CN113979728A - 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法 - Google Patents

一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法 Download PDF

Info

Publication number
CN113979728A
CN113979728A CN202111317592.6A CN202111317592A CN113979728A CN 113979728 A CN113979728 A CN 113979728A CN 202111317592 A CN202111317592 A CN 202111317592A CN 113979728 A CN113979728 A CN 113979728A
Authority
CN
China
Prior art keywords
powder
composite
temperature
yttrium oxide
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111317592.6A
Other languages
English (en)
Inventor
赵青
王晓峰
何东林
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN202111317592.6A priority Critical patent/CN113979728A/zh
Publication of CN113979728A publication Critical patent/CN113979728A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法,该方法以MnO2、Ni2O3、Co2O3、Y2O3为原料,经过高能球磨,添加不同分散剂而形成的复合粉体。经过混合球磨、预烧、再混合球磨,冷等静压成型、高温烧结、涂烧电极,即得到一种新型的材料常数为B100‑600℃=3900‑4580 K,温度100℃电阻率为32820‑77460Ω·cm的双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。采用本发明制备的复合热敏电阻材料性能稳定,一致性好。该热敏电阻材料在100‑700℃范围具有明显的负温度系数特性,适合制造高温热敏电阻器。

Description

一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的 制备方法
技术领域
本发明涉及一种双钙钛矿型结构与氧化钇复合结构的负温度系数热敏电阻材料的制备方法,该热敏陶瓷材料在100-700℃温度范围内具有明显的负温度系数特性,是一种适用于制造高温热敏电阻器的新型高温热敏电阻材料
背景技术
温度传感器在航空航天、家用电器、汽车、医疗器械、农业自动化等领域有着广泛的应用。最近,人们对探索热敏电阻应用的新型材料的负温度系数(NTC)行为越来越感兴趣。NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象的材料。负温度系数热敏电阻广泛应用于各种工业和家庭应用中,例如抑制浪涌电流、温度测量和控制以及补偿其他电路元件。为了满足人们在各种领域测温的需求,探索新型结构的热敏电阻材料研究对于热敏电阻的材料体系的丰富以及满足人们工业及日常生活的需求具有重要意义。
由Mn、CO、Ni组成的传统的尖晶石型热敏陶瓷材料具有热敏电阻具有可靠性好、灵敏度高、价格低廉、老化性能好等特点,已被广泛应用于日常生活中的电子设备和工业设备的温度传感与控制。但是它们的应用通常局限于300℃以下。而稀土氧化物Y2O3经常用于高温测量。通过复合的方式对材料进行改性研究是一种改性效果比较明显的方式。因此传统的尖晶石结构与Y2O3复合可以在不大幅度改变热敏电阻的热敏常数的同时还能大幅度提高电阻率。使其能够在高温区进行测温。应用高能球磨技术可以获得混合均匀的超细粉体,加入分散剂后可获得粒度均匀烧结活性高的复合材料粉体,经过烧结成型后的陶瓷材料具有致密度高、性能稳定的特点,因此,经过高能球磨技术可以制备出一致性良好的热敏芯片,适合批量化生产制造。
发明内容
本发明的目的在于,提供一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法,该方法材料结构由双钙钛矿相和氧化钇相组成,通过二氧化锰、三氧化二镍、三氧化二钴、氧化钇为原料,经混合球磨、预烧、再混合球磨,冷等静压成型、高温烧结、涂烧电极,即可得到新型复合材料,其材料热敏常数B100-600℃的范围为3900-4580K,温度100℃电阻率的范围为32820-77460Ω·cm。通过本发明所述方法制备的双钙钛矿型与氧化钇复合结构的负温度系数热敏复合陶瓷材料具有负温度系数特性,材料体系的电性能稳定,一致性良好,适合制造高温热敏电阻器。
本发明所述的一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法,以MnO2、Ni2O3、Co2O3和Y2O3为原料,经过高能球磨,添加分散剂而形成的复合粉体,具体操作按下列步骤进行:
a、按摩尔比8-10:1-3:1-3将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨4-10h,粉体及球磨介质的质量比为1-2:5-7,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度900-1050℃煅烧2-5h,得到MnxCoyNizO4粉体,其中x+y+z=3;
c、按摩尔比6-8:2-4将原料Y2O3与步骤b得到的MnxCoyNizO4准确称量,再次置于高能球磨机中均匀混合研磨4-10h,得到复合相粉体,然后加入质量比1-2%的分散剂三乙醇胺、马来酸-丙烯酸共聚物或聚丙烯酸铵,再次置于高能球磨机中均匀混合研磨6h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度70-120℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨20-50min,得到复合粉体;
e、将步骤d得到的复合粉体称取0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为10-30MPa,保压时间30-90s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为250-350MPa,保压时间为180-300s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1280-1430℃,煅烧时间为5-15h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗1-4min,正反两面涂覆铂浆电极,在温度900℃下烧渗30-60min,即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
本发明所述的一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法,该方法通过高能球磨方法将低阻相的尖晶石相与氧化钇相制备成复合材料,可在较宽范围内调节材料的电阻值且对材料的B值影响相对较小,其材料热敏常数B100-600℃的范围为3900-4580K,温度100℃电阻率的范围为32820-77460Ω·cm,获得的复合热敏电阻材料体系适用于制造在中高温下环境应用的热敏电阻。
附图说明
图1为本发明的X射线衍射图谱以及Y2O3相和Y2CoMnO6相标准XRD图谱;
图2为本发明的热敏电阻阻温特性曲线。
具体实施方式
实施例1
a、按摩尔比8:3:1将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨7h,粉体及球磨介质的质量比为1:5,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度900℃煅烧2h,得到Mn1.5Co0.375Ni1.125O4粉体;
c、按摩尔比8:2将原料Y2O3与步骤b得到的Mn1.5Co0.375Ni1.125O4准确称量,再次置于高能球磨机中均匀混合研磨4h,得到复合相粉体,然后加入质量比1%的分散剂三乙醇胺,再次置于高能球磨机中均匀混合研磨6h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度70℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨20min,得到复合粉体;
e、称取步骤d得到的复合粉体0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为10MPa保压时间30s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为250MPa,保压时间为180s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1280℃,煅烧时间为10h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗1min,正反两面涂覆铂浆电极,在温度900℃下烧渗30min,即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
通过该方法获得的复合热敏电阻材料在温度为100℃下电阻率为41843Ω·cm,材料常数为B100-600℃=4036K。
实施例2
a、按摩尔比8:1:3将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨6h,粉体及球磨介质的质量比为1:6,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度950℃煅烧3h,得到Mn1.5Co1.125Ni0.375O4
c、按摩尔比7:3将原料Y2O3与步骤b得到的Mn1.5Co1.125Ni0.375O4准确称量,再次置于高能球磨机中均匀混合研磨6h,得到复合相粉体,然后加入质量比2%的分散剂马来酸-丙烯酸共聚物,再次置于高能球磨机中均匀混合研磨6h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度80℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨30min,得到复合粉体;
e、称取步骤d得到的复合粉体0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为20MPa保压时间50s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为280MPa,保压时间为200s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1330℃,煅烧时间为5h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗2min,正反两面涂覆铂浆电极,在温度900℃下烧渗40min即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
通过该方法获得的复合热敏电阻材料在温度为100℃下电阻率为32827Ω·cm,材料常数为B100-600℃=3906K。
实施例3
a、按摩尔比10:3:2将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨8h,粉体及球磨介质的质量比为2:5,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度1000℃煅烧4h,得到Mn1.5Co0.6Ni0.9O4粉体;
c、按摩尔比6:4将原料Y2O3与步骤b得到的Mn1.5Co0.6Ni0.9O4准确称量,再次置于高能球磨机中均匀混合研磨8h得到复合相粉体,并加入质量比2%的分散剂聚丙烯酸铵,再次置于高能球磨机中均匀混合研磨6h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度100℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨40min,得到复合粉体;
e、称取步骤d得到的复合粉体0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为30MPa保压时间70s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为320MPa,保压时间为250s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1380℃,煅烧时间为12h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗4min,正反两面涂覆铂浆电极,在温度900℃下烧渗50min即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
通过该方法获得的复合热敏电阻材料在温度为100℃下电阻率为126485Ω·cm,材料常数为B100-600℃=4468K。
实施例4
a、按摩尔比4:1:1将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨10h,粉体及球磨介质的质量比为1:7,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度1050℃煅烧5h,得到Mn1.5Co0.75Ni0.75O4粉体;
c、按摩尔比8:2将原料Y2O3与步骤b得到的Mn1.5Co0.75Ni0.75O4准确称量,再次置于高能球磨机中均匀混合研磨10h得到复合相粉体,然后加入质量比1%的分散剂三乙醇胺,再次置于高能球磨机中均匀混合研磨6h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度120℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨50min,得到复合粉体;
e、称取步骤d得到的复合粉体0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为30MPa保压时间90s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为350MPa,保压时间为300s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1430℃,煅烧时间为15h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗4min,正反两面涂覆铂浆电极,在温度900℃下烧渗60min即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
通过该方法获得的复合热敏电阻材料在温度为100℃下电阻率为90509Ω·cm,材料常数为B100-600℃=4574K。
通过高能球磨方法制备的复合材料热敏电阻由双钙钛矿相和Y2O3相两个相组成,其结果在图1中能够表现出来。

Claims (1)

1.一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法,其特征在于以MnO2、Ni2O3、Co2O3和Y2O3为原料,经过高能球磨,添加分散剂而形成的复合粉体,具体操作按下列步骤进行:
a、按摩尔比8-10:1-3:1-3将原料MnO2、Ni2O3和Co2O3准确称量,置于高能球磨机中研磨4-10h,粉体及球磨介质的质量比为1-2:5-7,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度900-1050℃煅烧2-5 h,得到MnxCoyNizO4粉体,其中x+y+z=3;
c、按摩尔比6-8:2-4将原料Y2O3与步骤b得到的MnxCoyNizO4准确称量,再次置于高能球磨机中均匀混合研磨4-10 h,得到复合相粉体,然后加入质量比1-2%的分散剂三乙醇胺、马来酸-丙烯酸共聚物或聚丙烯酸铵,再次置于高能球磨机中均匀混合研磨6 h得到复合相粉体;
d、将步骤c的复合相粉体放置于干燥箱中在温度70-120℃下烘干,将烘干后的粉体至于玛瑙研钵中研磨20-50min,得到复合粉体;
e、将步骤d得到的复合粉体称取0.5g,倒入直径为10mm的磨具中,并在液压机下压制成圆片生坯,压制条件为10-30 MPa,保压时间30-90s,得到快体;
f、将步骤e中得到的块体进行抽真空,然后放入冷等静压机中,压力为250-350MPa,保压时间为180-300s;
g、将步骤f得到的块体材料放入箱式炉中煅烧,煅烧温度为1280-1430℃,煅烧时间为5-15h,得到陶瓷片;
h、将步骤g得到的陶瓷片进行超声清洗1-4 min,正反两面涂覆铂浆电极,在温度900℃下烧渗30-60 min,即得到双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料。
CN202111317592.6A 2021-11-09 2021-11-09 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法 Pending CN113979728A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111317592.6A CN113979728A (zh) 2021-11-09 2021-11-09 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111317592.6A CN113979728A (zh) 2021-11-09 2021-11-09 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法

Publications (1)

Publication Number Publication Date
CN113979728A true CN113979728A (zh) 2022-01-28

Family

ID=79747304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111317592.6A Pending CN113979728A (zh) 2021-11-09 2021-11-09 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法

Country Status (1)

Country Link
CN (1) CN113979728A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773034A (zh) * 2022-05-30 2022-07-22 中国科学院新疆理化技术研究所 一种高稳定负温度系数热敏陶瓷材料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866472A2 (en) * 1997-03-19 1998-09-23 Denso Corporation Wide-range type thermistor element and method of producing the same
CN102476949A (zh) * 2011-11-10 2012-05-30 中国科学院过程工程研究所 一种低温制备电性能可控的氧化锌压敏电阻材料的方法
CN102568723A (zh) * 2012-01-09 2012-07-11 深圳顺络电子股份有限公司 负温度系数热敏电阻芯片、其电阻及其制作方法
CN103664141A (zh) * 2013-12-19 2014-03-26 深圳顺络电子股份有限公司 一种负温度系数热敏电阻芯片、热敏电阻以及其制备方法
CN104557040A (zh) * 2014-12-29 2015-04-29 中国科学院新疆理化技术研究所 一种高温热敏电阻材料及其制备方法
CN106278226A (zh) * 2016-08-17 2017-01-04 中国科学院新疆理化技术研究所 一种三元系负温度系数热敏电阻材料的制备方法
US20200131091A1 (en) * 2016-08-23 2020-04-30 Tdk Electronics Ag Ceramic Material, Component, and Method for Producing the Component
CN112811905A (zh) * 2020-05-07 2021-05-18 深圳市特普生科技有限公司 一种高温用负温度系数热敏电阻材料及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866472A2 (en) * 1997-03-19 1998-09-23 Denso Corporation Wide-range type thermistor element and method of producing the same
CN102476949A (zh) * 2011-11-10 2012-05-30 中国科学院过程工程研究所 一种低温制备电性能可控的氧化锌压敏电阻材料的方法
CN102568723A (zh) * 2012-01-09 2012-07-11 深圳顺络电子股份有限公司 负温度系数热敏电阻芯片、其电阻及其制作方法
CN103664141A (zh) * 2013-12-19 2014-03-26 深圳顺络电子股份有限公司 一种负温度系数热敏电阻芯片、热敏电阻以及其制备方法
CN104557040A (zh) * 2014-12-29 2015-04-29 中国科学院新疆理化技术研究所 一种高温热敏电阻材料及其制备方法
CN106278226A (zh) * 2016-08-17 2017-01-04 中国科学院新疆理化技术研究所 一种三元系负温度系数热敏电阻材料的制备方法
US20200131091A1 (en) * 2016-08-23 2020-04-30 Tdk Electronics Ag Ceramic Material, Component, and Method for Producing the Component
CN112811905A (zh) * 2020-05-07 2021-05-18 深圳市特普生科技有限公司 一种高温用负温度系数热敏电阻材料及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG SUN等: "Characterization of new negative temperature coefficient thermistors", 《JOURNAL OF ADVANCED CERAMICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773034A (zh) * 2022-05-30 2022-07-22 中国科学院新疆理化技术研究所 一种高稳定负温度系数热敏陶瓷材料的制备方法

Similar Documents

Publication Publication Date Title
CN107056273A (zh) 一种双层负温度系数热敏电阻及其制备方法
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
WO2019096335A1 (zh) 一种复合型热敏电阻材料及其制备方法和应用
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
Guan et al. LaCr1-xFexO3 (0≤ x≤ 0.7): a novel NTC ceramic with high stability
CN110903087B (zh) 一种低b高阻型宽温区高温热敏电阻材料及其制备方法和应用
CN105753474A (zh) 一种锶掺杂铬酸镧热敏电阻材料
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN110550947A (zh) 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
CN110451960A (zh) 一种钕掺杂的白钨矿结构负温度系数热敏电阻材料及其制备方法
CN104557040B (zh) 一种高温热敏电阻材料及其制备方法
CN113087495A (zh) 一种ntc热敏材料及其制备方法与应用
CN112876232A (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN113979728A (zh) 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法
CN112876238B (zh) 一种锡酸盐体系负温度系数热敏电阻材料及其制备方法
CN110372335A (zh) 一种锰镍铝钴基ntc热敏电阻材料及其制备方法
CN114773034B (zh) 一种高稳定负温度系数热敏陶瓷材料的制备方法
Qu et al. Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO 3 perovskite-type NTC ceramic systems
CN110317045A (zh) 一种锰镍铁钴基ntc热敏电阻材料及其制备方法
US20210317003A1 (en) Preparation method and application of Yb3+-doped high temperature thermistor materials
CN112851335B (zh) 一种类钙钛矿基复合高温热敏电阻材料及其制备方法
CN109293343B (zh) 负温度系数热磁复合敏感电阻材料及其制备方法
CN107365153A (zh) 一种高性能ntc热敏陶瓷材料及其制备方法与应用
CN107253859A (zh) 高发光热稳定性的Eu‑Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN113004039A (zh) 一种钨青铜型高温热敏电阻材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220128

WD01 Invention patent application deemed withdrawn after publication