CN112731691A - 一种基于双离子协同调控的双响应复合薄膜及其制备方法 - Google Patents

一种基于双离子协同调控的双响应复合薄膜及其制备方法 Download PDF

Info

Publication number
CN112731691A
CN112731691A CN202011593330.8A CN202011593330A CN112731691A CN 112731691 A CN112731691 A CN 112731691A CN 202011593330 A CN202011593330 A CN 202011593330A CN 112731691 A CN112731691 A CN 112731691A
Authority
CN
China
Prior art keywords
ion
dual
layer
film
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011593330.8A
Other languages
English (en)
Inventor
曹逊
贾汉祥
邵泽伟
黄爱彬
金平实
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202011593330.8A priority Critical patent/CN112731691A/zh
Publication of CN112731691A publication Critical patent/CN112731691A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本发明涉及一种基于双离子协同调控的双响应复合薄膜及其制备方法,所述基于双离子协同调控的双响应复合薄膜包括:第一透明电极层、以及自下而上依次形成的热致变色层、双离子传导层、电致变色层和第二透明电极层;所述双离子传导层为锂离子固态电解质薄膜和铝离子固态电解质薄膜的层叠形式,且锂离子固态电解质靠近热致变色层的一侧;或者,所述双离子传导层至少包含一层锂离子固态电解质薄膜并夹在两层铝离子固态电解质薄膜之间。

Description

一种基于双离子协同调控的双响应复合薄膜及其制备方法
技术领域
本发明涉及一种基于双离子固态离子电解质与其相应电/热双响应复合薄膜以及制备方法,主要用于节能窗及多功能显示器件等领域,属于光热调控智能材料技术领域。
背景技术
随着全球变暖和能源短缺的日益严峻,节能减排在当前社会经济发展中的地位逐步凸显。在过去的几十年里,建筑中使用的能源比例有所增加,因而光透过动态可调的“智能窗户”应运而生。这些智能窗户很好地利用了场致变色材料,尤其是那些具有电致变色或热致变色特性的材料。
作为一种典型的热致变色材料,VO2具有在68℃附近自发产生半导体-金属可逆转变的特性,以有效控制太阳辐射热,降低建筑能耗。其光学调制理论归因于相变对红外波段透射率的显著调节作用,同时其电阻率产生显著变化。然而,利用其相变特性进行光学控制仍然存在一些挑战。
与其他变色材料相比,电致变色材料能够主动切换显色状态,分别对应于离子插入和脱出。对于全固态电致变色器件,其性能指标主要包括光学对比度、制备效率、循环耐久性,特别是切换速度和显色效率。在给定的多层结构下,离子传导层作为最主要的功能层之一,对器件整体性能有着显著影响。基于此,有必要研制具有高溅射效率、高透光率和稳定服役性能的固态电解质。
专利1(申请公布号CN105840060A)公开了一种电致变色-热致变色双响应智能节能器件,其结构由顶端导电衬底、电解质、复合薄膜和底端导电衬底组成,其中第三层复合薄膜为VO2粉体与WO3粉体混合分散组成,结合了电致变色可见光波段和热致变色近红外波段的调控特性,相比于VO2热致变色膜具有更高的太阳能调节能力和颜色调控能力。然而,该专利第二层制备流程繁琐,且第三层电解质给器件整体封装带来了挑战。专利2(申请公布号CN210776089U)利用聚合物稳定胆甾相液晶层实现温度响应,利用胆甾相液晶层实现电响应,实现温度与电响应的双重耦合,以满足人们对节能减排和保护隐私的需要。然而,该专利中胆甾相液晶层对于温度响应依赖于液晶分子的螺距和转向,而电响应调光的模糊状态清晰度则十分有限。上述两种致变色材料各自的优点显而易见。但是,由于本征性能的制约,电致变色材料无法像热致变色材料一样进行自适应调光;而热致变色材料又无法像电致变色材料一样实现显色状态和透明状态之间的灵敏切换。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种溅射效率高、响应速度快、双离子协同作用的电/热双响应复合薄膜及其制备方法。
一方面,本发明提供了一种基于双离子协同调控的双响应复合薄膜,包括:第一透明电极层、以及自下而上依次形成的热致变色层、双离子传导层、电致变色层和第二透明电极层;所述双离子传导层为锂离子固态电解质薄膜和铝离子固态电解质薄膜的层叠形式,且锂铝氧化物薄膜靠近热致变色层的一侧;或者,所述双离子传导层至少包含一层锂离子固态电解质薄膜并夹在两层铝离子固态电解质薄膜之间(如图1所示)。
在本发明中,通过离子传导层中Al3+和Li+两种离子的协同作用,实现器件对可见光和近红外光的交替独立调控。而且,本发明还优化复合薄膜各层之间的界面,通过下层Li+活化上层Al3+进行传导,互补了两种离子的传输特点。最终实现电致变色层变色切换与热致变色层相变调节的双功能。此外,本发明兼具热致变色和电致变色的功能层,选用独立相对的模式,使得外界电压不管作用与哪个方向,均有一个功能层实现独立调光,并且在不影响调光隔热与隐私防护的前提下,能够实现热致变色层的相变调控,使之更适用于接近室温的工作场景。
较佳的,所述双离子传导层分别包含非晶态锂铝氧化物薄膜和非晶态硅铝氧化物薄膜。
较佳的,所述双离子传导层为非晶态锂铝氧化物薄膜和非晶态硅铝氧化物薄膜的层叠形式,且锂铝氧化物薄膜靠近热致变色层的一侧;或者,所述双离子传导层至少包含一层非晶态硅铝氧化物薄膜并夹在两层非晶态硅铝氧化物薄膜之间。
较佳的,所述锂离子固态电解质为非晶态锂铝氧化物薄膜,化学式为LiAlaOb,其中0.5<a<1.5,优选0.6<a<1.2;0.5<b<2.5,优选0.8<b<2.2。所述非晶态锂铝氧化物薄膜的厚度为100~200nm;优选地,所述非晶态LiAlaOb薄膜在350~2600nm之间的光透过率大于85%。
较佳的,所述铝离子固态电解质薄膜为非晶态硅铝氧化物薄膜,化学式为AlxSiOy,其中1.5<x<3,优选1.8<x<2.5;4<y<6,优选4.5<y<5.5。上述非晶态AlxSiOy薄膜的厚度为100~200nm;优选地,所述非晶态AlxSiOy薄膜在350~2600nm之间的光透过率大于85%。
较佳的,所述热致变色层的组成为VO2、聚N-异丙基丙烯酰胺水凝胶(PNI-Pam)、热致胆甾型液晶中的至少一种;优选地,所述热致变色层的厚度为50~100nm。
较佳的,所述电致变色层的化学组成为WO3;优选地,所述电致变色层的厚度为200~400nm。
较佳的,所述第一透明电极层和第二透明电极层为透明导电氧化物,优选FTO、ITO、AZO、NTO中的一种;所述第一透明电极层和第二透明电极层的方阻为5~50Ω/cm2,在350~800nm之间的光透过率大于75%。
另一方面,本发明提供了一种基于双离子协同调控的双响应复合薄膜的制备方法,包括:
(1)选用透明导电氧化物作为靶材,采用磁控溅射法在基材表面沉积第一透明电极层;
(2)采用磁控溅射法或化学粉体浆料涂覆法在第一透明电极层制备热致变色层;
(3)采用磁控溅射法在热致变色层表面依次沉积锂离子固态电解质薄膜(LiAlaOb)和铝离子固态电解质薄膜(AlxSiOy)构成双离子传导层;
(4)采用磁控溅射法在双离子传导层表面沉积电致变色层和第二透明电极层,得到所述基于双离子协同调控的双响应复合薄膜。
较佳的,采用Li-Al合金靶作为靶材,利用直流或射频磁控溅射在氩氧混合气氛条件下制备非晶态锂铝氧化物薄膜(LiAlaOb薄膜)。
较佳的,采用Al-Si靶作为靶材,利用直流磁控溅射在氩氧混合气氛条件下制备非晶态铝硅氧化物薄膜(AlxSiOy薄膜)。
有益效果:
1、本发明选用VO2薄膜代替传统NiOx薄膜作为离子储存层,与WO3薄膜组成互补型对电极层,制备出兼具热/电双响应的复合智能薄膜;
2、本发明采用LiAlaOb和AlxSiOy材料作为离子传导层,所制得的双离子基离子传导层,有助于提升复合薄膜内部离子迁移率(如图3所示),并系统地探究Li+和Al3+离子在器件中的协同着色效应(如图4和图5所示);
综上,相较与单独使用热致变色层实现温度响应和单独使用电致变色层实现电响应的技术方案,本发明所提供的双响应调光复合薄膜通过引入双离子基离子传导层,避免了两者在简单组合时加压和/或加热条件下会互相影响,从而可以实现温度与电响应的双重耦合,能够满足人们对节能减排和保护隐私的需要。本发明所提供的双响应调光复合薄膜具有多种工作模式,节能环保,响应智能,在车窗玻璃、家居玻璃窗、玻璃幕墙等领域有着较好的应用前景。
附图说明
图1为本发明中电/热双响应复合薄膜的结构示意图;
图2为实施例5制备的双层固态离子传导层的透射光谱图;
图3为实施例5制备的双层固态离子传导层的交流阻抗图谱;
图4为实施例5制备的双离子基电/热双响应复合薄膜的透过率随电压响应变化图;
图5为实施例6制备的三层结构的双离子基电/热双响应复合薄膜的透过率随电压响应变化图;
图6为实施例6的三层结构的双离子基电/热双响应复合薄膜的原位变温光谱(热滞回线测试波长固定在1250nm)。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,基于双离子协同调控的双响应复合薄膜是由第一透明电极、热致变色层,双离子传导层、电致变色层和第二透明电极层有序构成。该离子传导层至少包含第一离子传导层和第二离子传导层,其化学组成分别对应于LiAlaOb和AlxSiOy,其可用于在热致变色层和电致变色层之间协同传导离子分别实现变色与相调节,提高离子在两个变色层间的传导效率。
在可选的实施方式中,第一透明电极层和第二透明电极层可为FTO、ITO、AZO、NTO等透明导电氧化物,其方阻可为5-50Ω/cm2,透过率大于75%。
在可选的实施方式中,所述热致变色层为VO2、水凝胶、液晶中的至少一种;优选地,所述热致变色层的厚度可为50-100nm。具体来说,热致变色层可采用磁控溅射工艺镀膜或化学粉体浆料进行涂膜。
在可选的实施方式中,第一离子传导层可为非晶态LiAlaOb薄膜,其光透过率大于90%。具体来说,可用Li-Al合金靶利用直流或射频磁控溅射制备。其中,直流磁控溅射的参数可包括:功率为30~80W(优选50W),氩氧混合气中氧气比为10%~20%(优选15%),时间为15~45min(优选30min),气压为0.8~1.2Pa(优选1.0Pa);射频磁控溅射的参数可包括:功率为150~250W(优选200W),氩氧混合气中氧气比为10%~20%(优选15%),时间为30~60min(优选45min),气压为0.8~1.2(优选1.0Pa)。
在可选的实施方式中,第二离子传导层可为非晶态AlxSiOy薄膜,其光透过率大于85%。具体来说,可采用Al-Si靶利用直流磁控溅射制备。其中,直流磁控溅射的参数可包括:功率为80~150W(优选100W),10%~30%(优选20%),时间为20~40min(优选30min),气压为0.8~1.2Pa(优选1.0Pa)。作为一个示例,固态双离子传导层为非晶态铝酸锂(LiAlaOb)和硅酸铝(AlxSiOy)的双层薄膜。该固态双离子传导层的可见光透过率可达到85%以上,为疏松多孔的非晶态,以便内部锂离子的双向快速传导,从而实现电致变色反应。所述固态离子传导层优选为离子导电而电子隔绝,其表面方阻优选为不小于100kΩ/m2,这样可以提高锂离子传导率及减小漏电流。
在可选的实施方式中,电致变色层可为WO3,其厚度可为200~400nm。可采用磁控溅射工艺镀膜或化学粉体浆料进行涂膜。
本发明中,通过设计多层复合膜结构将两种致变色材料体系进行组合,其在加热和/或加压条件下实现可见光和近红外光透射率的双模式调光,并且离子传导层中双离子互补驱动更有助于变色与相变调控。
本发明提供一种溅射效率高、响应速度快、双离子协同作用的固态离子传导层及其制备方法、以及含该固态离子传导层的电/热双响应复合薄膜,可降低成本,提高整体的功能性和展示性。
当电压向上时,Li+和Al3+共同进入电致变色层,氧化钨发生变色,复合多层膜仅调控可见光波段。
当电压向上且温度升高时,氧化钨保持着色态变色,同时VO2发生温控相转变,复合多层膜同时调控可见光及近红外波段。
当电压向下且温度升高时,氧化钨褪色,VO2保持相转变,复合多层膜仅调控近红外波段。
当电压向下+温度降低时,复合多层膜恢复初始态。
测试方法:
光透过率:U-4100分光光度计;
交流阻抗:CS电化学工作站;
表面方阻:Janis四探针电学测试平台。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
玻璃基板分别于丙酮,乙醇,去离子水中超声清洗,固定于衬底托盘置入磁控溅射设备,溅射形成透明导电材料:靶材选用ITO靶材,溅射电源采用射频电源,功率密度3W/cm2,气氛纯氩气,压力0.3Pa,溅射时间60min,获得表面平整的ITO导电膜,其厚度100~200nm、测定表面方阻,表面方阻小于50Ω。
实施例2
在溅射有透明导电材料的玻璃基板上溅射形成VO2薄膜:靶材选用三氧化二钒(V2O3)靶材,溅射电源采用直流电源,功率密度2.5W/cm2,气氛纯氩气,压力1.5Pa,溅射时间15min,而后在450℃下真空退火5min,获得表面平整的VO2薄膜,其厚度50~100nm、测定表面方阻,表面方阻不小于1MΩ。
实施例3
在VO2薄膜上溅射铝酸锂(LiAlaOb)固态离子传导层薄膜:以4英寸铝锂合金LiAla(a=1)为靶材,采用直流电源磁控反应溅射法制备,溅射得到无定型疏松多孔的铝酸锂(LiAlaOb)固态离子传导层薄膜,其厚度为100~200nm,具体制备条件如下:本底真空10-5~10-4Pa,基底温度为室温(20~30℃),溅射工作气氛为氧氩混合气体,其中氧气体积比为10%~20%(优选15%),镀膜时间30~60min(优选45min),工作气压为0.8~1.2(优选1.0Pa),溅射功率150~250W(优选200W)。图2示出所得的铝酸锂(LiAlaOb)固态离子传导层薄膜透射光谱图。可见,该固态离子传导层对可见光透过率的范围可达90%以上。所得非晶态硅铝氧化物薄膜化学式为LiAlaOb,其中1.0<a<1.2,1.8<b<2.2。
实施例4
在铝酸锂(LiAlaOb)固态离子传导层薄膜上形成氧化钨薄膜,通过反应溅射法获得薄膜,具有无定型多孔疏松的薄膜。靶材选用金属钨靶材,溅射电源采用直流电源,功率密度1.5W/cm2,气氛为氧氩混合气,其中氧气体积比为6%,压力1.0Pa,室温溅射时间30min,获得表面平整的氧化钨薄膜,其厚度为200~400nm、测定表面方阻,表面方阻不小于100kΩ。再在氧化钨薄膜制备透明导电层,其制备方法与实施例1相同,在此不再鳌述。由此得到电/热双响应复合薄膜。
实施例5
本实施例5和实施例4的区别在于:在铝酸锂(LiAlaOb)固态离子传导层薄膜上继续溅射另一层硅酸铝(AlxSiOy)固态离子传导层之后,再进行氧化物薄膜和透明电极的沉积。具体来说,通过反应溅射法获得无定型多孔疏松的硅酸铝(AlxSiOy)薄膜:靶材选用硅酸铝靶材,溅射电源采用射频电源,功率密度2.5W/cm2,气氛为纯氩气,压力2.0Pa,室温溅射时间45分钟,获得表面平整的硅酸铝(AlxSiOy)薄膜。所得硅酸铝(AlxSiOy)薄膜的厚度100~200nm、测定表面方阻,表面方阻不小于100kΩ。图2示出所得硅酸铝(AlxSiOy)固态离子传导层及铝酸锂(LiAlaOb)/硅酸铝(AlxSiOy)双层固态离子传导层薄膜的透射光谱图。从图2中可知,双层固态离子传导层膜层光学常数匹配良好,光透过率与单层薄膜相当,且均超过85%。由此得到基于双离子协同调控的双响应复合薄膜。所得非晶态硅酸铝薄膜化学式为AlxSiOy,其中1.8<x<2.3;4.6<y<5.4。图3为本发明实施例5的双层固态离子传导层的交流阻抗图谱,从图3中可知,铝酸锂(LiAlaOb)/硅酸铝(AlxSiOy)双层固态离子传导层薄膜相比铝酸锂(LiAlaOb)单层薄膜具有更加优异的离子传导率,利于复合薄膜整体的变色需求。图4示出双离子基电/热双响应复合薄膜的透过率随电压响应变化图,从图4中可知,复合薄膜既满足褪色态的高透过率,同时也能具有较大的光学对比度。
实施例6
本实施例6和实施例5的区别在于:在沉积铝酸锂(LiAlaOb)固态离子传导层之前先沉积硅酸铝(AlxSiOy)固态离子传导层,其沉积方法与实施例5相同,形成硅酸铝(AlxSiOy)/铝酸锂(LiAlaOb)/硅酸铝(AlxSiOy)三层结构的双离子基电/热双响应复合薄膜。该三层结构的双离子基电/热双响应复合薄膜的透过率随电压/温度响应所对应的四重光学态图谱如图5所示,从图5中可知,该电/热双响应复合薄膜能独立或同时响应电压和温度,从而对可见光和近红外波段进行独立或同时的有效调节,分别对应于图中四重光学态的可逆转换。图6为三层结构的双离子基电/热双响应复合薄膜的原位变温光谱,VO2热滞回线的测试波长固定在1250nm。从图6中可知,当电压向下,离子嵌入下层VO2晶格中会使其发生部分相转变从而相变温度降低。相比于LiAlaOb/AlxSiOy双层电解质结构在电压向下时仅能注入Li+,AlxSiOy/LiAlaOb/AlxSiOy三层结构的双离子基电/热双响应复合薄膜对于VO2的相变调控更为显著,因而能更好地调控近红外波段。

Claims (10)

1.一种基于双离子协同调控的双响应复合薄膜,其特征在于,所述基于双离子协同调控的双响应复合薄膜包括:第一透明电极层、以及自下而上依次形成的热致变色层、双离子传导层、电致变色层和第二透明电极层;所述双离子传导层为锂离子固态电解质薄膜和铝离子固态电解质薄膜的层叠形式,且锂离子固态电解质靠近热致变色层的一侧;或者,所述双离子传导层至少包含一层锂离子固态电解质薄膜并夹在两层铝离子固态电解质薄膜之间。
2.根据权利要求1或2所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述铝离子固态电解质薄膜为非晶态硅铝氧化物薄膜,化学式为AlxSiOy,其中1.5<x<3,优选1.8<x<2.5;4<y<6,优选4.5<y<5.5。
3.根据权利要求2所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述非晶态硅铝氧化物薄膜的厚度为100~200 nm;优选地,所述非晶态硅铝氧化物薄膜在350~2600 nm之间的光透过率大于85%。
4.根据权利要求1-3中任一项所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述锂离子固态电解质为非晶态锂铝氧化物薄膜,化学式为LiAlaOb,其中0.5<a<1.5,优选0.6<a<1.2;0.5<b<2.5,优选 0.8<b<2.2;更优选,所述非晶态锂铝氧化物薄膜的厚度为100~200nm;最优选地,所述非晶态锂铝氧化物薄膜在350~2600 nm之间的光透过率大于85%。
5.根据权利要求1-4中任一项所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述热致变色层的组分为VO2、聚N-异丙基丙烯酰胺水凝胶、热致胆甾型液晶中的至少一种;优选地,所述热致变色层的厚度为50~100 nm。
6.根据权利要求1-5中任一项所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述电致变色层的化学组成为WO3;优选地,所述电致变色层的厚度为200~400 nm。
7.根据权利要求1-6中任一项所述的基于双离子协同调控的双响应复合薄膜,其特征在于,所述第一透明电极层和第二透明电极层为透明导电氧化物,优选FTO、ITO、AZO中的一种;优选地,所述第一透明电极层和第二透明电极层的方阻为5~50 Ω/cm2,在350~800nm之间的光透过率大于75 %。
8.一种权利要求1-7中任一项所述的基于双离子协同调控的双响应复合薄膜的制备方法,其特征在于,包括:
(1)选用透明导电氧化物作为靶材,采用磁控溅射法在基材表面沉积第一透明电极层;
(2)采用磁控溅射法或化学粉体浆料涂覆法在第一透明电极层制备热致变色层;
(3)采用磁控溅射法在热致变色层表面依次沉积锂离子固态电解质薄膜和铝离子固态电解质薄膜构成双离子传导层;
(4)采用磁控溅射法在双离子传导层表面沉积电致变色层和第二透明电极层,得到所述基于双离子协同调控的双响应复合薄膜。
9.根据权利要求8所述的制备方法,其特征在于,采用Li-Al合金靶作为靶材,利用直流或射频磁控溅射在氩氧混合气氛条件下制备非晶态锂铝氧化物薄膜。
10.根据权利要求8或9的制备方法,其特征在于,采用Al-Si靶作为靶材,利用直流磁控溅射在氩氧混合气氛条件下制备非晶态铝硅氧化物薄膜。
CN202011593330.8A 2020-12-29 2020-12-29 一种基于双离子协同调控的双响应复合薄膜及其制备方法 Pending CN112731691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011593330.8A CN112731691A (zh) 2020-12-29 2020-12-29 一种基于双离子协同调控的双响应复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011593330.8A CN112731691A (zh) 2020-12-29 2020-12-29 一种基于双离子协同调控的双响应复合薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN112731691A true CN112731691A (zh) 2021-04-30

Family

ID=75607886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011593330.8A Pending CN112731691A (zh) 2020-12-29 2020-12-29 一种基于双离子协同调控的双响应复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112731691A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137773A (zh) * 2021-11-05 2022-03-04 哈尔滨工业大学(深圳) 一种热电双响应智能变色器件及其制备方法
CN114994998A (zh) * 2022-07-04 2022-09-02 广东省科学院新材料研究所 一种无机全固态电致变色器件及其制备方法
CN115202120A (zh) * 2022-08-02 2022-10-18 中国科学院苏州纳米技术与纳米仿生研究所 电致变色组件及其制作方法
CN116736565A (zh) * 2023-06-19 2023-09-12 珠海兴业新材料科技有限公司 一种遮光型隔热双控调光薄膜及其制备方法
CN117270273A (zh) * 2023-06-14 2023-12-22 深圳豪威显示科技有限公司 一种铝离子基全固态电致变色器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892100A (zh) * 2016-06-23 2016-08-24 中国科学院广州能源研究所 一种新型复合智能节能薄膜及其制备方法
CN105892101A (zh) * 2016-06-23 2016-08-24 中国科学院广州能源研究所 一种复合智能节能薄膜及其制备方法
CN108761949A (zh) * 2018-05-29 2018-11-06 中国科学院上海硅酸盐研究所 一种固态离子传导层及含该固态离子传导层的固态电致变色器件
CN111596496A (zh) * 2020-05-28 2020-08-28 中国科学院上海硅酸盐研究所 一种可见-红外独立调控电致变色器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892100A (zh) * 2016-06-23 2016-08-24 中国科学院广州能源研究所 一种新型复合智能节能薄膜及其制备方法
CN105892101A (zh) * 2016-06-23 2016-08-24 中国科学院广州能源研究所 一种复合智能节能薄膜及其制备方法
CN108761949A (zh) * 2018-05-29 2018-11-06 中国科学院上海硅酸盐研究所 一种固态离子传导层及含该固态离子传导层的固态电致变色器件
CN111596496A (zh) * 2020-05-28 2020-08-28 中国科学院上海硅酸盐研究所 一种可见-红外独立调控电致变色器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANXIANG JIA 等: "Dual-response and Li+-insertion induced phase transition of VO2-based smart windows for selective visible and near-infrared light transmittance modulation", 《SOLAR ENERGY MATERIALS AND SOLAR CELLS》 *
YING ZHU 等: "Synergistic Effect of Al3+/Li+‑Based All-Solid-State Electrochromic Devices with Robust Performance", 《ACS APPLIED ELECTRONIC MATERIALS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137773A (zh) * 2021-11-05 2022-03-04 哈尔滨工业大学(深圳) 一种热电双响应智能变色器件及其制备方法
CN114137773B (zh) * 2021-11-05 2024-03-08 哈尔滨工业大学(深圳) 一种热电双响应智能变色器件及其制备方法
CN114994998A (zh) * 2022-07-04 2022-09-02 广东省科学院新材料研究所 一种无机全固态电致变色器件及其制备方法
CN114994998B (zh) * 2022-07-04 2023-05-26 广东省科学院新材料研究所 一种无机全固态电致变色器件及其制备方法
CN115202120A (zh) * 2022-08-02 2022-10-18 中国科学院苏州纳米技术与纳米仿生研究所 电致变色组件及其制作方法
CN117270273A (zh) * 2023-06-14 2023-12-22 深圳豪威显示科技有限公司 一种铝离子基全固态电致变色器件及其制备方法
CN116736565A (zh) * 2023-06-19 2023-09-12 珠海兴业新材料科技有限公司 一种遮光型隔热双控调光薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN112731691A (zh) 一种基于双离子协同调控的双响应复合薄膜及其制备方法
CN111596496B (zh) 一种可见-红外独立调控电致变色器件
US20140111846A1 (en) Electrochromic devices, assemblies incorporating electrochromic devices, and/or methods of making the same
CN101188886A (zh) 一种无机全固态电致变色元件及其制备方法
CN110764331B (zh) 一种超快响应、防过充电致变色器件及其制备方法
Huang et al. Simultaneous achievement of high visible transmission and near-infrared heat shielding in flexible liquid crystal-based smart windows via electrode design
CN105892101A (zh) 一种复合智能节能薄膜及其制备方法
Cardoso et al. Three‐mode modulation electrochromic device with high energy efficiency for windows of buildings located in continental climatic regions
CN110208997A (zh) 一种智能变色玻璃及其制备方法和应用
WO2019228303A1 (zh) 一种固态离子传导层及含该固态离子传导层的固态电致变色器件
Jia et al. Dual-response and Li+-insertion induced phase transition of VO2-based smart windows for selective visible and near-infrared light transmittance modulation
CN108803184A (zh) 一种夹胶电致变色器件及其制备方法
CN110596981B (zh) 一种调色更中性的电致变色玻璃及其制备方法和应用
CN205643982U (zh) 电致变色结构
CN103304150A (zh) 智能调光低辐射玻璃及其制备方法
CN114647121B (zh) 一种热/电双控致变色器件及其制备方法和应用
CN109709737A (zh) 一种新型电致变色薄膜的制作方法
CN209979981U (zh) 一种智能变色玻璃及玻璃门窗
Li et al. SiO2: A Novel Electrolyte for High-Performance All-Solid-State Electrochromic Devices
CN109343288A (zh) 一种电致变色玻璃
CN107045242A (zh) 电致变色结构及其形成方法
CN210323655U (zh) 一种电动调光元件
CN110018580B (zh) 一种电动调光元件
CN114647122B (zh) 一种高性能可见红外独立调控电致变色器件及其制备方法和应用
CN113138510A (zh) 调光玻璃及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210430