CN112786733A - 一种高精度γ射线传感器的硅芯片工艺方法 - Google Patents

一种高精度γ射线传感器的硅芯片工艺方法 Download PDF

Info

Publication number
CN112786733A
CN112786733A CN202011631036.1A CN202011631036A CN112786733A CN 112786733 A CN112786733 A CN 112786733A CN 202011631036 A CN202011631036 A CN 202011631036A CN 112786733 A CN112786733 A CN 112786733A
Authority
CN
China
Prior art keywords
ray sensor
silicon
silicon chip
etching
process method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011631036.1A
Other languages
English (en)
Inventor
何少伟
马敏辉
宋召海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaxinwei Semiconductor Technology Beijing Co ltd
Original Assignee
Huaxinwei Semiconductor Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaxinwei Semiconductor Technology Beijing Co ltd filed Critical Huaxinwei Semiconductor Technology Beijing Co ltd
Priority to CN202011631036.1A priority Critical patent/CN112786733A/zh
Publication of CN112786733A publication Critical patent/CN112786733A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/119Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation characterised by field-effect operation, e.g. MIS type detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种高精度γ射线传感器的硅芯片工艺方法,采用SiC厚氧化层工艺,便于产品工艺得到工程化应用。本申请中的硅芯片在N型SiC材料上制作,为耗尽型金属栅MOS管,表面用铝作为栅极和引线极,通过干法腐蚀工艺形成γ射线传感器硅芯片几何结构。感应芯片和基准芯片通过焊锡贴于金属基板,金属基板接地。栅极和源极接地,感应芯片和基准芯片漏极通过恒流源注入相同的电流,输出端将由辐照剂量的不同输出不同的电压信号。

Description

一种高精度γ射线传感器的硅芯片工艺方法
技术领域
本发明涉及γ射线传感器芯片结构技术领域,尤其是涉及一种高精度γ射线传感器的硅芯片工艺方法。
背景技术
γ射线会使半导体器件产生电离辐射效应,即为在γ射线的照射下,MOS器件的氧化层发生电离,产生电子-空穴对,电子在电场的作用下很快被释放,而一部分空穴被氧化层内的空穴陷阱俘获,形成氧化层陷阱电荷,另一部分空穴与氧化层内含氢缺陷相互作用,形成界面陷阱电荷,此两种缺陷电荷都将引起MOS器件性能的退化。其表现为在γ射线的辐照下,MOS器件的阈值、饱和电流将发生变化。图1为电荷的输运过程示意图。
γ射线传感器通过引线接入差动电路中,如图2所示。在该差动电路中,作为基准的MOS管M1和作为探测器的M2为完全相同的两只MOS管,此2只MOS管的栅极和源极短接并接地,在M1和M2的漏极各自注入相同的电流Iin1和Iin2,输出电压Uo为M1与M2的导通压降之差。作为基准的M1不接受γ射线辐照,当作为探测器的M2未受到γ射线辐照时,输出电压Uo为零,当M2接受到γ射线辐照后,输出电压Uo将随着γ射线的辐射剂量发生线性变化。
由于SiC器件温度不敏感,随着温度的升高,其在固定注入电流下的导通压降将几乎不发生变化,其探测精度具有良好的温度稳定性,使得输出信号仅与辐照剂量有关,而与环境温度无关。
通常的MOS型γ射线传感芯片,采用干法刻蚀氧化硅的方式制备器件芯片,采用此种方式,由于氧化层台阶过高,腐蚀时容易对底部的SiC材料形成损伤,出现打毛现象;同时,由于氧化层台阶过高,在进行金属腐蚀时,易在台阶的底部形成金属残余,影响器件的成品率和可靠性。
公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种高精度γ射线传感器的硅芯片工艺方法,以解决现有技术中存在的问题。
为了实现上述目的,本发明采用以下技术方案:
本发明提供一种高精度γ射线传感器的硅芯片工艺方法,包括如下步骤:
(a)选取碳化硅材料;
(b)氧化:在碳化硅材料上氧化一层SiO2层;
(c)离子注入:Al离子注入,通过离子注入,形成沟道;
(d)源漏区光刻,便于通过离子注入形成源极和漏极;
(e)离子注入:B注入,通过大剂量B离子注入,形成源极和漏极;
(f)LP-CVD SiN淀积:采用硅烷和笑气在炉管中发生反应,生成一定厚度的SiN;
(g)栅极光刻:形成栅氧化区窗口;
(h)栅极介质层刻蚀:等离子化学反应刻蚀,去除SiO2/SiN介质层,反应终点控制在碳化硅衬底界面;
(i)栅氧化:在炉管中,高温下使碳化硅材料和氧气发生反应,生成氧化硅;
(j)介质层腐蚀:湿法腐蚀去除SiN介质层;
(k)接触孔光刻;
(l)接触孔腐蚀:采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅,腐蚀SiO2介质层,反应终点控制在硅衬底界面;
(m)金属层淀积:采用AL靶/AR气在等离子体设备中溅射AL膜,在源极、漏极形成欧姆接触;
(n)金属光刻:形成栅极以及键合PAD;
(o)金属腐蚀:等离子化学反应刻蚀,去除金属层,反应终点控制在SiO2介质层;
(p)氢气退火:金属层合金及化学反应损伤退火,形成欧姆接触;
(q)背面减薄,减薄至300±20微米。
作为一种进一步的技术方案,步骤(a)中选取的所述碳化硅材料为4H晶向,电阻率10~20ohm-cm,电阻率10~20ohm-cm,直径100±0.1mm。
作为一种进一步的技术方案,步骤(b)中SiO2层的厚度为10nm。
作为一种进一步的技术方案,步骤(f)中SiN的厚度为200nm。
作为一种进一步的技术方案,步骤(h)中采用CF4/NF3/AR在RIE等离子体刻蚀设备中去除氮化硅,采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅。
作为一种进一步的技术方案,步骤(i)中生成氧化硅的厚度为800nm,并采用干氧-加氢氧化-干氧的生长方式。
作为一种进一步的技术方案,步骤(l)中腐蚀SiO2介质层厚度20nm。
作为一种进一步的技术方案,步骤(m)中磁控溅射淀积1000nm铝。
作为一种进一步的技术方案,步骤(j)中采用热磷酸去除SiN介质层。
采用上述技术方案,本发明具有如下有益效果:
本申请中的γ射线传感器芯片采用SiC器件工艺,提高了芯片的可靠性,和γ射线传感器常规工艺相比提升了器件参数性能,尤其是温度稳定性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为电离辐射效应中电荷的输运示意图;
图2为γ射线传感器信号输出电路;
图3为碳化硅衬底上生长厚度10纳米氧化层的结构示意图;
图4为进行源漏注入的光刻区域示意图;
图5为SiN淀积(200nm)后的结构示意图;
图6为栅极介质层腐蚀后的结构示意图;
图7为栅极氧化(生长SiO2厚度800纳米)完成后的结构示意图;
图8为接触孔光刻腐蚀后的结构示意图;
图9为金属淀积、光刻、腐蚀后的结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
结合图3-图9所示,本发明提供一种高精度γ射线传感器的硅芯片工艺方法,其包括如下步骤:
a)选取碳化硅材料1:碳化硅材料1为晶向4H,型号:N型,电阻率10~20ohm-cm,直径125±0.125mm。
b)氧化:在碳化硅材料1上氧化形成SiO2层2,SiO2层2的厚度10nm;
c)离子注入:Al离子注入,通过离子注入,形成沟道;
d)源漏区光刻,便于通过离子注入形成源极和漏极,在SiO2层2上设置光刻胶3;
e)离子注入:B注入,通过大剂量B离子注入,形成源极和漏极;
f)LP-CVD SiN淀积,采用硅烷和笑气在炉管中发生反应,生成厚度200nm的SiN层4;
g)栅极光刻:形成栅氧化区窗口,尺寸大小由器件参数规范要求确定;
h)栅极介质层刻蚀:等离子化学反应刻蚀,去除SiO2/SiN介质层,反应终点控制在硅衬底界面。采用CF4/NF3/AR在RIE等离子体刻蚀设备中去除氮化硅,采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅;
i)栅氧化:SiO2厚度800nm,在炉管中,高温下使碳化硅材料和氧气发生反应,生成氧化硅,为提高氧化硅层质量,并兼顾生长速度,采用干氧-加氢氧化-干氧的生长方式;
j)介质层腐蚀:湿法腐蚀,采用热磷酸去除SiN介质层;
k)接触孔光刻;
l)对接触孔5腐蚀:采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅,腐蚀SiO2介质层厚度20nm,反应终点控制在碳化硅衬底界面;
m)金属层淀积:采用AL靶/AR气在等离子体设备中溅射AL膜,磁控溅射淀积1000nm铝,和源极、漏极形成欧姆接触;
n)金属光刻:形成栅极以及键合PAD;
o)金属腐蚀;等离子化学反应刻蚀,去除金属层,反应终点控制在SiO2介质层;形成源极电极6,栅极电极7以及漏极电极8。
p)氢气退火:金属层合金及化学反应损伤退火,形成欧姆接触,提高引线键合能力。
q)背面减薄:减薄至300±20微米。
本γ射线传感器硅芯片在N型SiC材料上制作,为耗尽型金属栅MOS管,表面用铝作为栅极和引线极,通过干法腐蚀工艺形成γ射线传感器硅芯片几何结构。感应芯片和基准芯片通过焊锡贴于金属基板,金属基板接地。栅极和源极接地,感应芯片和基准芯片漏极通过恒流源注入相同的电流,输出端将由辐照剂量的不同输出不同的电压信号。
传感器测量范围:0~20Gy
电流源输出电流:10uA
工作温度-40℃~175℃;
寿命:10年。
本发明的优点:本γ射线传感器芯片采用SiC器件工艺,提高了芯片的可靠性,和γ射线传感器常规工艺相比提升了器件参数性能,尤其是温度稳定性。表1为探测器及芯片达到的技术参数指标。
表1γ射线传感器性能和功能的具体要求
Figure BDA0002876477300000071
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

1.一种高精度γ射线传感器的硅芯片工艺方法,其特征在于,包括如下步骤:
(a)选取碳化硅材料;
(b)氧化:在碳化硅材料上氧化一层SiO2层;
(c)离子注入:Al离子注入,通过离子注入,形成沟道;
(d)源漏区光刻,便于通过离子注入形成源极和漏极;
(e)离子注入:B注入,通过大剂量B离子注入,形成源极和漏极;
(f)LP-CVD SiN淀积:采用硅烷和笑气在炉管中发生反应,生成一定厚度的SiN;
(g)栅极光刻:形成栅氧化区窗口;
(h)栅极介质层刻蚀:等离子化学反应刻蚀,去除SiO2/SiN介质层,反应终点控制在碳化硅衬底界面;
(i)栅氧化:在炉管中,高温下使碳化硅材料和氧气发生反应,生成氧化硅;
(j)介质层腐蚀:湿法腐蚀去除SiN介质层;
(k)接触孔光刻;
(l)接触孔腐蚀:采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅,腐蚀SiO2介质层,反应终点控制在硅衬底界面;
(m)金属层淀积:采用AL靶/AR气在等离子体设备中溅射AL膜,在源极、漏极形成欧姆接触;
(n)金属光刻:形成栅极以及键合PAD;
(o)金属腐蚀:等离子化学反应刻蚀,去除金属层,反应终点控制在SiO2介质层;
(p)氢气退火:金属层合金及化学反应损伤退火,形成欧姆接触;
(q)背面减薄,减薄至300±20微米。
2.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(a)中选取的所述碳化硅材料为4H晶向,电阻率10~20ohm-cm,电阻率10~20ohm-cm,直径100±0.1mm。
3.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(b)中SiO2层的厚度为10nm。
4.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(f)中SiN的厚度为200nm。
5.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(h)中采用CF4/NF3/AR在RIE等离子体刻蚀设备中去除氮化硅,采用CF4/CHF3/AR在RIE等离子体刻蚀设备中去除二氧化硅。
6.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(i)中生成氧化硅的厚度为800nm,并采用干氧-加氢氧化-干氧的生长方式。
7.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(l)中腐蚀SiO2介质层厚度20nm。
8.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(m)中磁控溅射淀积1000nm铝。
9.根据权利要求1所述的高精度γ射线传感器的硅芯片工艺方法,其特征在于,步骤(j)中采用热磷酸去除SiN介质层。
CN202011631036.1A 2020-12-30 2020-12-30 一种高精度γ射线传感器的硅芯片工艺方法 Pending CN112786733A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011631036.1A CN112786733A (zh) 2020-12-30 2020-12-30 一种高精度γ射线传感器的硅芯片工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011631036.1A CN112786733A (zh) 2020-12-30 2020-12-30 一种高精度γ射线传感器的硅芯片工艺方法

Publications (1)

Publication Number Publication Date
CN112786733A true CN112786733A (zh) 2021-05-11

Family

ID=75754720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011631036.1A Pending CN112786733A (zh) 2020-12-30 2020-12-30 一种高精度γ射线传感器的硅芯片工艺方法

Country Status (1)

Country Link
CN (1) CN112786733A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074610A (zh) * 2010-09-09 2011-05-25 西安电子科技大学 基于碳化硅金属半导体场效应管结构的β辐照探测器
US20150028353A1 (en) * 2013-07-26 2015-01-29 Krishna C. Mandal Schottky Barrier Detection Devices Having a 4H-SiC n-Type Epitaxial Layer
CN105161566A (zh) * 2015-07-02 2015-12-16 哈尔滨工程大学 一种半浮栅晶体管γ射线剂量探测器及探测方法
CN105845746A (zh) * 2016-04-01 2016-08-10 西安电子科技大学 基于碳化硅PIN二极管结构的γ辐照闪烁体探测器
CN205452319U (zh) * 2016-03-29 2016-08-10 成都晶威科技有限公司 一种核辐射探测器
CN108695397A (zh) * 2017-04-07 2018-10-23 深圳市乐夷微电子有限公司 一种芯片工艺制造方法及光敏传感器芯片
CN110265500A (zh) * 2019-06-11 2019-09-20 中国科学院高能物理研究所 一种4H-SiC像素肖特基辐射探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074610A (zh) * 2010-09-09 2011-05-25 西安电子科技大学 基于碳化硅金属半导体场效应管结构的β辐照探测器
US20150028353A1 (en) * 2013-07-26 2015-01-29 Krishna C. Mandal Schottky Barrier Detection Devices Having a 4H-SiC n-Type Epitaxial Layer
CN105161566A (zh) * 2015-07-02 2015-12-16 哈尔滨工程大学 一种半浮栅晶体管γ射线剂量探测器及探测方法
CN205452319U (zh) * 2016-03-29 2016-08-10 成都晶威科技有限公司 一种核辐射探测器
CN105845746A (zh) * 2016-04-01 2016-08-10 西安电子科技大学 基于碳化硅PIN二极管结构的γ辐照闪烁体探测器
CN108695397A (zh) * 2017-04-07 2018-10-23 深圳市乐夷微电子有限公司 一种芯片工艺制造方法及光敏传感器芯片
CN110265500A (zh) * 2019-06-11 2019-09-20 中国科学院高能物理研究所 一种4H-SiC像素肖特基辐射探测器及其制备方法

Similar Documents

Publication Publication Date Title
US6259099B1 (en) Ultra-thin ionizing radiation detector and methods for making same
KR20090096711A (ko) 실리콘 웨이퍼의 평가방법
Ott et al. Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide
WO2013187140A1 (ja) 半導体基板の評価方法、評価用半導体基板、半導体装置
CN111755576A (zh) 非晶氧化镓刻蚀方法及在三端器件和阵列成像系统的应用
US8933711B2 (en) Capacitive sensor radiation measurement
JP5434491B2 (ja) 半導体基板の評価方法及び半導体デバイスの製造方法
CN112786733A (zh) 一种高精度γ射线传感器的硅芯片工艺方法
CN108695397B (zh) 一种芯片工艺制造方法及光敏传感器芯片
US20160079130A1 (en) Method for evaluating a semiconductor wafer
JPH114012A (ja) Pinフォトダイオード
Foulon et al. A new technique for the fabrication of thin silicon radiation detectors
JP2008251881A (ja) 受光素子およびその製造方法
JP4605878B2 (ja) 半導体装置およびその製造方法
JP7135998B2 (ja) エピタキシャルウェーハの評価方法
CN217983374U (zh) 一种msm型金刚石快中子探测器
RU2378738C1 (ru) Способ изготовления детектора короткопробежных частиц
JP7176483B2 (ja) 半導体基板の評価方法および評価用半導体基板
JP2707555B2 (ja) 半導体放射線検出器
TWI757122B (zh) 場效二極體光感測半導體元件
JPS62122170A (ja) Misトランジスタ及びその製造方法
JPH10200149A (ja) フォトダイオードの製造方法
JP2001077336A (ja) 基板評価用素子及びその製造方法
Jang et al. Determination of Positive Mobile Ion Density in Silicon Dioxide by Hydrogenated Amorphous Silicon Field Effect Technique
JP3201300B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination