CN113600150B - 一种以减压渣油制备磁性超交联聚合物的方法 - Google Patents

一种以减压渣油制备磁性超交联聚合物的方法 Download PDF

Info

Publication number
CN113600150B
CN113600150B CN202110966682.1A CN202110966682A CN113600150B CN 113600150 B CN113600150 B CN 113600150B CN 202110966682 A CN202110966682 A CN 202110966682A CN 113600150 B CN113600150 B CN 113600150B
Authority
CN
China
Prior art keywords
magnetic
hcps
vacuum residue
vacuum
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110966682.1A
Other languages
English (en)
Other versions
CN113600150A (zh
Inventor
刘清泉
张兵
彭琪
王瑞元
赵宏伟
曹新秀
刘欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN202110966682.1A priority Critical patent/CN113600150B/zh
Publication of CN113600150A publication Critical patent/CN113600150A/zh
Application granted granted Critical
Publication of CN113600150B publication Critical patent/CN113600150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2391/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种以减压渣油制备磁性HCPs的方法,首先,以共沉淀法制备磁性纳米颗粒,并以4‑苯基丁酸或5‑苯基戊酸为纳米颗粒的表面稳定剂,其中的羧基与Fe3O4表面形成络合,苯环则可参与后续的傅克反应,使聚合物与纳米颗粒之间形成化学键合,提高磁性HCPs的稳定性。然后,将减压渣油、磁性纳米颗粒、无水FeCl3、硝基甲烷、交联剂,升温到80oC反应6h,以甲醇和二氯甲烷抽提产物后,即可获得磁性HCPs。产物可应用于含苯酚废水处理,且具有良好的重复使用效率。

Description

一种以减压渣油制备磁性超交联聚合物的方法
技术领域
本发明属于高分子化学领域,具体涉及一种以减压渣油制备磁性HCPs的方法。
背景技术
超交联聚合物(Hypercrosslinked Polymers,HCPs)是指通过分子间内的交联反应制备具有永久微孔性的网络聚合物。HCPs材料具有高比表面积、微孔结构、低的骨架密度、大的孔体积、高的化学稳定性和热稳定性以及易于功能化等特点,在废水处理中具有广阔的应用前景。然而,从废水中回收HCPs是其应用的一个难题,而赋予HCPs磁性则可将其从废水中快速回收,简化处理工艺和效率,因此,多年来,磁性HCPs的制备与应用是废水处理领域的研究热点。
中国专利2007100552045公开了一种磁性粒子/聚合物/二氧化硅结构磁性微球的制备方法,作者通过三步法获得磁性复合微球,产物具有良好的生物相容性与化学稳定性,并且易于进一步的功能化。
中国专利202011351324.1公开了一种吸附阳离子染料的松香基磁性多孔微球的制备方法及应用,作者通过悬浮聚合法得到多孔的松香基磁性微球,所得微球可用于吸附水溶液中的阳离子染料,具有良好的吸附效果。
中国专利202010999863.X公开了一种用于废水净化的磁性多孔聚氨酯泡沫材料及制备方法,该材料具有均匀的孔隙结构,对水中污染物吸附性良好且吸附量大,并且由于含有磁性粒子,使其可以很好的回收再利用,可广泛用于污水处理等领域中。
中国专利201811378475.9公开了一种壳聚糖改性密胺树脂磁性多孔吸附剂及其制备方法,该吸附剂具有良好吸附效果,对废水中新胭脂红染料的去除率可达到99%,在污水处理领域具有良好的应用前景。
减压渣油廉价且来源丰富,是石油化工冶炼厂难以处理的固废,其主要成分为酚类、多环芳烃、杂环化合物,含有致癌性的物质,会对大气和水体造成污染。因此,寻找和开发减压渣油的高值转化具有重要的意义。
发明内容
本发明的目的是针对磁性超交联聚合物(HCPs)原料成本较高、制备步骤较多等问题,提供一种以减压渣油为主要原料,通过傅克反应,制备低成本的磁性HCPs的方法,制备的磁性HCPs可应用于治理难度大、危害大的苯酚废水处理,磁性HCPs具有吸附量大、回收快、循环利用率高的特点。
本发明采用的技术方案:一种以减压渣油制备磁性HCPs的方法,包括以下步骤:
(1) 磁性纳米颗粒的制备:在容器中分别加入FeCl3、FeCl2、去离子水,在氮气气氛下,搅拌并逐渐升温至80℃后,将氨水和表面修饰剂注射到溶液中,持续充分搅拌后,降温、用稀盐酸中和、磁分离、洗涤、干燥,即获得表面修饰的磁性纳米颗粒;
(2) 磁性HCPs的制备:将减压渣油和磁性纳米颗粒加入二氯乙烷,超声分散,加入无水FeCl3、硝基甲烷溶液和交联剂,除氧后升温至80℃,回流,抽滤、洗涤,以甲醇和二氯甲烷为溶剂,分别抽提产物,真空干燥,获得磁性HCPs。硝基甲烷的作用在于提高FeCl3在反应介质中的溶解能力,从而提高其催化效率、提高交联度、缩短反应时间。
作为优选,所述的磁性纳米颗粒的表面修饰剂为4-苯基丁酸或5-苯基戊酸,其中的苯环参与后续的傅克反应,使聚合物与磁性纳米颗粒之间形成化学键合,提高HCPs在应用过程中的磁响应稳定性。
作为优选,所述的减压渣油为黑色粘稠状物质,密度约1.02g/cm3,平均分子量约1220。
作为优选,反应介质为二氯乙烷,其用量是所有反应物重量的2-3倍。
作为优选,所述的减压渣油、磁性纳米颗粒、无水FeCl3、硝基甲烷、交联剂的质量百分含量分别为40-60 wt%、7-9 wt%、15-25 wt%、5-8 wt%、10-15wt%。
作为优选,所述的交联剂为对二甲氧基苯、二甲醇缩甲醛或原甲酸三甲酯。
本发明提出的一种以减压渣油制备磁性HCPs的方法,以4-苯基丁酸或5-苯基戊酸为磁性纳米颗粒的表面稳定剂,目的是利用磁性纳米颗粒表面的苯环,参与傅克反应,使磁性纳米颗粒与聚合物之间形成化学键合,一方面提高磁性HCPs化学稳定性,可以强酸或强碱溶液等苛刻环境中使用;另一方面在机械搅拌或超声分散等吸附实验中,避免磁性纳米颗粒脱落,从而提高磁性HCPs的磁响应稳定性。
本发明提出的一种以减压渣油制备磁性HCPs的方法,以减压渣油为制备HCPs的主要原料,减压渣油来自长岭石化,为黑色粘稠状物质,密度约1.02g/cm3,平均分子量1220。减压渣油是炼油厂减压塔底抽出的残渣油,产量大,处理难度大,如何充分利用和合理加工是目前石油行业的重要课题之一。本发明创造性提出以减压渣油为主要原料,制备低成本磁性HCPs,应用于含酚废水处理,提供了一条减压渣油高值转化的有效途径。
本发明首次以减压渣油为主要原料,通过傅克反应制备了低成本磁性HCPs。在傅克反应中,因FeCl3催化剂在二氯乙烷中的溶解度小,加入CH3NO3作为FeCl3的助溶剂,从而提高FeCl3的催化效率,提高交联度,缩短傅克反应时间。不仅为减压渣油的处理提供了一条有效途径,而且将其高值转化成可用于废水处理的多孔聚合物。产物的性能与特征在于:
(1)在外加磁场的作用下,HCPs具有显著的磁响应性;
(2)产物具有优秀的化学稳定性,在强酸强碱介质浸泡24h后,磁性HCPs无失重;
(3)磁性HCPs具有良好的热稳定性,在惰性气氛下,加热至220oC时,产物开始显著分解失重;
(4)磁性HCPs比表面积在90~160 m2/g可调,孔径分布以微孔和介孔为主;
(5)磁性HCPs可用于含酚废水处理,且具有良好的循环使用率,并有望推广至含重金属离子、其它有机污染物的废水处理。
具体实施方式
为使本领域技术人员更好理解本发明的技术方案和路线,下面结合实例对本发明作详细的描述,来说明本发明方法的作用和效果,但并不局限于以下实施例。
本发明提出以减压渣油为主要原料,通过傅克反应,制备低成本的磁性HCPs,并将其应用于苯酚废水处理。磁性HCPs的制备与应用包括以下步骤:
(1) 磁性纳米颗粒的制备:将FeCl3和FeCl2加入去离子水中,搅拌溶解,脱氧处理后升温至80℃;然后加入氢氧化铵(NH4OH,28%)和表面修饰剂,继续搅拌3.0 h。反应结束后降温,用盐酸中和溶液后,磁分离,用H2O洗涤3次,真空干燥,即可获得磁性纳米颗粒。
(2)磁性HCPs的制备:在带有机械搅拌装置的三颈烧瓶中,加入减压渣油、磁性纳米颗粒和1,2-二氯乙烷(DCE)中,超声分散形成均匀的悬浮液;然后,加入无水FeCl3、硝基甲烷和交联剂,脱氧处理后,升温至80℃回流6 h。反应结束后降温,磁分离,以去离子水洗涤3次,再以甲醇和二氯甲烷分别抽提产物12 h,真空干燥,即可获得低成本磁性HCPs。
(3) 磁性HCPs处理含酚废水:取
Figure DEST_PATH_IMAGE001
(mg)磁性HCPs分散于含苯酚废水中,室温下搅拌24h。实验结束后,得到不同起始浓度的平衡吸附量。苯酚吸附量则由下式计算得到:
Figure DEST_PATH_IMAGE003
其中,
Figure 805153DEST_PATH_IMAGE004
(mg/g)是吸附剂对苯酚的饱和吸附量,/>
Figure DEST_PATH_IMAGE005
(mg/L)是苯酚起始浓度,/>
Figure 116048DEST_PATH_IMAGE006
(mg/L)是吸附平衡后的苯酚浓度,/>
Figure DEST_PATH_IMAGE007
(mL)是溶液的体积,/>
Figure 839154DEST_PATH_IMAGE001
(g)为磁性HCPs用量。
(4) 磁性HCPs再生与循环实验:在吸附了苯酚的磁性HCPs中加入甲醇,磁力搅拌3h后,磁分离并重复上述实验1次,经去离子水冲洗后,真空干燥,即获得再生的磁性HCPs。循环实验与步聚(3)一样,固定磁性HCPs的用量和含苯酚废水的浓度与体积,考察循环实验中磁性HCPs对苯酚的去除率,去除率由下式计算得到:
Figure DEST_PATH_IMAGE009
实施例中所用的原料和设备如下:
减压渣油:工业级,湖南长岭石化科技开发有限公司;
1,2-二氯乙烷(DCE):分析纯,国药集团化学试剂有限公司;
二甲氧基苯:分析纯,国药集团化学试剂有限公司;
二甲醇缩甲醛:分析纯,国药集团化学试剂有限公司;
原甲酸三甲酯:分析纯,国药集团化学试剂有限公司;
无水氯化铁:分析纯,萨恩化学技术(上海)有限公司;
无水氯化亚铁:分析纯,萨恩化学技术(上海)有限公司;
氢氧化铵(NH4OH):分析纯,萨恩化学技术(上海)有限公司;
4-苯基丁酸:分析纯,萨恩化学技术(上海)有限公司;
5-苯基戊酸:分析纯,萨恩化学技术(上海)有限公司;
甲醇:分析纯,广州市金华大化学试剂有限公司;
二氯甲烷:分析纯,广东光华科技股份有限公司;
硝基甲烷:分析纯,萨恩化学技术(上海)有限公司;
苯酚:分析纯,广东光华科技股份有限公司;
比表面仪: ASAP2020,美国麦克仪器;
紫外分光光度计: Lambda-35,美国PE公司
真空干燥箱:上海一恒科学仪器有限公司。
磁性纳米颗粒合成示例1
将1.1 g FeCl3和0.4 g FeCl2加入20 mL去离子水中,搅拌溶解,脱氧处理后升温至80℃;然后加入5.0 mL氢氧化铵(NH4OH,28%)和0.5g 4-苯基丁酸,继续搅拌3.0 h。反应结束后降温,用盐酸中和溶液后,磁分离,用H2O洗涤3次,真空干燥,即可获得磁性纳米颗粒(MNPs-1)。
磁性纳米颗粒合成示例2
将3.0 g FeCl3和1.1 g FeCl2加入50 mL去离子水中,搅拌溶解,脱氧处理后升温至80℃;然后加入15.0 mL氢氧化铵(NH4OH,28%)和1.5 g 5-苯基戊酸,继续搅拌3.0 h。反应结束后降温,用盐酸中和溶液后,磁分离,用H2O洗涤3次,真空干燥,即可获得磁性纳米颗粒(MNPs-2)。
磁性HCPs制备实施例1
在带有机械搅拌装置的三颈烧瓶中,加入0.30 g减压渣油、0.05g MNPs-1和10.0mL 1,2-二氯乙烷(DCE)中,超声分散15min形成均匀的悬浮液;然后,加入0.12 g 无水FeCl3、0.05 g硝基甲烷和0.08 g二甲氧基苯,脱氧处理后,升温至80℃回流6 h。反应结束后降温,磁分离,以去离子水洗涤3次,再以甲醇和二氯甲烷分别抽提产物12 h,真空干燥,即可获得磁性HCPs-1。
磁性HCPs制备实施例2
在带有机械搅拌装置的三颈烧瓶中,加入0.90 g减压渣油、0.15 g MNPs-2和30.0mL 1,2-二氯乙烷(DCE)中,超声分散15min形成均匀的悬浮液;然后,加入0.4 g 无水FeCl3、0.12 g硝基甲烷和0.2 g二甲醇缩甲醛,脱氧处理后,升温至80℃回流6 h。反应结束后降温,磁分离,以去离子水洗涤3次,再以甲醇和二氯甲烷分别抽提产物12 h,真空干燥,即可获得磁性HCPs-2。
磁性HCPs制备实施例3
在带有机械搅拌装置的三颈烧瓶中,加入1.5 g减压渣油、5 g MNPs-2和250.0 mL1,2-二氯乙烷(DCE)中,超声分散15min形成均匀的悬浮液;然后,加入0.6 g 无水FeCl3、0.25 g硝基甲烷和0.6 g原甲酸三甲酯,脱氧处理后,升温至80℃回流6 h。反应结束后降温,磁分离,以去离子水洗涤3次,再以甲醇和二氯甲烷分别抽提产物12 h,真空干燥,即可获得磁性HCPs-3。
磁性HCPs制备实施例4
在带有机械搅拌装置的三颈烧瓶中,加入30 g减压渣油、5.0 g MNPs-1和30.0 mL1,2-二氯乙烷(DCE)中,超声分散15min形成均匀的悬浮液;然后,加入12 g 无水FeCl3、5.0g硝基甲烷和7.5 g二甲醇缩甲醛,脱氧处理后,升温至80℃回流6 h。反应结束后降温,磁分离,以去离子水洗涤3次,再以甲醇和二氯甲烷分别抽提产物12 h,真空干燥,即可获得磁性HCPs-4。
上述4个实施例制备磁性HCPs均以氮气吸脱附测试其孔结构,孔结构参数如表1所示。
表1 磁性HCPs的孔结构数据
Figure DEST_PATH_IMAGE011
将上述磁性HCPs应用于含苯酚废水处理,其饱和吸附量如表2所示,饱和吸附量与磁性HCPs的比表面积相关。
表2 磁性HCPs对苯酚的饱和吸附量
样品名称 磁性HCPs-1 磁性HCPs-2 磁性HCPs-3 磁性HCPs-4
<i>Q</i><sub><i>e</i></sub>(mg/g) 22.5 31.2 24.9 32.3
以甲醇为洗脱液,再生磁性HCPs-4,干燥后再次将其应用于同体积同浓度的苯酚废水处理,上述过程重复4次,循环实验中磁性HCPs-4对苯酚的去除效率如表3所示。
表3 磁性HCPs-4在循环实验中对苯酚的去除效率
Figure DEST_PATH_IMAGE013
本发明的实验结果表明,以石油工业中处理难度大的减压渣油为原料,可制备低成本磁性HCPs-4,产物具有中等孔隙率。磁性HCPs可应用于含苯酚废水处理,并具有良好的重复应用效率。总之,本发明为大规模高值转化减压渣油提供了一条有效途径。
上述实例仅是本发明的较佳实施例子,而并非用以限定本发明,任何熟悉本专业的技术人员在不脱离本发明的技术方案范围内,可利用上述揭示的技术内容做出些许更改或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改,仍属于本发明技术方案的范围。

Claims (5)

1.一种以减压渣油制备磁性HCPs的方法,其特征在于包括以下步骤:
(1) 磁性纳米颗粒的制备:在容器中分别加入FeCl3、FeCl2、去离子水,在氮气气氛下,搅拌并逐渐升温至80℃后,将氨水和表面修饰剂注射到溶液中,持续充分搅拌后,降温、用稀盐酸中和、磁分离、洗涤、干燥,即获得表面修饰的磁性纳米颗粒;
(2) 磁性HCPs的制备:将减压渣油和磁性纳米颗粒加入二氯乙烷,超声分散,加入无水FeCl3、硝基甲烷溶液和交联剂,除氧后升温至80℃,回流,抽滤、洗涤,以甲醇和二氯甲烷为溶剂,分别抽提产物,真空干燥,获得磁性HCPs, HCPs为磁性超交联聚合物;
所述的磁性纳米颗粒的表面修饰剂为4-苯基丁酸或5-苯基戊酸,其中的苯环参与后续的傅克反应,使聚合物与磁性纳米颗粒之间形成化学键合,提高HCPs在应用过程中的磁响应稳定性。
2.根据权利要求1中所述的一种以减压渣油制备磁性HCPs的方法,其特征在于,所述的减压渣油为黑色粘稠状物质,密度约1.02g/cm3,平均分子量约1220。
3.根据权利要求1中所述的一种以减压渣油制备磁性HCPs的方法,其特征在于,步骤(2)中的反应介质为二氯乙烷,其用量是所有反应物重量的2-3倍。
4. 根据权利要求1中所述的一种以减压渣油制备磁性HCPs的方法,其特征在于,所述的减压渣油、磁性纳米颗粒、无水FeCl3、硝基甲烷、交联剂的质量百分含量分别为40-60wt%、7-9 wt%、15-25 wt%、5-8 wt%、10-15wt%。
5.根据权利要求1中所述的一种以减压渣油制备磁性HCPs的方法,其特征在于,所述的交联剂为对二甲氧基苯、二甲醇缩甲醛或原甲酸三甲酯。
CN202110966682.1A 2021-08-23 2021-08-23 一种以减压渣油制备磁性超交联聚合物的方法 Active CN113600150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110966682.1A CN113600150B (zh) 2021-08-23 2021-08-23 一种以减压渣油制备磁性超交联聚合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110966682.1A CN113600150B (zh) 2021-08-23 2021-08-23 一种以减压渣油制备磁性超交联聚合物的方法

Publications (2)

Publication Number Publication Date
CN113600150A CN113600150A (zh) 2021-11-05
CN113600150B true CN113600150B (zh) 2023-03-28

Family

ID=78341625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110966682.1A Active CN113600150B (zh) 2021-08-23 2021-08-23 一种以减压渣油制备磁性超交联聚合物的方法

Country Status (1)

Country Link
CN (1) CN113600150B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715977B (zh) * 2022-11-15 2023-05-16 湖南科技大学 一种沥青基磁性HCPs吸附剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193969A (zh) * 2014-08-25 2014-12-10 华中科技大学 一种多孔聚合物制备方法、材料及应用
CN104262812A (zh) * 2014-09-28 2015-01-07 湖北工业大学 一种具有高负载稳定性的磁性荧光聚合物微球及其制备方法
CN104693336A (zh) * 2015-03-09 2015-06-10 华东理工大学 一种磺酸基修饰的强阳离子型超高交联树脂及其制备方法
WO2017098229A1 (en) * 2015-12-08 2017-06-15 The University Of Liverpool Novel porous materials
CN111266088A (zh) * 2020-01-13 2020-06-12 武汉工程大学 一种用于处理含酚废水的高效多孔吸附剂及其制备方法
CN111530431A (zh) * 2018-11-30 2020-08-14 北京化工大学 一种磁性超交联有机聚合物材料、制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193969A (zh) * 2014-08-25 2014-12-10 华中科技大学 一种多孔聚合物制备方法、材料及应用
CN104262812A (zh) * 2014-09-28 2015-01-07 湖北工业大学 一种具有高负载稳定性的磁性荧光聚合物微球及其制备方法
CN104693336A (zh) * 2015-03-09 2015-06-10 华东理工大学 一种磺酸基修饰的强阳离子型超高交联树脂及其制备方法
WO2017098229A1 (en) * 2015-12-08 2017-06-15 The University Of Liverpool Novel porous materials
CN111530431A (zh) * 2018-11-30 2020-08-14 北京化工大学 一种磁性超交联有机聚合物材料、制备方法和应用
CN111266088A (zh) * 2020-01-13 2020-06-12 武汉工程大学 一种用于处理含酚废水的高效多孔吸附剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hui Gao et al..Pitch-based hyper-cross-linked polymers with high performance for gas adsorption.《Journal of Materials Chemistry A》.2016,第4卷第16490–16498页. *

Also Published As

Publication number Publication date
CN113600150A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
Ahamad et al. N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol‑A
Zhu et al. Adsorption and desorption behaviors of HPEI and thermoresponsive HPEI based gels on anionic and cationic dyes
Hou et al. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal
Li et al. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances
Wang et al. Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer
Fan et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue
Cegłowski et al. Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions
Sun et al. Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisneria natans waste as a new adsorbent
Wang et al. β-Cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants
Luo et al. Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles
Li et al. Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse
Guo et al. Chitosan/graphene oxide composite as an effective adsorbent for reactive red dye removal
Liang et al. Hierarchical porous carbons from biowaste: Hydrothermal carbonization and high-performance for Rhodamine B adsorptive removal
Zeng et al. Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution
CN109225138B (zh) 一种高效吸附PTA废水中AOCs的改性活性炭及其制备方法
Zhang et al. A hydrophilic surface molecularly imprinted polymer on a spherical porous carbon support for selective phenol removal from coking wastewater
He et al. Efficient adsorption of methyl orange and methyl blue dyes by a novel triptycene-based hyper-crosslinked porous polymer
Sheshmani et al. Potential of magnetite reduced graphene oxide/chitosan nanocomposite as biosorbent for the removal of dyes from aqueous solutions
Wu et al. One-step fabrication of magnetic carbon nanocomposite as adsorbent for removal of methylene blue
CN113000023A (zh) 氧化石墨烯改良活性炭及其制备方法和水处理方法
CN110711564A (zh) 一种聚苯胺/二氧化硅/氧化石墨烯气凝胶复合材料的制备和应用
Wang et al. A novel self-floating cyclodextrin-modified polymer for cationic dye removal: Preparation, adsorption behavior and mechanism
CN113600150B (zh) 一种以减压渣油制备磁性超交联聚合物的方法
CN112979985A (zh) 一种复合金属有机骨架材料及其制备方法
Wei et al. Lignin immobilized cyclodextrin composite microspheres with multifunctionalized surface chemistry for non-competitive adsorption of co-existing endocrine disruptors in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant