CN112811902B - 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 - Google Patents
一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 Download PDFInfo
- Publication number
- CN112811902B CN112811902B CN202110031606.1A CN202110031606A CN112811902B CN 112811902 B CN112811902 B CN 112811902B CN 202110031606 A CN202110031606 A CN 202110031606A CN 112811902 B CN112811902 B CN 112811902B
- Authority
- CN
- China
- Prior art keywords
- energy storage
- ceramic material
- raw materials
- high energy
- storage density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/475—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
- C04B2235/3255—Niobates or tantalates, e.g. silver niobate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备,属于功能陶瓷材料技术领域。其化学通式为(1‑x‑y)Bi0.5K0.5TiO3‑xBiFeO3‑yNaTaO3,其中0.21≤x≤0.24,0.00<y≤0.08。采用传统固相法制备的三元无铅铁电陶瓷在150kV/cm的电场下,有效储能密度达到了2.88J/cm3,且具有优异的温度稳定性,可以满足储能电容器对材料的要求。
Description
技术领域
本发明涉及一种高储能密度无铅铁电陶瓷材料,属于功能陶瓷材料技术领域。
背景技术
储能介电电容以其超高功率密度、高温稳定性和超快充放电能力,广泛应用于电动汽车、高频逆变器、电磁脉冲发生器等脉冲电力系统。然而,由于它们与超级电容器和电池相比的储能密度较低,介电电容器往往需要较大的体积和重量才能提供足够的功率,这不符合有关脉冲功率器件的重量和集成的要求。因此,迫切需要开发具有高可回收储能密度Wr的介电电容材料。通常,介电陶瓷的总储能密度W和有效储能密度Wr可以分别由方程和来计算,效率η则可以由方程η=Wr/W来计算,其中W、Pr、Pm、和E分别是总储能密度、剩余极化强度、最大极化强度和外加电场。从这些方程出发,具有高Wr的介电电容材料期望其具有高Pm、低Pr以及高的外加电场。钙钛矿氧化物是最有前途的材料之一,它们的P-E电滞回线的形状可以通过形成固溶体来调整,以提高它们的储能性能。
近年来,为了探索无铅储能电容器的候选材料,对Bi0.5Na0.5TiO3(BNT)、K0.5Na0.5NbO3(KNN)、BiFeO3(BF)、AgNbO3(AN)、SrTiO3(ST)、BaTiO3(BT)等无铅钙钛矿氧化物进行了广泛的研究。而K0.5Bi0.5TiO3(KBT)因其高极化特性和强弛豫特性引起了我们的兴趣。根据第一原理计算,KBT具有较高的自发极化(Ps=52μC/cm2),这是实现高储能密度的必要条件。此外,KBT的固有弛豫特性使其可具有较低的Pr,有利于获得较高的η。李峰等采用热压烧结工艺制备了La(Mg0.5Ti0.5)O3和Ba(Mg1/3Nb2/3)O3改性Bi0.5K0.5TiO3基陶瓷,在180kV/cm和230kV/cm的电场下分别获得了2.08J/cm3和3.14J/cm3的Wr值,同时也具有优异的温度稳定性。这些结果表明,KBT陶瓷具有在较宽的温度范围内获得高储能性能的潜力。目前,KBT陶瓷作为储能应用主要存在两个方面的不足,一是纯KBT的晶粒尺寸小,只有300nm左右,畴的钉扎作用太强,难以在较低的电场下获得高的自发极化;二是常规烧结工艺中K和Bi容易挥发,难以获得致密的结构,击穿场强较低,难于满足介电储能的需要。而采用特殊的烧结工艺,如热压,由于其还原气氛使陶瓷必须在氧环境进行进一步的热处理,增加了工艺的复杂和可控性。
因此,本发明设计在KBT中加入钙钛矿铁电体BF,可使KBT陶瓷的晶粒尺寸增加,改善烧结性能的同时实现较高的自发极化,从而可以采用常规无压烧结工艺。同时,BF含量为25mol.%左右的KBT-BF二元体系可形成多相边界MPB,使体系具有多相共存现象。进而,通过引入先兆性铁电体NaTaO3(NT),降低其电滞现象,减小剩余极化强度,并提高其击穿强度。特别是,NaTaO3(NT)的引入可以破坏KBT中铁电相的稳定性,并将介电最大值温度向低温移动,从而有利于获得良好的温度稳定性。其原因在于,Na+和Ta5+与KBT-BF的相应位置上的电荷和离子半径不同,会带来电荷不均匀性和局部随机场,从而增强了弛豫行为,获得高的储能密度。同时,NT的引入可以拓宽驰豫相弥散相变温度范围,使KBT基陶瓷的储能行为表现出良好的温度稳定性。
发明内容
本发明的目的是采用传统固相氧化物烧结法获得一种具有高储能密度的新型基无铅铁电陶瓷材料。为此,本发明采用的方法是在MPB附近的K0.5Bi0.5TiO3-BiFeO3二元体系中引入先兆性铁电体NaTaO3,形成化学计量比为(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3的三元无铅铁电陶瓷,0.21≤x≤0.24,0<y≤0.08,从而获得高的储能密度。
本发明制备的(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3[0.21≤x≤0.24,0<y≤0.08]陶瓷的步骤如下。首先根据化学化学计量比称量原料,将原料在乙醇中球磨以使原料充分混合均匀,将混合均匀的原料烘干后装入氧化铝坩埚内,在空气中800-890℃煅烧4h。最后将压制成型的坯体埋入KBT煅烧粉末中,在空气气氛中在1030-1070℃下烧结10h,得到致密的陶瓷。
本发明得到的(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3[0.21≤x≤0.24,0<y≤0.08]三元无铅铁电陶瓷,由于NT的加入削弱了长程铁电相形成了遍历弛豫相,在较低的电场(150kV/cm)下,获得了高达2.88J/cm3的Wr值,并且具有良好的温度稳定性(如20-160℃的温度范围内具有很好地稳定性),实现了与热压烧结的KBT基陶瓷可比拟的储能性能。
附图简述
关于本发明的示例性实施方案的详述,表现在参考附图,其中:
图1为本发明组成为0.73Bi0.5K0.5TiO3-0.23BiFeO3-0.04NaTaO3陶瓷的XRD图,表明该陶瓷具有纯钙钛矿结构,并表现出赝立方结构特征。
图2为本发明组成为0.73Bi0.5K0.5TiO3-0.23BiFeO3-0.04NaTaO3陶瓷在10-150kV/cm的外加电场下的单极电致回线图。
图3为本发明组成为0.73Bi0.5K0.5TiO3-0.23BiFeO3-0.04NaTaO3陶瓷在10-150kV/cm的外加电场下的储能性能图。
图4为本发明组成为0.73Bi0.5K0.5TiO3-0.23BiFeO3-0.04NaTaO3陶瓷在20-160℃的范围内90kV/cm外加电场下的储能性能图。
符号和术语
在下列说明书和权利要求书各处使用某些术语。
术语“极化滞后”是指表现出代表由于无铅铁电陶瓷材料的非线性极化产生的电场上升和下降时极化强度不一致的现象。
术语“多相边界”是指在温度-成分相图上,在特定的成分范围和温度区间内出现多相结构共存的现象,该成分称之为多相边界。
术语“大约”在表示数值或范围时意在包括由于进行测量时发生的实验误差造成的更大或更小的值。这样的测量偏差通常在所列数值的±10%内。
无铅铁电材料中组成的相对量或比例以摩尔分数或摩尔%(mol.%)表示,例如,x≤0.06,x=0.08或0.73Bi0.5K0.5TiO3-0.23BiFeO3-0.04NaTaO3。
温度、比例等其他数值数据可以以范围格式呈现。这样的范围格式仅为方便和简明使用,并且应灵活解释不仅包括作为该范围的明确列举的数值,还包括该范围内包含的所有独立数值或子范围。例如,20-160℃的温度范围内应被解释为不仅包括明确列举的数值20℃和160℃,还包括每一中间温度,如40℃、60℃、80℃、100℃、120℃、140℃和所有的子范围,如60-120℃,等等。
具体实施方式
下面结合实施例进一步说明本发明,但本发明并不限于以下实施例。
本发明的实施例是一种高储能密度的KBT-BF基无铅铁电陶瓷,通式为(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3,其中x代表BiFeO3的摩尔百分比,0.18≤x≤0.26,y代表NaTaO3的摩尔百分比,0.02≤y≤0.08。各组分以K2CO3(99.95%),Na2CO3(99.95%),Bi2O3(99.95%),TiO2(99.95%),Fe2O3(99.95%),Ta2O5(99.98%)为原料进行配料。本发明制备陶瓷是采用常规的氧化物陶瓷制备工艺,首先根据化学化学计量比称量原料,将原料在乙醇中球磨以使原料充分混合均匀,将混合均匀的原料烘干后装入氧化铝坩埚内,在空气中800-890℃煅烧4h。最后将压制成型的坯体埋入KBT煅烧粉末中,在空气气氛中在1030-1070℃下烧结10h,得到致密的陶瓷。
本发明各实施例的(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3陶瓷的配方和、煅烧及烧结工艺参数如表1所示。
表1本发明各实施例陶瓷的配方和烧结参数
对实施例2中的陶瓷样品进行X射线测试,所得XRD图显示在附图1中,表明该实施例具有纯的钙钛矿结构,没有第二相的痕迹。
附图2和附图3是本实施例2的陶瓷样品的电滞回线测量结果和所计算的储能性能。可以看到,随着电场的增加,最大极化强度呈线性增加,储能密度不断提高,最终在150kV/cm的工作电场下,有效储能密度达到2.88J/cm3。
附图4表示了本实施例2的陶瓷样品在20-160℃的温度范围内的储能性能,可以看到,该实施例具有良好的温度稳定性,有效储能密度的变化率低于12%,储能效率的变化率低于5%。
对比例及实施例性能表:
Claims (4)
1.一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料,其特征在于,其组成为K0.5Bi0.5TiO3-BiFeO3-NaTaO3固溶体;其化学通式为(1-x-y)Bi0.5K0.5TiO3-xBiFeO3-yNaTaO3,其中0.21≤x≤0.24,0.00<y≤0.08。
2.按照权利要求1所述的一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料,其特征在于,所述陶瓷材料具有稳定钙钛矿结构。
3.按照权利要求1所述的一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料,其特征在于,制备方法,包括以下步骤:首先根据化学计量比称量原料,将原料在乙醇中球磨以使原料充分混合均匀,将混合均匀的原料烘干后装入氧化铝坩埚内,在空气中800-890℃煅烧4h,最后将压制成型的坯体埋入KBT煅烧粉末中,在空气气氛中在1030-1070℃下烧结10h,得到致密的陶瓷。
4.按照权利要求1所述的一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料,其特征在于,20-160℃的温度范围内储能稳定。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110031606.1A CN112811902B (zh) | 2021-01-11 | 2021-01-11 | 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110031606.1A CN112811902B (zh) | 2021-01-11 | 2021-01-11 | 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112811902A CN112811902A (zh) | 2021-05-18 |
CN112811902B true CN112811902B (zh) | 2022-09-09 |
Family
ID=75869866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110031606.1A Active CN112811902B (zh) | 2021-01-11 | 2021-01-11 | 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112811902B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114436647B (zh) * | 2022-01-28 | 2023-07-25 | 西安理工大学 | 低温共烧钛酸铋钠基介质陶瓷的制备方法 |
CN114736016B (zh) * | 2022-04-13 | 2023-07-28 | 杭州电子科技大学 | 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法 |
CN115215648A (zh) * | 2022-06-09 | 2022-10-21 | 摩比天线技术(深圳)有限公司 | 无铅高储能性能的钛酸钡基陶瓷材料及其制备方法 |
CN115849901B (zh) * | 2022-12-03 | 2023-08-18 | 北京工业大学 | 一种K0.5Bi0.5TiO3基三元系介电储能无铅陶瓷材料 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201501923D0 (en) * | 2015-02-05 | 2015-03-25 | Ionix Advanced Technologies Ltd | Piezoelectric transducers |
GB2550887B (en) * | 2016-05-27 | 2020-05-20 | Johnson Matthey Piezo Products Gmbh | Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance |
CN107935586B (zh) * | 2017-11-13 | 2020-04-21 | 陕西科技大学 | 一种铌酸钾改性的bt-kbt基储能陶瓷及其制备方法 |
CN108147812A (zh) * | 2018-01-15 | 2018-06-12 | 陕西科技大学 | 一种bt-kbt-nn基高储能密度陶瓷及其制备方法 |
KR102710730B1 (ko) * | 2018-11-26 | 2024-09-27 | 삼성전자주식회사 | 유전체, 이를 포함하는 캐패시터 및 반도체 소자, 및 이의 제조방법 |
CN110436920B (zh) * | 2019-08-26 | 2020-06-16 | 中南大学 | 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用 |
CN111081870B (zh) * | 2019-11-25 | 2022-01-11 | 中国科学技术大学 | 基于铁电隧道结的阻变存储器及其数据写入方法 |
-
2021
- 2021-01-11 CN CN202110031606.1A patent/CN112811902B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112811902A (zh) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112811902B (zh) | 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备 | |
Tian et al. | Large energy-storage density in transition-metal oxide modified NaNbO 3–Bi (Mg 0.5 Ti 0.5) O 3 lead-free ceramics through regulating the antiferroelectric phase structure | |
Luo et al. | Aliovalent A-site engineered AgNbO 3 lead-free antiferroelectric ceramics toward superior energy storage density | |
Luo et al. | Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics | |
Hong et al. | Perspectives and challenges in multilayer ceramic capacitors for next generation electronics | |
Pan et al. | Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors | |
Cheng et al. | Enhanced insulating and piezoelectric properties of 0.7 BiFeO 3–0.3 BaTiO 3 lead-free ceramics by optimizing calcination temperature: analysis of Bi 3+ volatilization and phase structures | |
Wang et al. | An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO 3 | |
TWI399767B (zh) | Dielectric ceramics and capacitors | |
Yuan et al. | High-temperature stable dielectrics in Mn-modified (1-x) Bi 0.5 Na 0.5 TiO 3-xCaTiO 3 ceramics | |
JP3470703B2 (ja) | 非還元性誘電体セラミックおよびそれを用いた積層セラミックコンデンサ、ならびに非還元性誘電体セラミックの製造方法 | |
Sun et al. | Dielectric properties of BiAlO3-modified (Na, K, Li) NbO3 lead-free ceramics | |
EP3097063B1 (en) | Dielectric composition, dielectric element, electronic component and laminated electronic component | |
Li et al. | Dielectric temperature stability and energy storage performance of NBT-based lead-free ceramics for Y9P capacitors | |
Lu et al. | Energy storage properties in Nd-doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies | |
Kishi et al. | Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3 | |
KR20100133905A (ko) | 유전물질용 소결체 및 이의 제조 방법 | |
EP3097064A1 (en) | Dielectric composition, dielectric element, electronic component and laminated electronic component | |
Xu et al. | High-temperature dielectrics in BNT-BT-based solid solution | |
Song et al. | Effect of titanium content on dielectric and energy storage properties of (Pb, La, Sr)(Zr, Sn, Ti) O 3 ceramics | |
CN115849901B (zh) | 一种K0.5Bi0.5TiO3基三元系介电储能无铅陶瓷材料 | |
JP2002134350A (ja) | 積層セラミックコンデンサおよびその製造方法 | |
CN102442825B (zh) | 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物、电子部件及电子部件的制造方法 | |
JP4765367B2 (ja) | 誘電体磁器組成物 | |
Li et al. | Preparation and dielectric properties of Mn-doped Ba0. 6Sr0. 4TiO3-MgTiO3 composite ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |