CN112745332A - 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物 - Google Patents

哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物 Download PDF

Info

Publication number
CN112745332A
CN112745332A CN202011637769.6A CN202011637769A CN112745332A CN 112745332 A CN112745332 A CN 112745332A CN 202011637769 A CN202011637769 A CN 202011637769A CN 112745332 A CN112745332 A CN 112745332A
Authority
CN
China
Prior art keywords
compound
organic semiconductor
piperidine
semiconductor compound
thiazolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011637769.6A
Other languages
English (en)
Inventor
张慧丽
肖凯
肖淑勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Organic Nano Electronic Inc
Original Assignee
Nanjing Organic Nano Electronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Organic Nano Electronic Inc filed Critical Nanjing Organic Nano Electronic Inc
Priority to CN202011637769.6A priority Critical patent/CN112745332A/zh
Publication of CN112745332A publication Critical patent/CN112745332A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/14Thiadiazoles; Hydrogenated thiadiazoles condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明涉及有机光电材料合成技术领域,具体涉及到一种新型有机光电材料的合成及其在电子器件中的应用;通过此发明实现了哌啶取代的2‑噻唑啉‑4‑酮封端的有机半导体化合物简单高效合成;本发明中哌啶取代的2‑噻唑啉‑4‑酮封端的有机半导体化合物合成重复性好,易于实现标准化。

Description

哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物
技术领域
本发明涉及有机光电材料领域,具体涉及到哌啶取代的2-噻唑啉-4-酮封端的小分子半导体化合物的设计合成。
背景技术
有机光伏(OPV)在满足清洁,低成本和可再生能源不断增长的需求方面显示出巨大潜力。自1990年代以来,大多数OPV研究都基于所谓的“本体异质结”(BHJ)活性层,相应活性层是通过将π-共轭聚合物供体与富勒烯受体溶液共混而制备。最近,具有扩展π-共轭骨架小分子半导体已成为该领域的下一个热点。这很大程度上归因于其明确的结构,这种结构可最大程度地减少批次间的差异并提供可重现的器件特性,这对于商业的可行性至关重要。分子结构-特性的关系进展也显著影响着分子优化和设计。新光伏分子的开发方向主要有优化能级,增加有效吸收和电荷传输以及合适的固态形貌,而上述因素也是提高未来光伏设备性能的关键。
在BHJ OPV中使用的许多分子材料中,已证明π共轭受体-供体-受体(ADA)分子在构建有效的光伏材料方面非常成功。相应串联电池的光电转化效率高达17.3%。这种结构中的“推-拉”效应以及在供体和受体基团之间的相关的强分子内电荷转移(ICT)导致扩大的光吸收,该吸收可以扩展到近红外(NIR)区域。强大的四极矩增强了分子间的相互作用,从而改善了电荷传输性能,并可能通过p型和n型半导体域之间界面的极化促进了电荷分离。此外,模块化ADA架构极大地简化了合成工作,例如简单调节供体/受体结构单元可溶性侧链可改变其溶解性进而影响其光电特性。
自从Schulze等人的开创性工作以来,已经在A-D-A光电材料中探索了几个吸电子端基(二氰基辛烯,1,3-茚二酮及其衍生物,噻唑酮衍生物,其它缺电子杂环等)。在这些端基中,由于3-烷基-2-硫代噻唑啉-4-酮(N-烷基罗丹宁)的高吸电子能力导致宽幅而有效的吸收,这对于实现高短路电流非常重要。罗丹宁A-D-A衍生物在小分子OPV材料中得到了广泛应用,科学家也对此类材料在光电器件中的作用逐渐了解。
之前的研究中验证了DR3TBDTT和O-IDTBR具有扩展的π-共轭寡聚噻吩骨架,高刚性和在BHJ OPV中的优异性能,因此本发明中选定DR3TBDTT和O-IDTBR作为模型化合物,作为A-D-A中的D,其中A我们选定了哌啶取代的2-噻唑啉-4-酮,设计合成了2-噻唑啉-4-酮封端小分子半导体化合物。通过设计不同取代的罗丹宁单元实现光学,电子和固态特性的调节,进而考察封端基团对器件性能的重要作用。
发明内容
本发明合成了一种新型的A-D-A小分子半导体化合物,其中D采用在BHJ OPV中具有优异性能的DR3TBDTT和O-IDTBR。采用哌啶取代的2-噻唑啉-4-酮作为封端基团。
采用哌啶取代的2-噻唑啉-4-酮作为封端基团,引入吸电子能力不同的封端基团进而影响其电子能级最终影响材料的光电性能。
本发明采用的技术方案如下:
一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物的合成,此有机半导体化合物具有如化学式1所示的结构:
Figure BDA0002877166500000021
上述化学式1中,Ar为芳香核。
上述有机半导体聚合物结构简式中,所述Ar优选结构如化学式2~7所示的结构:
Figure BDA0002877166500000022
Figure BDA0002877166500000031
上述化学式2~7中,R1、R2为具有1-8个碳原子的烷基。
更优选的芳香核具有如化学式8~13所示的结构:
Figure BDA0002877166500000032
Figure BDA0002877166500000041
本专利中更优选的芳香核为结构如下:
Figure BDA0002877166500000042
相应采用上述优选的芳香核,得到更优选的哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,具有如化学式14、化学式15所示的结构:
Figure BDA0002877166500000051
本发明为了研究不同封端基团对相应有机半导体化合物光学性能的影响。也合成了3-乙基罗丹宁为封端基团,以最优选的芳香核的有机半导体化合物,其具有如化学式16、化学式17所示的结构:
Figure BDA0002877166500000061
本发明提供了哌啶取代的2-噻唑啉-4-酮及其作为封端的相应有机半导体化合物简单易行的合成方法。
附图说明
图1为实施例1中化合物S3的1HNMR图谱;
图2为实施例2中化合物15的1HNMR图谱;
图3为实施例2中化合物17的1HNMR图谱;
图4为实施例3中化合物14的1HNMR图谱;
图5为实施例3中化合物16的1HNMR图谱;
图6为实施例6中化合物14、化合物15、化合物16、化合物17的C-V曲线图。
具体实施方式
下面的实施例可使本专业技术人员全面的理解本发明,但不以任何方式限制本发明:
实施例1:封端基团2-(哌啶-1-基)噻唑-4(5H)-酮的合成
Figure BDA0002877166500000071
2-(乙硫基)噻唑-4(5H)-酮(化合物S2):
将罗丹宁(100g,0.75mol)溶解于EtOH(1L)中,随后向反应液中添加KOH(47.2g,0.841mol),平均分5次添加。将反应液再Ar保护下室温搅拌40min,然后油浴加热至70℃搅拌过夜。最后将反应液降至0℃。收集反应液内的沉淀,用EtOH洗涤,干燥48h后得棕色固体化合物A(53.2g,41.4%)。将化合物A(40.0g,0.234mol)和KI(116.3g,0.70mol)溶解于丙酮(1L)和DMF(400mL)混合溶液中,随后添加溴乙烷(222g,2.04mol),室温搅拌3h,然后过滤,将滤液旋干得到初产物,通过硅胶柱层析提纯(1:9EtOAc/己烷)可得化合物S2(16.2g,43%)。
1H NMR(CDCl3,500MHz)δ3.99(s,2H),3.34(q,2H,J=7.4Hz),1.45(t,3H,J=7.4Hz).
2-(哌啶-1-基)噻唑-4(5H)-酮(化合物S3):
向化合物S2(0.196g,1.22mmol)的氯仿(2mL)溶液中加入哌啶(0.40mL,4.0mmol),并将混合物在室温搅拌60分钟。蒸发溶剂,并将粗产物通过柱色谱法纯化(1:4丙酮/DCM),得到所需产物化合物S3(0.222g,定量)。相应核磁数据如图1。
1H NMR(CDCl3,500MHz)δ3.95(s,2H),3.94(m,2H),3.49(m,2H),1.80-1.64(m,6H).
实施例2:化合物15和化合物17合成
Figure BDA0002877166500000081
化合物15:
将5g Ar-1和7.5g化合物S2溶解在250ml三氯甲烷和125ml冰乙酸中,缓慢升温回流过夜。反应结束后旋除溶剂并用己烷洗涤产品。最后过柱提纯得到深蓝色固体,洗脱剂为乙酸乙酯:三氯甲烷=1:50,干燥后得到产品5.1g,收率80%。
继续将中间体(5.1g,3.86mmol)溶解于氯仿(155mL)中,随后向反应液内滴加70mL哌啶,室温下搅拌60min。结束后旋干溶剂得紫色初产物,通过硅胶柱层析(3:7acetone/hexanes)提纯,最终的紫色化合物15(5.1g)。相应核磁数据如图2所示。
1H NMR(CDCl3,500MHz)δ8.66(s,2H),8.21(s,2H),8.00(d,2H,J=7.7Hz),7.82(d,2H,J=7.7Hz),7.43(s,2H),4.09(m,4H),3.67(m,4H),2.18-1.93(m,8H),1.88-1.73(m,12H),1.26-1.08(m,40H),1.05-0.85(m,8H),0.80(t,12H,J=7.1Hz)。
化合物17(O-IDTBR-A):
往准备好的三口烧瓶中加入5g Ar-1和7.5g的3-乙基罗丹宁,然后加入300mL叔丁醇作为溶剂,搅拌5-10min后,滴入2ml新鲜哌啶。然后缓慢升温至85℃,加热过夜。反应结束后用三氯甲烷进行萃取,无水硫酸镁干燥产品。将上述粗品过柱提纯,洗脱剂为乙酸乙酯:三氯甲烷=1:50,提纯后将产品溶解在少量三氯甲烷中,然后加入甲醇进行沉淀,过滤收集沉淀洗涤干燥后得到产品5.2g,收率82%。相应核磁数据如图3所示。
1H NMR(CDCl3,500MHz)δ8.56(s,2H),8.24(s,2H),8.04(d,2H,J=7.7Hz),7.76(d,2H,J=7.7Hz),7.45(s,2H),4.28(q,4H,J=7.2Hz),2.19-1.95(m,8H),1.36(t,6H,J=7.2Hz),1.25-1.06(m,40H),1.05-0.84(m,8H),0.80(t,12H,J=7.1Hz).
实施例3:化合物14和化合物16合成
Figure BDA0002877166500000091
化合物14:
将5g Ar-2和9.3g哌啶取代的2-噻唑啉-4-酮溶解在160mL三氯甲烷和160mL冰乙酸中,搅拌5-10min后在惰性气氛下加热回流72h。反应结束旋除溶剂并用己烷洗涤产品,然后过柱提纯得到褐色固体,洗脱剂为1:50=乙酸乙酯:三氯甲烷,干燥后得到中间体3.8g。将中间体(3.8g,2.04mmol)溶解于氯仿(210mL),随后添加哌啶(4.0g)。室温搅拌1h,反应液为橙色溶液。反应结束后,旋干溶剂得初产物,通过硅胶柱层析提纯(1:99MeOH/CHCl3)得到深绿色化合物BDT-3(4.0g,quant)。相应核磁数据如图4所示。
1H NMR(CDCl3,500MHz)δ7.87(s,2H),7.65(s,2H),7.34(d,2H,J=3.4Hz),7.20(d,2H,J=3.8Hz),7.17(s,2H),7.16(s,2H),7.13(d,2H,J=3.8Hz),6.96(d,2H,J=3.4Hz),4.05(m,4H),3.63(m,4H),2.93(m,4H),2.81(m,8H),1.86-1.66(m,22H),1.54-1.24(m,56H),1.04-0.86(m,24H).
化合物16:
往准备好的三口烧瓶中加入5g Ar-2和8.2g的3-乙基绕丹宁,然后加入900mL三氯甲烷作为溶剂,搅拌5-10min后,滴入2mL新鲜哌啶。然后缓慢升温回流过夜。反应结束后用二氯甲烷进行萃取,无水硫酸镁干燥产品。将上述产品先过柱分离,洗脱剂为乙酸乙酯:三氯甲烷=1:50,然后在二氯甲烷中重结晶两次得到产品3.2g,收率55%。相应核磁数据如图5所示。
1H NMR(CDCl3,500MHz)δ7.81(s,2H),7.66(s,2H),7.35(d,2H,J=3.5Hz),7.26(s,2H),7.25(d,2H,J=4Hz),7.16(s,2H),7.16(d,2H,J=4Hz),6.97(d,2H,J=3.5Hz),4.22(q,4H,J=7.2Hz),2.93(m,4H),2.83(m,8H),1.80-1.67(m,10H),1.32(t,6H,J=7.2Hz),1.54-1.22(m,56H),1.04-0.84(m,24H).
实施例4:有机小分子太阳能电池装置
供体材料:化合物14和化合物16
将专利中合成有机小分子材料做成有机太阳能电池进行光电性能测试。化合物14和化合物16作为供体材料,PC71BM作为受体材料,上述两种材料组成光活性层材料。
PEDOT:PSS是聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸钠的缩写。其中PEDOT:PSS(CleviosTMP VP AI 4083)从贺利氏采购,到货后即刻使用。
铟锡氧化物(ITO)镀膜玻璃基片逐步通过清洁剂、水、丙酮和异丙醇各超声15分钟进行清洁,然后用氮气流进行干燥。清洁后的ITO/玻璃基片用氧等离子体处理10min。然后PEDOT:PSS通过旋涂(4000rmp、45s)至清洁的ITO/玻璃基片上。PEDOT:PSS薄膜空气气氛下150℃干燥20min得到约30nm的薄膜。
光活性层的制备:化合物14或者化合物16的溶液(12mg/mL,溶剂为氯仿)和PC71BM溶液(9.6mg/mL,溶剂为氯仿)分别过夜搅拌配置。然后按照体积比1:1进行混合,混合液继续搅拌2h。然后将混合液沉积到带有PEDOT:PSS活性层的ITO/玻璃基片上,采用1700rpm转速旋涂50s,得到活性层的厚度大约为90nm,最后将光活性层溶剂退火5min。上述操作都是在手套箱内进行。
最后在1×10-6mbar的真空环境中热沉积1.5nm的LiF和100nm的Ag至上述活性层上,装置有效面积约为0.06cm2
电流密度-电压(J-V)曲线用Keithley 2400源测量单元测量。光电流是利用太阳模拟器在100mW/cm2强度,照度为AM 1.5G时测试;光强度由美国国家可再生能源实验室(NREL)校准的单硅检测器来测定。
由本专利所述方法测试得到具体光电性能可知,封端基团的吸电子能力不同弄造成了供体材料电子能级,最终对其光电性能有明显影响。除此之外本发明中引入的新型封端基团对产品溶解度有极大的促进作用,相应也能影响其成膜性能。
实施例5:化合物15和化合物17
本实施例中有机光伏电池装置制备与测试方法与实施例4一致,活性层材料有变化。P3HT作为供体材料,化合物15和化合物17作为受体材料,上述两种材料组成光活性层材料。
光活性层的制备:受体材料溶液溶液(30mg/mL,溶剂为氯苯)和P3HT溶液(30mg/mL,溶剂为氯苯)分别过夜搅拌配置。然后按照重量比1:1进行混合,混合液继续搅拌2h。然后将混合液沉积到带有PEDOT:PSS活性层的ITO/玻璃基片上,采用2000rpm转速旋涂45s,得到活性层的厚度大约为90nm,最后将光活性层溶剂退火5min。上述操作都是在手套箱内进行。装置有效面积约为0.06cm2
通过本实验再次验证了封端基团的吸电子能力不同,影响其光电性能的同时发现极大的促进了此类受体材料在测试溶剂中的溶解度,溶解度增加了2-3倍。
实施例6:化合物14、化合物15、化合物16、化合物17的电化学测量
所有循环伏安实验均使用CHI760C型电化学工作站在室温下在三电极电池中进行。氩气吹扫无水四氢呋喃为溶剂,Pt盘(d=2mm)为工作电极,Pt丝为辅助电极,Ag/AgCl为参比。添加Bu4NPF6(0.1M)作为支持电解质,并添加二茂铁作为内标。
化合物14、化合物15、化合物16、化合物17相应测试结果见图6。
上述实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围,即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (6)

1.一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,其特征在于,具有如化学式1所示的结构:
Figure FDA0002877166490000011
上述化学式1中,Ar为芳香核。
2.根据权利要求1所述的一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,其特征在于,所述Ar具有如化学式2~7所示的结构:
Figure FDA0002877166490000012
上述化学式2~7中,R1、R2为具有1-8个碳原子的直链或含支链的烷基。
3.根据权利要求1或2所述的一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,其特征在于,所述Ar具有如化学式8-13所示的结构:
Figure FDA0002877166490000021
4.根据权利要求3所述的一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,其特征在于,所述Ar具有如化学式10、化学式12所示的结构:
Figure FDA0002877166490000031
5.根据权利要求1所述的一种哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物,其特征在于,所述有机半导体化合物具有如化学式14、化学式15所示的结构:
Figure FDA0002877166490000032
Figure FDA0002877166490000041
6.根据权利要求1-5任一项所述的哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物在有机光伏器件中的应用。
CN202011637769.6A 2020-12-31 2020-12-31 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物 Pending CN112745332A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011637769.6A CN112745332A (zh) 2020-12-31 2020-12-31 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011637769.6A CN112745332A (zh) 2020-12-31 2020-12-31 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物

Publications (1)

Publication Number Publication Date
CN112745332A true CN112745332A (zh) 2021-05-04

Family

ID=75651128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011637769.6A Pending CN112745332A (zh) 2020-12-31 2020-12-31 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物

Country Status (1)

Country Link
CN (1) CN112745332A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661994A (zh) * 2009-09-29 2010-03-03 吉林大学 一种无需真空过程制备有机聚合物太阳能电池的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661994A (zh) * 2009-09-29 2010-03-03 吉林大学 一种无需真空过程制备有机聚合物太阳能电池的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHE, YUXUAN,等: "Understanding the Photovoltaic Behavior of A-D-A Molecular Semiconductors through a Permutation of End Groups", 《JOURNAL OF ORGANIC CHEMISTRY》 *
CHE, YUXUAN,等: "Understanding the Photovoltaic Behavior of A-D-A Molecular Semiconductors through a Permutation of End Groups", 《JOURNAL OF ORGANIC CHEMISTRY》, vol. 85, no. 1, 5 August 2019 (2019-08-05), pages 54 - 56 *

Similar Documents

Publication Publication Date Title
CN104177378A (zh) 四取代的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
CN104045657A (zh) 五元杂环衍生物桥联的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
Lu et al. New solution-processable small molecules as hole-transporting layer in efficient polymer solar cells
CN105017264A (zh) 一种有机小分子光电功能材料及其制备方法
CN105153189A (zh) 含有醌式Methyl-Dioxocyano-Pyridine单元的窄带隙寡聚物及其制备方法与应用
Hu et al. Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer
Duan et al. Dopant-free X-shaped DA type hole-transporting materials for pin perovskite solar cells
Yu et al. Synthesis and photovoltaic performance of DPP-based small molecules with tunable energy levels by altering the molecular terminals
CN114621275B (zh) 一种苯并三氮唑硼氮衍生物及其应用
CN114716460A (zh) 一种共轭有机小分子及其制备方法和应用
Zhang et al. Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells
CN112961169B (zh) 一种酰亚胺化合物及其制备方法和钙钛矿太阳能电池应用
CN111978335B (zh) 一种带二乙烯基pi-桥的窄带隙有机受体光伏材料及其制备方法与应用
CN102898626B (zh) 含萘并[1,2-c:5,6-c]二(2-烷基-[1,2,3]三唑)的有机半导体材料及其应用
Tian et al. Bis-adducts of benzocyclopentane-and acenaphthene-C60 superior to mono-adducts as electron acceptors in polymer solar cells
JP5667693B2 (ja) キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
Li et al. Cu (ii)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application
CN108148182B (zh) 一种基于环酰亚胺稠合苯并噻二唑的共轭化合物及其制备方法和应用
Li et al. Non-fullerene acceptors end-capped with an extended conjugation group for efficient polymer solar cells
CN112745332A (zh) 哌啶取代的2-噻唑啉-4-酮封端的有机半导体化合物
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
KR101785697B1 (ko) 전자 도너-억셉터가 도입된 저분자 유기 화합물 및 이의 합성방법, 이를 이용한 유기 광전자 소자
Lin et al. Alcohol-soluble fluorene derivate functionalized with pyridyl groups as a high-performance cathode interfacial material in organic solar cells
Zhang et al. Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials
CN110818729B (zh) 基于多元芳香环的酰亚胺类共轭小分子及其制备方法与在有机光电器件中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210504

RJ01 Rejection of invention patent application after publication