CN112725712A - 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品 - Google Patents

选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品 Download PDF

Info

Publication number
CN112725712A
CN112725712A CN202011511069.2A CN202011511069A CN112725712A CN 112725712 A CN112725712 A CN 112725712A CN 202011511069 A CN202011511069 A CN 202011511069A CN 112725712 A CN112725712 A CN 112725712A
Authority
CN
China
Prior art keywords
cooling
temperature
phase
alnb
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011511069.2A
Other languages
English (en)
Other versions
CN112725712B (zh
Inventor
张熹雯
马雄
张建伟
梁晓波
王红卫
史晓强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaona Aero Material Co Ltd
Original Assignee
Gaona Aero Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaona Aero Material Co Ltd filed Critical Gaona Aero Material Co Ltd
Priority to CN202011511069.2A priority Critical patent/CN112725712B/zh
Publication of CN112725712A publication Critical patent/CN112725712A/zh
Application granted granted Critical
Publication of CN112725712B publication Critical patent/CN112725712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及合金加工技术领域,尤其是涉及一种选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品。所述热处理方法包括如下步骤:(a)将选区激光熔化的Ti2AlNb基合金于真空条件下升温至α2+B2相区内温度保温处理后,冷却处理;(b)将步骤(a)处理后的Ti2AlNb基合金于真空条件下升温至α2+O+B2相区内温度保温处理后,冷却处理;(c)将步骤(b)处理后的Ti2AlNb合金于真空条件下升温至O+B2相区内温度保温处理后,冷却处理;所述升温的升温速率为15~25℃/min。本发明采用快速升温避免中温脆性开裂,三个温度区间分别析出不同作用的多尺度强化相等,结合其他条件保证强度和塑性匹配。

Description

选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品
技术领域
本发明涉及合金加工技术领域,尤其是涉及一种选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品。
背景技术
选区激光熔化制造技术被逐步应用于航空航天领域制备大尺度薄壁复杂结构部件,相比于传统的锻造和精密铸造工艺,可节省大量原材料、缩短加工周期。Ti2AlNb合金由于密度低(5.3g/cm3)、高温比强度高、抗氧化性能优异等优点在航空航天领域具有广阔的应用前景,以其替代传统镍基高温合金应用可实现结构减重35%以上。因而,选用Ti2AlNb合金通过选区激光熔化工艺制备大尺寸复杂结构部件成为未来发展趋势。但是选区激光熔化制备Ti2AlNb合金成形态组织有别于传统锻造和铸造组织,超快速凝固过程形成的亚稳态细小晶粒B2单相组织,虽具有优异的强度和塑性匹配,但由于超快速凝固冷却使合金组织远偏离平衡态,在高温直接服役会发生大量细小针状相的快速析出导致合金脆化。以往锻造合金热处理调控方法是基于Ti-Al-Nb相图通过“溶解+析出”过程控制第二相形貌和尺寸实现强度和塑性匹配,选区激光熔化Ti2AlNb合金的相变过程与锻造合金差异较大且只能使用真空热处理,锻造Ti2AlNb合金的热处理工艺直接套用会导致合金强度和塑性匹配不佳,且目前没有公开报道过适合于选区激光熔化制备Ti2AlNb合金的真空热处理工艺。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供选区激光熔化Ti2AlNb基合金的热处理方法。
本发明的第二目的在于提供采用所述选区激光熔化Ti2AlNb基合金的热处理方法制得的制品。
为了实现本发明的上述目的,特采用以下技术方案:
选区激光熔化Ti2AlNb基合金的热处理方法,包括如下步骤:
(a)将选区激光熔化的Ti2AlNb基合金于真空条件下升温至α2+B2相区内温度保温处理后,冷却处理;
(b)将步骤(a)处理后的Ti2AlNb基合金于真空条件下升温至α2+O+B2相区内温度保温处理后,冷却处理;
(c)将步骤(b)处理后的Ti2AlNb合金于真空条件下升温至O+B2相区内温度保温处理后,冷却处理;
步骤(a)、(b)和(c)中的所述升温的升温速率为15~25℃/min。
本发明的热处理方法,选区激光熔化的Ti2AlNb基合金为细晶单相B2组织,经过α2+B2相区内温度热处理后,在晶界形成非连续的颗粒状α2相,然后在经α2+O+B2相区内温度热处理后,在B2基体上析出弥散分布的大尺寸O相板条,再经O+B2相区内温度热处理后,B2基体上析出弥散分布的小尺寸O相板条。合金中晶界处颗粒状α2相具有钉扎和强化晶界作用,保证成形态细晶组织的强韧性优势,晶内弥散分布的多尺度O相板条阻碍位错运动具有强化基体的作用,由于快速冷却保留了更多的B2相基体起到协调变形的作用,使合金保持了较高的强度和塑性匹配。
本发明采用快速升温,避免中温脆性开裂,三个温度区间分别析出不同作用的多尺度强化相。
在本发明的具体实施方式中,所述α2+B2相区内温度为1010~1040℃。
在本发明的具体实施方式中,所述α2+O+B2相区内温度为950~990℃。
在本发明的具体实施方式中,所述O+B2相区内温度为850~900℃。
Ti2AlNb基合金的α2+B2相区温度范围为1010~1060℃,α2+O+B2相区温度范围为900~1010℃,O+B2相区温度范围为630~900℃。本发明所采用的热处理的温度,是在特定相区中的选定的特定温度范围,以保证获得目标组织。
在本发明的具体实施方式中,步骤(a)中,所述保温处理的时间为1~3h。
在本发明的具体实施方式中,步骤(b)中,所述保温处理的时间为2~6h。
在本发明的具体实施方式中,步骤(c)中,所述保温处理的时间为18~36h。
在本发明的具体实施方式中,步骤(a)中,所述冷却处理包括:以145~155℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
在本发明的具体实施方式中,步骤(b)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
在本发明的具体实施方式中,步骤(c)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
在实际操作中,通过采用气淬冷却的方式进行上述冷却处理。比如采用高纯氩气气淬冷却的方式,通过调控氩气流量来控制冷却过程中的降温速率。
本发明通过快速升温避免中温脆性开裂,三个温度区间分别析出不同作用的多尺度强化相,快速冷却保留更高比例的塑韧性组织,同时分阶段控冷避免合金中过大内应力。
在本发明的具体实施方式中,步骤(a)、(b)和(c)中的所述真空条件的真空度不低于10-2Pa。
本发明还提供了采用上述任意一种所述选区激光熔化Ti2AlNb基合金的热处理方法得到的选区激光熔化Ti2AlNb基合金制品。
在本发明的具体实施方式中,所述制品中,具有晶界颗粒α2、多尺度O相板条和B2基体三相组织。
其中,所述多尺度O相板条包括大尺寸O相板条和小尺寸O相板条,所述大尺寸O相板条的尺寸为:长度1~5μm、宽度0.2~0.5μm,所述小尺寸O相板条的尺寸为:长度0.1~0.5μm、宽度<0.1μm。
在本发明的具体实施方式中,所述制品中,大尺寸O相板条、小尺寸O相板条、B2基体、α2颗粒相的组织的体积分数分别为10%~20%、45%~55%、30%~40%、3%~7%。
与现有技术相比,本发明的有益效果为:
(1)本发明的热处理方法,通过快速升温到α2+B2相区内特定温度,避免中温析出脆化,形成非连续的α2颗粒晶界强化相,保证成形态细晶组织的强韧性优势;α2+O+B2相区,析出弥散分布的大尺寸O相板条,作为高温基体强化相;O+B2相区,析出弥散分布的小尺寸O相板条,作为室温基体强化相;由于快速冷却保留了更多的B2基体,起到协调变形的作用,保证强度和塑性匹配。
(2)采用本发明的热处理方法得到的选区激光熔化Ti2AlNb基合金制品,能够保证强度和塑性的匹配性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的选区激光熔化Ti2AlNb基合金的热处理方法的步骤(a)处理后得到的材料的显微结构;
图2为本发明实施例提供的选区激光熔化Ti2AlNb基合金的热处理方法的步骤(a)和步骤(b)处理后得到的材料的显微结构;
图3为本发明实施例提供的选区激光熔化Ti2AlNb基合金的热处理方法的步骤(a)~(c)处理后得到的材料的显微结构。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
选区激光熔化Ti2AlNb基合金的热处理方法,包括如下步骤:
(a)将选区激光熔化的Ti2AlNb基合金于真空条件下升温至α2+B2相区内温度保温处理后,冷却处理;
(b)将步骤(a)处理后的Ti2AlNb基合金于真空条件下升温至α2+O+B2相区内温度保温处理后,冷却处理;
(c)将步骤(b)处理后的Ti2AlNb合金于真空条件下升温至O+B2相区内温度保温处理后,冷却处理;
步骤(a)、(b)和(c)中的所述升温的升温速率为15~25℃/min。
本发明的热处理方法,选区激光熔化的Ti2AlNb基合金为细晶单相B2组织,经过α2+B2相区热处理后,在晶界形成非连续的颗粒状α2相,然后在经α2+O+B2相区热处理后,在B2基体上析出弥散分布的大尺寸O相板条,再经O+B2相区热处理后,B2基体上析出弥散分布的小尺寸O相板条。合金中晶界处颗粒状α2相具有钉扎和强化晶界作用,保证成形态细晶组织的强韧性优势,晶内弥散分布的多尺度O相板条阻碍位错运动具有强化基体的作用,由于快速冷却保留了更多的B2相基体起到协调变形的作用,使合金保持了较高的强度和塑性匹配。
本发明采用快速升温,避免中温脆性开裂,三个温度区间分别析出不同作用的多尺度强化相。
在本发明的具体实施方式中,所述α2+B2相区内温度为1010~1040℃。如在不同实施方式中,可采用的所述α2+B2相区内温度可以为1010℃、1020℃、1030℃、1040℃等等。
在本发明的具体实施方式中,所述α2+O+B2相区内温度为950~990℃。如在不同实施方式中,可采用的所述α2+O+B2相区内温度可以为950℃、960℃、970℃、980℃、990℃等等。
在本发明的具体实施方式中,所述O+B2相区内温度为850~900℃。如在不同实施方式中,可采用的所述O+B2相区内温度可以为850℃、860℃、870℃、880℃、890℃、900℃等等。
在本发明的具体实施方式中,步骤(a)中,所述保温处理的时间为1~3h。如在不同实施方式中,步骤(a)中的所述保温处理的时间可以为1h、1.5h、2h、2.5h、3h等等。
在本发明的具体实施方式中,步骤(b)中,所述保温处理的时间为2~6h。如在不同实施方式中,步骤(b)中的所述保温处理的时间可以为2h、3h、4h、5h、6h等等。
在本发明的具体实施方式中,步骤(c)中,所述保温处理的时间为18~36h。如在不同实施方式中,步骤(c)中的所述保温处理的时间可以为18h、20h、22h、24h、26h、28h、30h、32h、34h、36h等等。
在本发明的具体实施方式中,步骤(a)中,所述冷却处理包括:以145~155℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
如在实际操作中,步骤(a)中,以145℃/min、148℃/min、150℃/min、152℃/min或155℃/min等等的降温速率降至500±10℃后,以8℃/min、9℃/min、10℃/min、11℃/min或12℃/min等等的降温速率降至室温。
在本发明的具体实施方式中,步骤(b)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
如在实际操作中,步骤(b)中,以95℃/min、98℃/min、100℃/min、102℃/min或105℃/min等等的降温速率降至500±10℃后,以8℃/min、9℃/min、10℃/min、11℃/min或12℃/min等等的降温速率降至室温。
在本发明的具体实施方式中,步骤(c)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
如在实际操作中,步骤(c)中,以95℃/min、98℃/min、100℃/min、102℃/min或105℃/min等等的降温速率降至500±10℃后,以8℃/min、9℃/min、10℃/min、11℃/min或12℃/min等等的降温速率降至室温。
本发明通过快速升温避免中温脆性开裂,三个温度区间分别析出不同作用的多尺度强化相,快速冷却保留更高比例的塑韧性组织,同时分阶段控冷避免合金中过大内应力。
在本发明的具体实施方式中,步骤(a)、(b)和(c)中的所述真空条件的真空度不低于10-2Pa。
在本发明的具体实施方式中,所述Ti2AlNb基合金为常规的Ti2AlNb基合金,如可以为按原子百分比为Ti-22Al-25Nb的合金,但不局限于此。
本发明还提供了采用上述任意一种所述选区激光熔化Ti2AlNb基合金的热处理方法得到的选区激光熔化Ti2AlNb基合金制品。
在本发明的具体实施方式中,所述制品中,具有晶界颗粒α2、多尺度O相板条和B2基体三相组织。
其中,所述多尺度O相板条包括大尺寸O相板条和小尺寸O相板条,所述大尺寸O相板条的尺寸为:长度1~5μm、宽度0.2~0.5μm,所述小尺寸O相板条的尺寸为:长度0.1~0.5μm、宽度<0.1μm。
在本发明的具体实施方式中,所述制品中,大尺寸O相板条、小尺寸O相板条、B2基体、α2颗粒相的组织的体积分数分别为10%~20%、45%~55%、30%~40%、3%~7%。
实施例1
本实施例提供了选区激光熔化Ti2AlNb基合金的热处理方法,包括如下步骤:
(a)将选区激光熔化的Ti2AlNb基合金以一定升温速率于真空度不低于10-2Pa的真空条件下升温至α2+B2相区内某一温度保温处理后,冷却处理;
(b)将步骤(a)处理后的Ti2AlNb基合金以一定升温速率于真空度不低于10-2Pa的真空条件下升温至α2+O+B2相区内某一温度保温处理后,冷却处理;
(c)将步骤(b)处理后的Ti2AlNb合金以一定升温速率于真空度不低于10-2Pa的真空条件下升温至O+B2相区内某一温度保温处理后,冷却处理。
按照上述方法,以表1中所列的具体处理条件对选区激光熔化的Ti2AlNb基合金进行热处理。
其中原材料采用选区激光熔化制造的Ti2AlNb基合金薄壁结构部件,外轮廓尺寸为240mm(长度)×60~100mm(宽度)×3~5mm(厚度),壁厚为变截面1~5mm,内部为空腔结构。
表1不同处理条件
Figure BDA0002846423820000091
Figure BDA0002846423820000101
比较例1
比较例1参考实施例1中1#的热处理方法,区别在于:步骤(a)、(b)和(c)中的升温速率均为5℃/min。
比较例2
比较例2参考实施例1中1#的热处理方法,区别在于:步骤(a)、(b)和(c)中的保温处理的温度分别为1070℃、930℃、800℃。
实验例1
为了对比说明不同实施例的热处理方法对选区激光熔化Ti2AlNb基合金的组织结构的影响,采用扫描电镜分别观察实施例1和比较例1~2热处理后的制品的结构。
本发明实施例1的热处理后的选区激光熔化Ti2AlNb基合金的显微结构如图1~图3所示。从图中可知,经1025℃保温2h快速冷却后,晶粒尺寸细小,在晶界析出非连续的颗粒状α2相,体积分数为3.5%,晶内无析出;经970℃保温4h快速冷却后,晶内析出大尺寸O相板条,体积分数约15.2%;经875℃保温24h快速冷却后,晶内析出小尺寸O相板条,体积分数约46.8%。
比较例2在1070℃保温导致晶粒快速长大、晶界形貌平直、后续热处理在晶界形成连续析出相;930℃保温导致晶界析出连续的O相,晶内O相板条粗大;800℃保温导致晶内析出相更多尺寸更细小,B2基体体积分数降低,塑性难以保证。
实验例2
对实施例1和比较例1~2热处理后的选区激光熔化Ti2AlNb基合金的性能进行测试,测试结果见表2和表3。
表2不同热处理后的Ti2AlNb基合金的室温拉伸性能
编号 σ<sub>b</sub>/MPa σ<sub>0.2</sub>/MPa δ/% ψ/%
1# 1010 893 10.0 9
2# 1008 897 9.5 8
3# 1013 891 10.5 9
4# 1035 907 8.0 9
5# 1015 887 6.5 7
6# 1010 920 5.0 6
7# 980 883 4.5 5
比较例1 1006 905 4.5 5
比较例2 940 835 3.5 4
表3不同热处理后的Ti2AlNb基合金的800℃拉伸性能
Figure BDA0002846423820000111
Figure BDA0002846423820000121
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.选区激光熔化Ti2AlNb基合金的热处理方法,其特征在于,包括如下步骤:
(a)将选区激光熔化的Ti2AlNb基合金于真空条件下升温至α2+B2相区内温度保温处理后,冷却处理;
(b)将步骤(a)处理后的Ti2AlNb基合金于真空条件下升温至α2+O+B2相区内温度保温处理后,冷却处理;
(c)将步骤(b)处理后的Ti2AlNb合金于真空条件下升温至O+B2相区内温度保温处理后,冷却处理;
步骤(a)、(b)和(c)中的所述升温的升温速率为15~25℃/min。
2.根据权利要求1所述的热处理方法,其特征在于,所述α2+B2相区内温度为1010~1040℃;
所述α2+O+B2相区内温度为950~990℃;
所述O+B2相区内温度为850~900℃。
3.根据权利要求1或2所述的热处理方法,其特征在于,步骤(a)中,所述保温处理的时间为1~3h。
4.根据权利要求1或2所述的热处理方法,其特征在于,步骤(b)中,所述保温处理的时间为2~6h。
5.根据权利要求1或2所述的热处理方法,其特征在于,步骤(c)中,所述保温处理的时间为18~36h。
6.根据权利要求1或2所述的热处理方法,其特征在于,步骤(a)中,步骤(a)中,所述冷却处理包括:以145~155℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
7.根据权利要求1或2所述的热处理方法,其特征在于,步骤(a)中,步骤(b)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
8.根据权利要求1或2所述的热处理方法,其特征在于,步骤(a)中,步骤(c)中,所述冷却处理包括:以95~105℃/min的降温速率降至500±10℃后,以8~12℃/min的降温速率降至室温。
9.采用权利要求1-8任一项所述的热处理方法得到的选区激光熔化Ti2AlNb基合金制品。
10.根据权利要求9所述的制品,其特征在于,所述制品具有晶界颗粒α2、多尺度O相板条和B2基体三相组织;
优选的,所述多尺度O相板条包括大尺寸O相板条和小尺寸O相板条;
优选的,所述制品中,大尺寸O相板条、小尺寸O相板条、B2基体、α2颗粒相的组织的体积分数分别为10%~20%、45%~55%、30%~40%、3%~7%。
CN202011511069.2A 2020-12-18 2020-12-18 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品 Active CN112725712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011511069.2A CN112725712B (zh) 2020-12-18 2020-12-18 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011511069.2A CN112725712B (zh) 2020-12-18 2020-12-18 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品

Publications (2)

Publication Number Publication Date
CN112725712A true CN112725712A (zh) 2021-04-30
CN112725712B CN112725712B (zh) 2021-09-14

Family

ID=75603458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011511069.2A Active CN112725712B (zh) 2020-12-18 2020-12-18 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品

Country Status (1)

Country Link
CN (1) CN112725712B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115971492A (zh) * 2022-09-30 2023-04-18 北京钢研高纳科技股份有限公司 Ti2AlNb合金板材及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176949B1 (en) * 1997-03-05 2001-01-23 Onera (Office National D'etudes Et De Recherches Aerospatiales) Titanium aluminide which can be used at high temperature
KR20180068816A (ko) * 2016-12-14 2018-06-22 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-V계 합금의 제조방법
CN109332693A (zh) * 2018-11-08 2019-02-15 有研工程技术研究院有限公司 一种激光增材制造的三相Ti2AlNb基合金的热处理工艺
CN110449581A (zh) * 2019-08-23 2019-11-15 中国航发北京航空材料研究院 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN112063945A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种提高Ti2AlNb基合金持久和蠕变性能的热处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176949B1 (en) * 1997-03-05 2001-01-23 Onera (Office National D'etudes Et De Recherches Aerospatiales) Titanium aluminide which can be used at high temperature
KR20180068816A (ko) * 2016-12-14 2018-06-22 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-V계 합금의 제조방법
CN109332693A (zh) * 2018-11-08 2019-02-15 有研工程技术研究院有限公司 一种激光增材制造的三相Ti2AlNb基合金的热处理工艺
CN110449581A (zh) * 2019-08-23 2019-11-15 中国航发北京航空材料研究院 一种TiAl+Ti2AlNb复合材料激光熔化沉积制备的方法
CN112063945A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种提高Ti2AlNb基合金持久和蠕变性能的热处理工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张润晨等: "保温时间对TiAl基合金组织与力学性能的影响", 《稀有金属材料与工程》 *
张翥 等: "《钛的金属学和热处理》", 30 September 2009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115971492A (zh) * 2022-09-30 2023-04-18 北京钢研高纳科技股份有限公司 Ti2AlNb合金板材及其制备方法和应用
CN115971492B (zh) * 2022-09-30 2024-03-15 北京钢研高纳科技股份有限公司 Ti2AlNb合金板材及其制备方法和应用

Also Published As

Publication number Publication date
CN112725712B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN109628861B (zh) 一种同步提高7系列铝合金板材强度和延伸率的热处理方法
CN110952041B (zh) 一种Fe-Mn-Ni-Cr四组元高熵合金
CN112481567B (zh) 一种提高含铜钛合金强度和塑性的加工方法
CN111136272B (zh) 能显著降低lam钛合金强度和塑性各向异性的热处理方法
CN111676431B (zh) 一种铝锂合金双级连续时效处理方法
CN110238401A (zh) 一种粉末轧制制备高致密度细晶钛合金的方法
CN103572179A (zh) 一种7000系铝合金的晶粒细化处理方法
CN103757571A (zh) 片层界面择优定向的γ-TiAl合金细小全片层组织制备方法
CN112725712B (zh) 选区激光熔化Ti2AlNb基合金的热处理方法及制得的制品
CN113817972B (zh) 通过热处理任意调整钛合金中等轴α相含量的方法
CN108048769A (zh) 一种提高粉末高温合金晶粒尺寸分布均匀性的方法
CN108660399B (zh) 一种预变形Ti-22Al-25Nb合金获得B2+O/α2多形貌稳定组织的方法
CN114214532A (zh) 一种精确控制亚稳组织稳定化实现γ-TiAl合金细化的方法
CN113182476A (zh) 一种高强tc11钛合金锻件的制备方法
CN109797314B (zh) 一种具有纳米级晶粒的高铌TiAl合金及其制备方法
CN112376003A (zh) 一种提高gh141材料屈服强度的工艺
CN112481568A (zh) 一种Ti6Al4V合金锻件β退火热处理方法
CN113278902B (zh) 一种大规格tb9钛合金线材的性能调控方法
CN115261752A (zh) 一种高强2024铝合金加工工艺及高强2024铝合金
Liu et al. Precipitation behavior of γ′ phase in superalloy FGH96 under interrupted cooling test
CN114774817B (zh) 一种Ti6246合金铸件的热处理工艺
CN114959361B (zh) 一种可析出大量有序ω相的TiAl合金及其制备方法
CN115874085B (zh) 一种纳米相增强的无钨钴镍基高温合金及其制备方法
CN113373342B (zh) 一种高超弹性CuAlMn形状记忆合金线材的制备方法
KR102604458B1 (ko) 고강도 고균질연성을 가지는 순수 타이타늄 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant