CN112910349A - 永磁同步电机、滑模控制方法、控制系统、终端、介质 - Google Patents

永磁同步电机、滑模控制方法、控制系统、终端、介质 Download PDF

Info

Publication number
CN112910349A
CN112910349A CN202110116681.8A CN202110116681A CN112910349A CN 112910349 A CN112910349 A CN 112910349A CN 202110116681 A CN202110116681 A CN 202110116681A CN 112910349 A CN112910349 A CN 112910349A
Authority
CN
China
Prior art keywords
permanent magnet
magnet synchronous
synchronous motor
variable index
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110116681.8A
Other languages
English (en)
Inventor
姜长泓
王其铭
张袅娜
张凯皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202110116681.8A priority Critical patent/CN112910349A/zh
Publication of CN112910349A publication Critical patent/CN112910349A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Abstract

本发明属于永磁同步电机控制技术领域,公开了一种永磁同步电机、滑模控制方法、控制系统、终端、介质,在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。本发明引入加权积分增益,提出滑模控制的复合变指数趋近律,消除滑动阶段抖动切换增益严重的问题;本发明采用以加快电机速度响应和提高鲁棒性为目的的变指数趋近律滑模控制策略,实现复杂工况下的永磁同步电机速度准确控制。

Description

永磁同步电机、滑模控制方法、控制系统、终端、介质
技术领域
本发明属于永磁同步电机控制技术领域,尤其涉及一种永磁同步电机、滑模控制方法、控制系统、终端、介质,具体涉及一种基于复合变指数趋近律的永磁同步电机滑模控制方法。
背景技术
目前,近年来,永磁同步电机调速系统广泛应用在风力发电、电动汽车驱动、水利水电等领域。永磁同步电机是一个非线性、强耦合的多变量系统,当控制系统受到外界扰动的影响或电机内部参数发生变化时,传统的PI速度控制方法并不能满足实际的需求。因此如何设计控制器以提升永磁同步电机调速系统是一个研究课题。
永磁同步电机的调速系统在工业各个领域都起着重要的作用,因此如何控制永磁同步电机快、准、稳到达参考转速是至关重要的。目前国内外学者采用不同的方法对永磁同步电机调速系统进行研究,如改进PI控制、无位置传感器控制、滑模控制、模糊控制以及其他方法等。其中现有技术1针对永磁同步电机调速系统,设计一种模糊PID控制器,并采用进化算法来调整参数。该控制器提高系统调速性能,增强系统抗外部干扰能力。现有技术2提出一种改进的永磁同步电机低速无位置传感器控制策略,该控制器用以实现电机在低速情况下能正确找点转子位置,并提高电机调速性能。现有技术3提出一种基于改进指数趋近律的滑模观测器来进一步削弱系统抖振,并实现对系统状态的自适应控制。该方法能对电机转速准确观测,并根据系统状态自适应调节系统收敛速度,有效削弱抖振。现有技术4为提高系统动态品质,设计了自适应模糊逻辑速度控制器,可提高直流磁路的电压利用率。
滑模控制是解决上述电机运行问题的一种方法,滑模变结构对系统的参数摄动和外部干扰的不变性使其快速成为控制算法的焦点,但其优越性能是以高频抖振换取的。现有技术5提出一种可快速收敛的分数阶滑模控制策略以抑制同步控制相互作用,该方法能有效改善次同步频率范围内的系统阻尼,加强系统参数摄动的鲁棒性。现有技术6提出一种执行器-评价器学习的非奇异快速终端滑模控制,该控制器降低状态变量到达滑模面的时间,提高系统的鲁棒性。现有技术7提出一种自适应末端滑模控制,实现转速高精度跟踪、状态变量在有限时间内快速收敛及抑制转矩脉动较大的问题。现有技术8引入速度状态误差绝对值X1,加快状态变量趋近滑模面时间,平滑系统的抖振。但该方法下的转速启动仍然存在超调,且引入平滑符号函数减弱抖振效果不明显等缺点。因此滑模控制抖振问题仍是目前研究的热门话题。
通过上述分析,现有技术存在的问题及缺陷为:现有的电机滑模控制方法或技术中,无法用较为简便的方法同时解决滑模控制抖振、响应速度慢、控制精准度不高等问题,不能满足实际需求。
解决以上问题及缺陷的难度为:找到合适且简洁的函数用以解决滑模控制滑动阶段抖动切换增益严重的问题,并提高系统的响应速度。
解决以上问题及缺陷的意义为:设计复合变指数趋近律滑模控制策略目的是加快电机速度响应且无超调到达参考转速,实现复杂工况下的永磁同步电机速度准确控制;当系统受到外部扰动时,转速降落小且恢复迅速,提高系统鲁棒性。
发明内容
针对现有技术存在的问题,本发明提供了一种永磁同步电机、滑模控制方法、控制系统、终端、介质。
本发明是这样实现的,一种基于复合变指数趋近律的永磁同步电机滑模控制方法,所述基于复合变指数趋近律的永磁同步电机滑模控制方法包括:
步骤一,在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型,并采用矢量控制方法简化永磁同步电机数学模型。列写永磁同步电机转矩及运动方程,并在Ld=Lq的表贴式电机条件下继续简化方程;
步骤二,基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略。将永磁同步电机的转矩方程代入运动方程以得到转速状态方程,并设转速误差为系统状态变量。选取系统滑模面,并确定复合变指数趋近律的方程。进一步分析该方程参数为实验做铺垫,参数选取:在积分项中,当t→∞时,ρ快速趋于零,系统最终会稳定于原点,因此会使抖振基本消除;Kf的参数值令其大一些,这样能使系统快速到达滑模面,同时系统会以较慢的速度进入切换项,使得减弱抖振效果明显。因此Kf=4000、η=10;
步骤三,基于建立的永磁同步电机模型确定永磁同步电机控制模型。将选取的滑模面求导并与设计的趋近律联立,并将转速状态方程代入得到系统q轴电流方程即为系统的输出变量。控制器中各参数选取:设计控制器时,参数C为线性滑模面参数,当系统进入滑动模态以后,该值将影响系统收敛速度,本文选择c=60;参数ε、k为变指数趋近律系数,ε值不宜取过大,否则系统将出现震荡现象;k值大一点可以加快系统趋近速度,因此本文选择ε=5、k=300。
进一步,所述时变参数量包括:电压、永磁体磁链。
进一步,步骤一中,所述永磁同步电机模型如下:
采用id=0矢量控制方式:
Figure RE-GDA0003024990430000031
PMSM转矩方程:
Figure RE-GDA0003024990430000032
PMSM运动方程:
Figure RE-GDA0003024990430000041
其中,Ld、Lq分别表示d、q轴定子电感(mH);p表示电机的极对数;w 表示电机的角速度;Te表示电机的电磁转矩;TL表示电机施加的外部转矩;ψf表示转子磁链;J为转动惯量。
进一步,步骤二中,所述基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略包括:
(1)定义系统状态方程及滑模面:
Figure RE-GDA0003024990430000042
(2)确定复合变指数趋近律:
Figure RE-GDA0003024990430000043
其中,wr表示给定转;wm表示实际转速;s表示滑模面,加权积值Kf,ε,k,η为控制器参数。
进一步,步骤三中,所述永磁同步电机控制模型包括:
Figure RE-GDA0003024990430000044
其中,
Figure RE-GDA0003024990430000045
本发明另一目的在于提供一种基于复合变指数趋近律的永磁同步电机滑模控制系统,所述基于复合变指数趋近律的永磁同步电机滑模控制系统包括:
永磁同步电机模型构建模块,用于在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
永磁同步电机转速控制策略确定模块,用于基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
永磁同步电机控制模块,用于基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
本发明的另一目的在于提供一种计算机设备,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
本发明的另一目的在于提供一种信息数据处理终端,所述信息数据处理终端用于实现所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
本发明的另一目的在于提供一种永磁同步电机,所述永磁同步电机用于实现所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
结合上述的所有技术方案,本发明所具备的优点及积极效果为:本发明引入加权积分增益,提出滑模控制的复合变指数趋近律,消除滑动阶段抖动切换增益严重的问题;本发明采用以加快电机速度响应和提高鲁棒性为目的的变指数趋近律滑模控制策略,实现复杂工况下的永磁同步电机速度准确控制。
本发明引入-ε|X1|2sgn(s)和-ks两种速率趋近于滑模面,以达到趋近速率快的目的,速度状态误差绝对值平方项趋近效果明显优于传统趋近律;引入加权积分项增益,使系统在滑动模态阶段和其积分结果同时趋近于零。当系统接近滑模面时,-ks趋近于零,-ε|X1|2sgn(s)起主导作用;当系统离开滑模面时,加权积值Kf可有效控制切换增益,使系统迅速收敛,极大程度的削弱抖振。本发明的方法简单易于实现,适合面广,有效改善永磁同步电机调速系统。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的基于复合变指数趋近律的永磁同步电机滑模控制方法原理图。
图2是本发明实施例提供的基于复合变指数趋近律的永磁同步电机滑模控制方法流程图。
图3是本发明实施例提供的转速控制器结构框图。
图4是本发明实施例提供的三种不同转速启动响应对比示意图。
图5是本发明实施例提供的三种不同转速负载响应对比示意图。
图6是本发明实施例提供的复合变指数趋近律转速曲线示意图。
图7是本发明实施例提供的传统趋近律转速曲线示意图。
图8是本发明实施例提供的复合变指数趋近律突变负载的转矩曲线示意图。
图9是本发明实施例提供的传统趋近律突变负载的转矩曲线示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
针对现有技术存在的问题,本发明提供了一种基于复合变指数趋近律的永磁同步电机滑模控制方法,下面结合附图对本发明作详细的描述。
如图1-图2所示,本发明实施例提供的基于复合变指数趋近律的永磁同步电机滑模控制方法包括:
S101,在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
S102,基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
S103,基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
本发明实施例提供的时变参数量包括:电压、永磁体磁链。
步骤S101中,本发明实施例提供的永磁同步电机模型如下:
采用id=0矢量控制方式:
Figure RE-GDA0003024990430000071
PMSM转矩方程:
Figure RE-GDA0003024990430000072
PMSM运动方程:
Figure RE-GDA0003024990430000073
其中,Ld、Lq分别表示d、q轴定子电感(mH);p表示电机的极对数;w 表示电机的角速度;Te表示电机的电磁转矩;TL表示电机施加的外部转矩;ψf表示转子磁链;J为转动惯量。
步骤S102中,本发明实施例提供的基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略包括:
(1)定义系统状态方程及滑模面:
Figure RE-GDA0003024990430000081
(2)确定复合变指数趋近律:
Figure RE-GDA0003024990430000082
其中,wr表示给定转;wm表示实际转速;s表示滑模面,加权积值Kf,ε,k,η为控制器参数。
步骤S103中,本发明实施例提供的永磁同步电机控制模型包括:
Figure RE-GDA0003024990430000083
其中,
Figure RE-GDA0003024990430000084
下面结合具体实施例对本发明技术方案做进一步说明。
本发明的基于复合变指数趋近律的永磁同步电机滑模控制方法步骤如下:
步骤一、在转子同步坐标系下,电压、永磁体磁链等时变参数量将转化为非时变量参数,使得分析更加方便,除此之外,为了简化运算,对交流永磁同步电动机作如下假设:
(1)定子绕组三相对称分布且完全相同,各绕组轴线在空间互差120°;
(2)忽略磁路饱和、磁滞和涡流的影响,转子上没有阻尼;
(3)当定子绕组电流为三相对称正弦电流时,气隙空间中只产生正弦波分布的磁通势,无高次谐波分布;
(4)电机在空载时定子电动势为正弦波。
再根据电机的基本特性可以建立以下方程:
Figure RE-GDA0003024990430000091
PMSM转矩公式:
Figure RE-GDA0003024990430000092
对于表贴式电机,采用id=0的控制策略下的转矩公式:
Figure RE-GDA0003024990430000093
PMSM运动方程:
Figure RE-GDA0003024990430000094
其中Ld、Lq分别为d、q轴定子电感(mH),p为电机的极对数,w为电机的角速度(r/min),Te为电机的电磁转矩(N·m),TL为电机施加的外部转矩(N·m),ψf为转子磁链(Wb),J为转动惯量(kg·m2)。
对于表贴式电机,采用id=0的控制策略下,并改写式(1):
Figure RE-GDA0003024990430000095
取系统状态变量:
Figure RE-GDA0003024990430000096
其中wr为给定转速,wm为实际转速。由于wr为慢变函数,满足
Figure RE-GDA0003024990430000101
故式(6)
Figure RE-GDA0003024990430000102
成立。
结合式(5)得:
Figure RE-GDA0003024990430000103
并定义其中
Figure RE-GDA0003024990430000104
则式(7)可以改写为:
Figure RE-GDA0003024990430000105
步骤二、复合变指数趋近律控制器设计:
定义滑模面:
s=cx1+x2 (9)
对式(9)求导后得:
Figure RE-GDA0003024990430000106
将复合变指数趋近律代入式(10)后得:
Figure RE-GDA0003024990430000107
从而得到q轴电流:
Figure RE-GDA0003024990430000108
步骤三、针对永磁同步电机控制系统(7),采用滑模面(9),以及复合变指数趋近律控制策略,则永磁同步电机速度渐近收敛于理想转速,给定速度稳定性证明:
Figure RE-GDA0003024990430000109
将式(9)、(11)代入
Figure RE-GDA0003024990430000111
中:
Figure RE-GDA0003024990430000112
由于ε、η、k均为正常数,根据加权积分性质可知:
Figure RE-GDA0003024990430000113
所以得出
Figure RE-GDA0003024990430000114
根据李雅普诺夫稳定性判据可知,复合变指数趋近律所设计的控制器是稳定的。
通过如图4、5可以看出,复合变指数趋近律下在三种转速下均能快速到达理想转速,且系统无超调;在0.2s突变负载时,系统均能在0.04s内恢复到给定转速,且速度误差范围在40r/min-70r/min之间,故该控制器能有效提高系统响应速度及鲁棒性。
图6为复合变指数趋近律的转速响应曲线、图7为传统指数趋近律的转速响应曲线,如图所示,转速稳定均在0.02s,复合变指数比指数趋近律更易接近理想转速;由图6、7比较两种控制器在稳态下的一个采样时间内的转速波动误差,经计算得复合变指数的转速波动误差更小;且突加转矩时转速降落值,复合变指数比变指数滑模控制器减少30r/min。
将图6、图7中数据整理表格如下:
Figure RE-GDA0003024990430000115
由图8、图9可知,相比于传统指数,复合变指数趋近律在正转矩与负转矩之间切换数值较小,抖动不明显;且突加转矩时转矩降落值,复合变指数比传统指数控制器减少1N·m。以上实验均证明复合变指数趋近律的永磁同步电机滑模控制的有效性,该方法提高系统的鲁棒性及响应速度。
本发明的和目前现有技术的对比的技术效果或者实验效果。
通过如图4、5可以看出,复合变指数趋近律下在三种转速下均能快速到达理想转速,且系统无超调;在0.2s突变负载时,系统均能在0.04s内恢复到给定转速,且速度误差范围在40r/min-70r/min之间,故该控制器能有效提高系统响应速度及鲁棒性。
图6为复合变指数趋近律的转速响应曲线、图7为传统指数趋近律的转速响应曲线,如图所示,转速稳定均在0.02s,复合变指数比指数趋近律更易接近理想转速;由图6、7比较两种控制器在稳态下的一个采样时间内的转速波动误差,经计算得复合变指数的转速波动误差更小;且突加转矩时转速降落值,复合变指数比变指数滑模控制器减少30r/min。
由图8、图9可知,相比于传统指数,复合变指数趋近律在正转矩与负转矩之间切换数值较小,抖动不明显;且突加转矩时转矩降落值,复合变指数比传统指数控制器减少1N·m。
因此本发明的复合变指数趋近律可有效改善永磁同步电机的调速系统,实验结果表明:稳态时,系统转速波动小,静态误差低;负载转矩突变时,系统反应迅速,响应时间短,提升了快速响应能力。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种基于复合变指数趋近律的永磁同步电机滑模控制方法,其特征在于,所述基于复合变指数趋近律的永磁同步电机滑模控制方法包括:
步骤一,在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
步骤二,基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
步骤三,基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
2.如权利要求1所述基于复合变指数趋近律的永磁同步电机滑模控制方法,其特征在于,所述时变参数量包括:电压、永磁体磁链。
3.如权利要求1所述基于复合变指数趋近律的永磁同步电机滑模控制方法,其特征在于,步骤一中,所述永磁同步电机模型如下:
采用id=0矢量控制方式:
Figure FDA0002920959200000011
PMSM转矩方程:
Figure FDA0002920959200000012
PMSM运动方程:
Figure FDA0002920959200000013
其中,Ld、Lq分别表示d、q轴定子电感(mH);p表示电机的极对数;w表示电机的角速度;Te表示电机的电磁转矩;TL表示电机施加的外部转矩;ψf表示转子磁链;J为转动惯量。
4.如权利要求1所述基于复合变指数趋近律的永磁同步电机滑模控制方法,其特征在于,步骤二中,所述基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略包括:
(1)定义系统状态方程及滑模面:
Figure FDA0002920959200000021
(2)确定复合变指数趋近律:
Figure FDA0002920959200000022
其中,wr表示给定转;wm表示实际转速;s表示滑模面,加权积值Kf,ε,k,η为控制器参数。
5.如权利要求1所述基于复合变指数趋近律的永磁同步电机滑模控制方法,其特征在于,步骤三中,所述永磁同步电机控制模型包括:
Figure FDA0002920959200000023
其中,
Figure FDA0002920959200000024
6.一种基于复合变指数趋近律的永磁同步电机滑模控制系统,其特征在于,所述基于复合变指数趋近律的永磁同步电机滑模控制系统包括:
永磁同步电机模型构建模块,用于在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
永磁同步电机转速控制策略确定模块,用于基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
永磁同步电机控制模块,用于基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
7.一种计算机设备,其特征在于,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
在转子同步坐标系下,将时变参数量将转化为非时变量参数,并根据电机基本特性建立永磁同步电机模型;
基于变指数趋近律和加权积分复合的方法确定永磁同步电机转速控制策略;
基于建立的永磁同步电机模型确定永磁同步电机控制模型,根据基于确定的控制策略以及永磁同步电机控制模型进行永磁同步电机控制。
8.一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行权利要求1~5任意一项所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
9.一种信息数据处理终端,其特征在于,所述信息数据处理终端用于实现权利要求1~5任意一项所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
10.一种永磁同步电机,其特征在于,所述永磁同步电机用于实现权利要求1~5任意一项所述基于复合变指数趋近律的永磁同步电机滑模控制方法。
CN202110116681.8A 2021-01-28 2021-01-28 永磁同步电机、滑模控制方法、控制系统、终端、介质 Pending CN112910349A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110116681.8A CN112910349A (zh) 2021-01-28 2021-01-28 永磁同步电机、滑模控制方法、控制系统、终端、介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110116681.8A CN112910349A (zh) 2021-01-28 2021-01-28 永磁同步电机、滑模控制方法、控制系统、终端、介质

Publications (1)

Publication Number Publication Date
CN112910349A true CN112910349A (zh) 2021-06-04

Family

ID=76119448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110116681.8A Pending CN112910349A (zh) 2021-01-28 2021-01-28 永磁同步电机、滑模控制方法、控制系统、终端、介质

Country Status (1)

Country Link
CN (1) CN112910349A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872477A (zh) * 2021-10-26 2021-12-31 长春工业大学 一种低速大转矩直驱电机抗扰动复合控制器设计
CN114244222A (zh) * 2021-11-02 2022-03-25 西南交通大学 一种永磁同步电机控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503163B1 (ko) * 2013-10-31 2015-03-16 현대위아 주식회사 Ipmsm의 전향 보상 제어 방법
CN104953915A (zh) * 2015-07-14 2015-09-30 东南大学 一种基于新型趋近律的永磁同步电机滑模控制策略
CN109951122A (zh) * 2019-04-02 2019-06-28 大连交通大学 改进指数趋近律的永磁同步电机模糊滑模控制系统及方法
CN110061671A (zh) * 2019-05-27 2019-07-26 中国人民解放军陆军工程大学 一种基于变速趋近率的永磁同步电机控制方法及控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503163B1 (ko) * 2013-10-31 2015-03-16 현대위아 주식회사 Ipmsm의 전향 보상 제어 방법
CN104953915A (zh) * 2015-07-14 2015-09-30 东南大学 一种基于新型趋近律的永磁同步电机滑模控制策略
CN109951122A (zh) * 2019-04-02 2019-06-28 大连交通大学 改进指数趋近律的永磁同步电机模糊滑模控制系统及方法
CN110061671A (zh) * 2019-05-27 2019-07-26 中国人民解放军陆军工程大学 一种基于变速趋近率的永磁同步电机控制方法及控制系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘杨青 等: "基于改进型趋近律的PMSM滑模控制", 《湖北汽车工业学院学报》 *
张旭秀 等: "基于改进型指数趋近律的直流电机滑模变结构控制器设计", 《大连交通大学学报》 *
胡强晖等: "基于趋近率的永磁同步电动机滑模变结构抖振", 《电机与控制应用》 *
霍召晗 等: "永磁同步电机滑模调速系统新型趋近律控制", 《电机与控制应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872477A (zh) * 2021-10-26 2021-12-31 长春工业大学 一种低速大转矩直驱电机抗扰动复合控制器设计
CN113872477B (zh) * 2021-10-26 2023-10-31 长春工业大学 一种永磁同步电机滑模控制方法及其应用
CN114244222A (zh) * 2021-11-02 2022-03-25 西南交通大学 一种永磁同步电机控制方法
CN114244222B (zh) * 2021-11-02 2023-05-05 西南交通大学 一种永磁同步电机控制方法

Similar Documents

Publication Publication Date Title
Sun et al. A composite sliding mode control for SPMSM drives based on a new hybrid reaching law with disturbance compensation
CN110165953B (zh) 一种基于趋近律的pmsm调速控制方法
Lin et al. Super-twisting algorithm second-order sliding mode control for a synchronous reluctance motor speed drive
CN112910349A (zh) 永磁同步电机、滑模控制方法、控制系统、终端、介质
Sun et al. Design and application of sliding mode controller in PMSM position tracking control based on adaptive backstepping
Halledj et al. Anti-disturbance GITSMC with quick reaching law for speed control of PMSM drive
Xu et al. An improved full-order sliding-mode observer for rotor position and speed estimation of SPMSM
Fang et al. Simulation of speed-control system for PMSM based on sliding mode control
CN112532132A (zh) 一种永磁同步电机电流快速响应控制方法
Meng et al. Adaptive backstepping speed control and sliding mode current regulation of permanent magnet synchronous motor
CN113691179B (zh) 基于固定时间变幂次指数趋近律的永磁同步电机控制方法
Wang et al. Flux-weakening fuzzy adaptive ST-SMO sensorless control algorithm for PMSM in EV
Lu et al. Study and simulation of permanent magnet synchronous motors based on neuron self-adaptive PID
Xu et al. Servo control system of permanent magnet synchronous motor based on feedforward control
Cui et al. Research on pmsm speed control system based on improved reaching law
Li et al. Research on an improved single neuron PI control strategy
Yang et al. Sliding Mode Control for Brushless Direct Current Motor Drive Based on a New Reaching Law
Ma et al. Model Predictive Current Control of Permanent Magnet Synchronous Motor Based on Sliding‐Mode Disturbance Observer
Chen et al. Backstepping and PCH coordinated control of induction motor considering copper loss
Yang et al. Sensor lessPMSM Control Algorithm for Rim-Driven Thruster Based on Improved PSO
CN114400935B (zh) 基于快速有限时间控制的感应电机复合控制方法
Vo Sliding mode speed controller design for field oriented controlled PMSM drive of an electric vehicle
Pu et al. Research on Vector Control Strategy of Three-Phase PMSM Based on PR Controller
Du et al. Sensor-Less Control Based on SM-ADRC of PMLSM
Lei et al. Composite Sliding Mode Control for PMSM Speed Regulation System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210604

RJ01 Rejection of invention patent application after publication