CN112940208A - 一种具有囊泡型空腔的聚合物微球及其合成方法 - Google Patents

一种具有囊泡型空腔的聚合物微球及其合成方法 Download PDF

Info

Publication number
CN112940208A
CN112940208A CN201911261754.1A CN201911261754A CN112940208A CN 112940208 A CN112940208 A CN 112940208A CN 201911261754 A CN201911261754 A CN 201911261754A CN 112940208 A CN112940208 A CN 112940208A
Authority
CN
China
Prior art keywords
vesicle
vesicular
cavity
shaped cavity
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911261754.1A
Other languages
English (en)
Other versions
CN112940208B (zh
Inventor
金长子
王鑫
黄声骏
李姝颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911261754.1A priority Critical patent/CN112940208B/zh
Publication of CN112940208A publication Critical patent/CN112940208A/zh
Application granted granted Critical
Publication of CN112940208B publication Critical patent/CN112940208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请公开了一种具有囊泡型空腔的聚合物微球及其合成方法。所述聚合物微球包括间苯二酚‑甲醛树脂;所述聚合物微球的形貌为球形,内部具有囊泡型空腔。并公开了所述具有囊泡型空腔的聚合物微球的合成方法,至少包括以下步骤:获得包含低级烷醇、水、氨水、直链烷基胺、间苯二酚和甲醛的初始混合物,将所得的初始混合物置于25~35℃的反应温度范围中反应不少于16小时,所得固体产物即为所述具有囊泡型空腔的聚合物微球。该制备方法工艺简单,成本低廉,具有很强的实用性及良好的工业化应用前景。

Description

一种具有囊泡型空腔的聚合物微球及其合成方法
技术领域
本申请涉及一种具有囊泡型空腔的聚合物微球及其合成方法,属于材料合成领域。
背景技术
有机聚合物以及相对应的碳材料由于丰富的官能团、良好的化学稳定性以及巨大的比表面积等特点,在催化转化、吸附分离以及电化学领域都有着广泛的应用。将这些材料设计成特殊的构型,不但可以发挥材料自身的特点,还可能赋予材料一些新的功能性。
空腔结构或者空心球结构是一类特殊的材料构型,其内部特有的空腔结构能够为其它附加组分提供不同的化学环境,从而增强组分自身的表面电子、化学性质,构筑具有更强功效的复合材料。另外,此类空腔结构为客体分子提供了广阔的空间,在吸附分离、生物医药等领域都有上佳的表现,多年来,一直是材料领域研究的热点。相比于常规的空心球结构,空间尺寸略小的空腔对于客体分子往往具有更强的富集能力,而且其外表面的弯曲率更高,造成的化学环境扭曲更显著,对于构筑纳米微反应器、吸附材料或者药物载体更具有优势。目前,制备具有空腔的结构通常使用硬模板法。Fuertes等(Chem.Commun.,2012,48,6124)首先合成了SiO2@RF核壳结构,然后除去SiO2,得到碳空心球;Zhang等以聚合物球为硬模板合成了TiO2空心球(Angew.Chem.Int.Ed.,2014,53,12590);Arnal等采用SiO2球做硬模板合成了ZrO2空心球。这些材料合成过程的特点是必须使用牺牲模板,通过刻蚀或者焙烧的方法除掉模板,从而获得中空结构,导致繁琐的步骤和复杂的工艺,因此不适合大规模应用。因此,开发具有空腔结构材料的简易合成方法是本领域研究者们共同的目标。
发明内容
根据本申请的一个方面,提供了具有囊泡型空腔的聚合物微球,可作为吸附剂,用于脱除水溶液中的亚甲基蓝;也可作为催化剂载体,用于催化邻氯硝基苯加氢生成邻氯苯胺。
所述聚合物包括间苯二酚-甲醛树脂;所述具有囊泡型空腔的聚合物形貌为球形,微球内部具有囊泡型空腔。
可选地,所述聚合物微球的直径范围为0.5~2.0μm;所述囊泡型空腔的内直径范围为0.1~1.0μm。
优选地,所述聚合物微球的直径上限选自2.0μm、1.9μm、1.8μm、1.7μm、1.6μm、1.5μm、1.4μm、1.3μm;下限选自0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1.0μm、1.1μm、1.2μm。
优选地,所述囊泡型空腔的内直径上限选自1.0μm、0.9μm、0.8μm、0.7μm、0.6μm;下限选自0.1μm、0.2μm、0.3μm、0.4μm、0.5μm。
根据本申请的另一个方面,提供了具有囊泡型空腔的碳材料,所述具有囊泡型空腔的碳材料形貌为球形;所述碳材料的直径范围为0.4~1.8μm,囊泡型空腔的内直径范围为0.08~0.9μm。
根据本申请的又一个方面,提供了具有囊泡型空腔的聚合物微球的制备方法,该制备方法工艺简单,成本低廉,具有很强的实用性及良好的工业化应用前景。
所述具有囊泡型空腔的聚合物微球的制备方法,至少包括以下步骤:
(1)获得初始混合物
所述初始混合物中包含低级烷醇、水、NH3·H2O、直链烷基胺、间苯二酚和甲醛;
所述低级烷醇、水、NH3·H2O、直链烷基胺、间苯二酚和甲醛的摩尔比为:低级烷醇:水:NH3·H2O:直链烷基胺:间苯二酚:甲醛=145~233﹕850~1133﹕1﹕0.09~0.73﹕0.3~1.8﹕0.6~0.36;
(2)将所得的初始混合物置于25~35℃的反应温度范围中反应不少于16小时,所得固体产物即为所述具有囊泡型空腔的聚合物。
可选地,所述初始混合物中的比例为:低级烷醇:水:氨水:直链烷基胺:间苯二酚:甲醛溶液=25ml~40ml:45ml~60ml:0.2g:0.27~2.16mmol:0.1g~0.6g:0.15g~0.9g。
可选地,所述氨水的浓度范围为25wt%~28wt%,所述甲醛溶液的浓度为35wt%~40wt%。
可选地,所述直链烷基胺的化学式为CnH2n+1NH2,其中n=12~16。
在本申请中,所述低级烷醇系指碳原子数不超过3的烷基醇。
可选地,所述低级烷醇选自甲醇、乙醇、异丙醇中的至少一种。
可选地,所述低级烷醇为乙醇。
可选地,所述水为去离子水。
可选地,所述初始混合物置于25~35℃的反应温度范围中反应16~30小时。
根据本申请的再一个方面,提供了具有囊泡型空腔的碳材料的制备方法,所述方法至少包括以下步骤:将上述具有囊泡型空腔的聚合物微球、上述方法得到的具有囊泡型空腔的聚合物微球中的至少一种置于非活性气氛中,在500~900℃的温度范围中加热不少于4小时,即得到具有囊泡型空腔的碳材料。
在本申请中,所述非活性气氛系指不会或很难发生化学反应的气体气氛。
可选地,所述非活性气氛选自氮气、氦气、氖气、氩气、氙气中的至少一种。
可选地,将上述具有囊泡型空腔的聚合物、上述方法得到的具有囊泡型空腔的聚合物中的至少一种在500~900℃的温度范围中加热4~6小时。
根据本申请的再一个方面,提供了上述具有囊泡型空腔的聚合物微球、上述方法制备得到的具有囊泡型空腔的聚合物微球、上述具有囊泡型空腔的碳材料、上述方法制备得到的具有囊泡型空腔的碳材料中的至少一种在吸附剂和/或催化剂载体中的应用。
可选地,所述吸附剂是用于脱除水溶液中亚甲基蓝的吸附剂。
可选地,所述催化剂载体是用于邻氯硝基苯加氢制备邻氯苯胺的催化剂载体。
本申请能够产生的有益效果包括:
1)本申请所提供的具有囊泡型空腔的聚合物微球,形貌规整,可用作吸附剂脱除水溶液中的亚甲基蓝,或者作为催化剂载体催化邻氯硝基苯加氢制邻氯苯胺,具有良好的效果,有望实现大规模工业应用。
2)本申请所提供的具有囊泡型空腔的聚合物的制备方法,其工艺简单,成本低廉,具有很强的实用性及良好的工业化应用前景。
附图说明
图1为本申请的实施例2中得到的具有囊泡型空腔的聚合物微球的透射电镜照片。
图2为本申请的实施例5中得到的具有囊泡型空腔的碳材料的透射电镜照片。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和试剂均通过商业途径购买,未经特殊处理而直接使用。
采用JEOL JEM-2100透射电子显微镜进行形貌表征,加速电压200kV。
实施例1材料的制备
取0.05g十二胺溶解于25ml乙醇中,加入60ml去离子水、0.2g氨水(25~28wt%)混合均匀,加入0.1g间苯二酚和0.15g甲醛溶液(37wt%),35℃持续搅拌24h,离心分离出固体产物,干燥后得到具有囊泡型空腔的聚合物微球,记为样品1#
实施例2材料的制备
取0.1g十二胺溶解于25ml乙醇中,加入60ml去离子水、0.2g氨水(25~28wt%)混合均匀,加入0.2g间苯二酚和0.3g甲醛溶液(37wt%),25℃持续搅拌24h,离心分离出固体产物,干燥后得到具有囊泡型空腔的聚合物微球,记为样品2#
图1为样品2#的透射电镜照片。从图中看出聚合物微球的直径在0.5~2.0μm之间;囊泡型空腔的直径在0.1~1.0μm之间。
实施例3材料的制备
取0.4g十二胺溶解于25ml乙醇中,加入60ml去离子水、0.2g氨水(25~28wt%)混合均匀,加入0.6g间苯二酚和0.9g甲醛溶液(37wt%),30℃持续搅拌24h,离心分离出固体产物,干燥后得到具有囊泡型空腔的聚合物微球,记为样品3#
样品3#的透射电镜照片和样品2#的相似。
实施例4材料的制备
取0.2g十二胺溶解于45ml乙醇中,加入40ml去离子水、0.2g氨水(25~28wt%)混合均匀,加入0.2g间苯二酚和0.3g甲醛溶液(37wt%),30℃持续搅拌24h,离心分离出固体产物,干燥后得到具有囊泡型空腔的聚合物微球,记为样品4#
样品4#的透射电镜照片和样品2#的相似。
实施例5材料的制备
取0.26g十六胺溶解于45ml乙醇中,加入40ml去离子水、0.2g氨水(25~28wt%)混合均匀,加入0.2g间苯二酚和0.3g甲醛溶液(37wt%),30℃持续搅拌24h,离心分离出固体产物,干燥后得到具有囊泡型空腔的聚合物微球,记为样品5#
样品5#的透射电镜照片和样品2#的相似。
实施例6材料的制备
取样品2#置于石英舟内,在氮气气氛炉中600℃加热4h,冷却后,得到具有囊泡型空腔的碳材料,记为样品6#
上述条件换成在氮气气氛炉中500℃加热6h,制得的具有囊泡型空腔的碳材料记为样品7#
上述条件换成在氮气气氛炉中900℃加热4h,制得的具有囊泡型空腔的碳材料记为样品8#
图2为样品6#的透射电镜照片。从图中看出碳材料直径在0.4~1.8μm之间;碳材料的囊泡型空腔的直径在0.08~0.9μm之间。
样品7#和样品8#的透射电镜照片和样品6#的相似。
实施例7材料的应用
取10ml浓度为10ppm的亚甲基蓝水溶液,加入0.05g样品6#,超声5min,离心分离出固体,溶液变为无色,紫外可见漫反射光谱分析溶液中亚甲基蓝的浓度为0。
实施例8材料的应用
称取0.2g样品2#分散于5ml去离子水和45ml乙醇中,加入0.5g氯铂酸水溶液(77mM),所得混合体系在80℃回流搅拌2h,离心分离出固体产物,得到具有囊泡型空腔的聚合物微球负载的铂催化剂,标记为样品9#
取0.04g样品9#催化剂和5ml邻氯硝基苯的甲苯溶液(0.1M)置于40ml带有聚四氟乙烯内衬的不锈钢高压釜中,用氢气吹扫除去空气,并充装氢气至压力为0.3Mpa,将反应釜放置在40℃水浴中反应1h,进行产物分析。
利用安捷伦气相色谱7890、FID检测器、FFAP毛细管柱进行产物分析。原料邻氯硝基苯转化率和产物邻氯苯胺选择性的计算公式如下:
Figure BDA0002311786050000061
Figure BDA0002311786050000071
反应结果如下:
邻氯硝基苯转化率为99%,邻氯苯胺选择性为95.2%。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种具有囊泡型空腔的聚合物微球,其特征在于,所述聚合物微球包括间苯二酚-甲醛树脂;
所述具有囊泡型空腔的聚合物微球的形貌为球形,微球内部具有囊泡型空腔。
2.根据权利要求1所述的具有囊泡型空腔的聚合物微球,其特征在于,所述聚合物微球的直径范围0.5~2.0μm;
所述囊泡型空腔的直径范围0.1~1.0μm。
3.具有囊泡型空腔的碳材料,其特征在于,所述具有囊泡型空腔的碳材料形貌为球形,碳材料内部包括囊泡型空腔;
所述碳材料直径范围为0.4~1.8μm;
所述碳材料的囊泡型空腔的直径范围0.08~0.9μm。
4.权利要求1或2所述的具有囊泡型空腔的聚合物微球的制备方法,其特征在于,所述方法至少包括以下步骤:
(1)获得初始混合物
所述初始混合物中包含低级烷醇、水、NH3·H2O、直链烷基胺、间苯二酚和甲醛;
所述低级烷醇、水、NH3·H2O、直链烷基胺、间苯二酚和甲醛的摩尔比为:低级烷醇:水:NH3·H2O:直链烷基胺:间苯二酚:甲醛=145~233﹕850~1133﹕1﹕0.09~0.73﹕0.3~1.8﹕0.6~0.36;
(2)将所得的初始混合物置于25~35℃的反应温度范围中反应不少于16小时,所得固体产物即为所述具有囊泡型空腔的聚合物微球。
5.根据权利要求4所述的具有囊泡型空腔的聚合物微球的制备方法,其特征在于,所述初始混合物中的比例为:
低级烷醇:水:氨水:直链烷基胺:间苯二酚:甲醛溶液=25mL~45mL:40mL~60mL:0.2g:0.27~2.16mmol:0.1g~0.6g:0.15g~0.9g;
所述氨水的浓度范围为25wt%~28wt%,所述甲醛溶液的浓度为35wt%~40wt%。
6.根据权利要求4或5所述的具有囊泡型空腔的聚合物微球的制备方法,其特征是所述直链烷基胺的化学式为CnH2n+1NH2,其中n=12~16。
7.权利要求3所述的具有囊泡型空腔的碳材料的制备方法,其特征在于,所述方法至少包括以下步骤:
将根据权利要求1或2所述的具有囊泡型空腔的聚合物微球、根据权利要求4至6任一项所述方法得到的具有囊泡型空腔的聚合物微球中的至少一种置于非活性气氛中,在500~900℃的温度范围中加热不少于4小时,即得到具有囊泡型空腔的碳材料;
优选地,所述非活性气氛选自氮气、氦气、氖气、氩气、氙气中的至少一种。
8.权利要求1或2所述的具有囊泡型空腔的聚合物微球、权利要求4至6所述方法制备得到的具有囊泡型空腔的聚合物微球、权利要求3所述的具有囊泡型空腔的碳材料、权利要求7所述方法制备得到的具有囊泡型空腔的碳材料中的至少一种在吸附剂和/或催化剂载体中的应用。
9.根据权利要求8所述的应用,其特征在于,所述吸附剂是用于脱除水溶液中亚甲基蓝的吸附剂。
10.根据权利要求8所述的应用,其特征在于,所述催化剂载体是用于邻氯硝基苯加氢制备邻氯苯胺的催化剂载体。
CN201911261754.1A 2019-12-10 2019-12-10 一种具有囊泡型空腔的聚合物微球及其合成方法 Active CN112940208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911261754.1A CN112940208B (zh) 2019-12-10 2019-12-10 一种具有囊泡型空腔的聚合物微球及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911261754.1A CN112940208B (zh) 2019-12-10 2019-12-10 一种具有囊泡型空腔的聚合物微球及其合成方法

Publications (2)

Publication Number Publication Date
CN112940208A true CN112940208A (zh) 2021-06-11
CN112940208B CN112940208B (zh) 2022-09-16

Family

ID=76225915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911261754.1A Active CN112940208B (zh) 2019-12-10 2019-12-10 一种具有囊泡型空腔的聚合物微球及其合成方法

Country Status (1)

Country Link
CN (1) CN112940208B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902958A (zh) * 2023-07-24 2023-10-20 辽宁石油化工大学 碳基空心球材料的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141559A1 (en) * 2015-03-11 2016-09-15 Xi'an Jiaotong University Porous carbon hollow spheres and methods for their preparation and use
CN110283288A (zh) * 2019-06-25 2019-09-27 大连理工大学 一种可大量生产的杂原子掺杂的具有空腔结构聚合物纳米微球及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141559A1 (en) * 2015-03-11 2016-09-15 Xi'an Jiaotong University Porous carbon hollow spheres and methods for their preparation and use
CN110283288A (zh) * 2019-06-25 2019-09-27 大连理工大学 一种可大量生产的杂原子掺杂的具有空腔结构聚合物纳米微球及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张丽丽: ""不同形貌的多孔碳的制备及其吸附抗生素的研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902958A (zh) * 2023-07-24 2023-10-20 辽宁石油化工大学 碳基空心球材料的制备方法及其应用

Also Published As

Publication number Publication date
CN112940208B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Bao et al. A green selective water-etching approach to MOF@ mesoporous SiO2 yolk-shell nanoreactors with enhanced catalytic stabilities
CN109305913A (zh) 一种苯胺类化合物的合成方法
Shen et al. A novel Cu-nanowire@ Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air
CN108014789B (zh) 一种用于聚苯乙烯加氢制聚环己基乙烯的负载型催化剂及其制备方法
CN105870470A (zh) 一种富氮多级孔炭材料及制备方法
CN110790926B (zh) 一种含钯金属-聚卡宾多孔有机聚合物的制备方法及应用
CN112940208B (zh) 一种具有囊泡型空腔的聚合物微球及其合成方法
CN112023887B (zh) 一种TNT@Cu-BTC复合吸附剂的制备方法及其在环己烷吸附中的应用
CN112495374A (zh) 采用低温等离子体改性石墨烯制备负载型贵金属催化剂的方法和应用
Chen et al. The mesopore-elimination treatment and silanol-groups recovery for macroporous silica microspheres and its application as an efficient support for polystyrene hydrogenation
CN112210055B (zh) 具有中空核壳结构的聚合物及其制备方法
CN107519850B (zh) 用于色谱分离的杂化硅胶整体材料的制备及材料和应用
Zhang et al. Amine-functionalized hollow mesoporous nano-bowl with bulky acid-imprinted free space around base sites and DMF-annealed mesoporous channels as an efficient solid base catalyst
CN113372525B (zh) 一种具有分子印迹型的共价有机框架材料及其制备方法和应用
CN113578383A (zh) 一种磺酸修饰的聚苯乙烯微球的制备及其催化糠醇转化为乙酰丙酸乙酯的方法
CN111908446B (zh) 一种不对称结构多孔炭材料及其超组装制备方法
CN113600150B (zh) 一种以减压渣油制备磁性超交联聚合物的方法
CN113908832B (zh) 一种氧空位调控的负载型钯基催化剂的制备及其在聚苯乙烯加氢中的应用
CN112851939B (zh) 一种富含羟基和仲胺基的多孔聚合物及其制备方法
CN113663670A (zh) 一种硝基芳烃高选择性还原催化剂及其制备方法和应用
Saberi et al. Synthesis and characterization of a novel TEMPO@ FeNi 3/DFNS–laccase magnetic nanocomposite for the reduction of nitro compounds
CN111359606B (zh) 一种限域结构双亲性纳米催化剂及其制备方法和应用
US20220212147A1 (en) Synthesis of porous graphitic carbon membranes
Bączek et al. Magnetic recykling of complex catalysts immobilized on thiol-functionalized polymer supports
CN116902958A (zh) 碳基空心球材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant