nb2O5 ceramics for NTC thermistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant