CN112717974B - 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂 - Google Patents

一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂 Download PDF

Info

Publication number
CN112717974B
CN112717974B CN202011325156.9A CN202011325156A CN112717974B CN 112717974 B CN112717974 B CN 112717974B CN 202011325156 A CN202011325156 A CN 202011325156A CN 112717974 B CN112717974 B CN 112717974B
Authority
CN
China
Prior art keywords
carbon nitride
phosphorus
hollow carbon
cns
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011325156.9A
Other languages
English (en)
Other versions
CN112717974A (zh
Inventor
邓积光
吕思洁
敬林
戴洪兴
刘雨溪
李双
王治伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202011325156.9A priority Critical patent/CN112717974B/zh
Publication of CN112717974A publication Critical patent/CN112717974A/zh
Application granted granted Critical
Publication of CN112717974B publication Critical patent/CN112717974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂,属于催化化学与纳米科学领域。首先,以正硅酸四乙酯和十八烷基三甲氧基硅烷为前驱体,以乙醇、氨水和水为溶剂,利用
Figure DDA0002793622240000011
法制备SiO2模板;然后以氰胺为前驱体,通过负压超声法制备空心氮化碳纳米球(H‑CNS)载体;最后,以红磷为磷源,采用化学气相沉积法,将磷原子沉积在H‑CNS载体上,得到磷掺杂的P/UH‑CNS复合催化剂;该制备过程中,在H‑CNS载体内外表面产生的压力差,会使得原本疏松的H‑CNS载体壳层变薄。本发明材料新颖,制备工艺简单,产物形貌规整可控,催化剂表现出良好的光催化产氢活性和稳定性。

Description

一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂
技术领域
本发明涉及一种高效光催化裂解水制氢的磷(P)掺杂超薄空心氮化碳纳米 球(UH-CNS)催化剂。本发明以氰胺和红磷为前驱体,利用负压超声法和化学 气相沉积法分别制备了空心氮化碳纳米球(H-CNS)和磷掺杂的超薄空心氮化 碳纳米球(P/UH-CNS),最终实现高效的光催化裂解水制氢。属于催化化学与 纳米科学领域。
背景技术
21世纪以来,随着社会和经济的迅猛发展,工业经济对于化石能源的过度 依赖致使地球蕴藏的化石燃料不断被消耗,能源危机与环境污染已成为全球的 焦点。太阳能是一种取之不尽用之不竭的可再生能源,同时氢能也具有清洁、 安全环保、能量密度高等优点,被视为是可以取代传统矿石能源的新能源。受 自然界光合作用启发,利用光催化剂直接吸收太阳能将水解离,制备清洁的氢 能并储存利用,为解决能源枯竭和环境问题提供了新途径。尽管研究光催化裂 解水制氢已有30多年的历史,并取得了较快的发展,但总体仍处在理论探索和 实验室阶段,很多实际问题有待解决,距离工业化应用还有一定的距离。目前主要存在的问题包括:(1)催化剂比表面积较低;(2)对可见光响应较弱; (3)电荷复合速率较高。因此,研究和开发在可见光范围内具有较高光催化活 性的半导体材料是实现太阳能制氢的关键。
在众多半导体光催化剂中,氮化碳(g-C3N4)是其中较为经典的非金属光催 化剂,具有优异的制氢活性。然而,低比表面积、光生电子-空穴对的低分离效 率和较弱的可见光响应能力极大限制了体相g-C3N4材料的实际应用。研究表明, 可通过形貌调控、掺杂、光敏化、异质结构建等方式有效提升g-C3N4的光催化 活性。本发明首先利用负压超声法制备了具有大比表面积的空心氮化碳纳米球, 其中空结构可促进电子和空穴分别向纳米球内外表面的还原中心和氧化中心迁 移,从而实现电荷的局域化,提高量子产率。接着,选用无毒、价格低廉的单 质红磷作为磷源,通过一步化学气相沉积法制备了磷掺杂的超薄空心氮化碳纳 米球。制备过程中,磷蒸汽在空心氮化碳纳米球内外表面形成的压力差,可使 原本疏松的空心氮化碳纳米球壳层变薄。另外,磷元素的掺杂可显著优化空心 氮化碳纳米球的电子结构和表面性质,降低光生电荷的复合速率,从而提升材 料整体的光解水制氢活性。
同时经文献调研发现,目前尚无此类磷掺杂超薄空心氮化碳纳米球催化剂 的制备及其应用于光催化裂解水制氢的报道。因此,本文首次以红磷作为磷源, 利用改进的化学气相沉积法制备了一系列x wt%P/UH-CNS(x=0-10)光催化 剂,实现了此类催化剂材料的可控制备,同时研究发现2wt%P/UH-CNS催化剂 具有最佳的光催化裂解水制氢活性。
发明内容
本发明的目的在于利用化学气相沉积法制备x wt%P/UH-CNS(x=0-10) 催化剂,用于高效的光催化裂解水制氢。
一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂,其特 征在于,为薄壁空心球状氮化碳,且氮化碳球壁掺有P,P的掺杂量为x wt%, x=0-10且不为0。
进一步优选球壁的厚度为20-30nm;空心球的内直径为400-600nm。进一步 球壁上还有孔。
所述磷掺杂超薄空心氮化碳纳米球催化剂的制备方法,其特征在于,包括 以下步骤:
(1)制备表面一层带介孔内部实心的核壳球状SiO2模板;
(2)采用负压超声法制备空心氮化碳纳米球(H-CNS),将步骤(1)所得 的核壳球状SiO2模板在抽真空且同时伴有超声的条件下吸附负载氰胺,然后煅 烧,再用NH4HF2去除SiO2模板,得到空心氮化碳纳米球(H-CNS);
(3)采用化学气相沉积法制备磷掺杂超薄空心氮化碳纳米球,空心氮化碳 纳米球(H-CNS)、碘和纯化后的红磷添加到石英安瓿瓶中,抽真空并用乙炔火 焰密封;然后将上述石英管以2℃/min的速率加热到420-480℃,保温3-5h; 以1℃/min的速率冷却到260-300℃,保温3-5h;接着以0.2℃/min的速率缓 慢冷却至室温;最后,将所制备的样品用CS2、蒸馏水和乙醇洗涤,干燥得到x wt%P/UH-CNS(x=0-10)催化剂。
H-CNS粉末与碘的质量比为100:(0.5-1.5),P根据掺杂量调节。
本发明所得磷掺杂超薄空心氮化碳纳米球催化剂的应用,用于光催化分解 水制备氢气,具体步骤:将催化剂、水、三乙醇胺、Pt混合在可见光或太阳光 照射下制氢气。
本发明具有制备工艺简单、原料价格便宜、产量较高且产物形貌规整等特 征。本发明制备得到的x wt%P/UH-CNS催化剂对光催化裂解水制氢表现出优异 的活性和稳定性,其中活性最好的2wt%P/UH-CNS催化剂在模拟太阳光和可见 光下的产氢活性分别达到9653和2814μmol h-1g-1(测试条件:20mg催化剂, 45mL水,5mL三乙醇胺和2wt%Pt)。
附图说明
图1为所制得催化剂的XRD谱图。
图2为所制得催化剂的TEM照片。图中依次为(a,b)H-CNS,(c,d)1 wt%P/UH-CNS,(e,f)2wt%P/UH-CNS,(g,h)5wt%P/UH-CNS和(l,i)10 wt%P/UH-CNS催化剂的TEM照片。
图3为模拟太阳光(a)及可见光(b)下催化剂的制氢活性图。催化剂在 反应溶液中组成为:20mg催化剂,45mL水,5mL三乙醇胺和2wt%Pt。
具体实施方式
为了进一步阐述本发明,下面以实施例作详细说明,并给出附图描述本发 明得到的各催化剂材料。
实施例1:根据
Figure BDA0002793622220000041
法合成SiO2模板。具体过程为:在35℃下,将9mL 氨水加入到150mL乙醇和20mL去离子水的混合液中,磁力搅拌1h,得到透 明前驱体溶液;在剧烈搅拌下将11mL正硅酸四乙酯(TEOS)快速加入到上述 前驱体溶液中,静置1h以获得白色悬浮液;然后,在剧烈搅拌下,将12.5mL 正硅酸四乙酯(TEOS)和6mL十八烷基三甲氧基硅烷(C18TMOS)的混合液 逐滴加入到上述悬浮液中,并在室温下静置3h;将所得反应液离心,干燥和焙烧,焙烧程序为:以5℃/min的速率由室温升至550℃,保温6h,然后冷却到 室温,得到白色固体;将上述样品在80℃下用1M HCl溶液酸化24h;最后经 离心、干燥,得到核壳SiO2模板。
实施例2:采用负压超声法制备空心氮化碳纳米球(H-CNS)。具体步骤如 下:将1gSiO2模板和5mL氰胺在一个连接真空管的耐压瓶中混合,并先后于 60℃下超声处理3h,80℃下磁力搅拌3h;然后将样品干燥并置于管式炉中焙 烧,焙烧程序为:N2氛围下,以5℃/min的速率由室温升至550℃,保温2h, 最后冷却到室温即制得黄色样品;将研磨后的样品用4M NH4HF2室温处理12h 去除SiO2模板;离心并用蒸馏水和乙醇洗涤,在60℃下干燥得到空心氮化碳 纳米球(H-CNS)。
实施例3:采用化学气相沉积法制备磷掺杂超薄空心氮化碳纳米球(x wt%P/UH-CNS,x=0-10)催化剂。具体步骤如下:将300mg H-CNS粉末、3mg 碘和一定量(1-10wt%)纯化后的红磷添加到石英安瓿瓶中,抽真空并用乙炔火 焰密封;然后将上述石英管以2℃/min的速率加热到450℃,保温4h;以1℃/min 的速率冷却到280℃,保温4h;接着以0.2℃/min的速率缓慢冷却至室温;最 后,将所制备的样品用CS2,蒸馏水和乙醇洗涤,在60℃下干燥得到x wt%P/UH-CNS(x=0-10)催化剂。
本发明具有制备工艺简单,原料价格便宜,产量较高且产物形貌规整、可 控等特点,本发明制备得到的2wt%P/UH-CNS催化剂表现出了优异的光催化裂 解水制氢活性。

Claims (7)

1.一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂,其特征在于,为薄壁空心球状氮化碳,且氮化碳球壁掺有P,P的掺杂量为x wt%,x=0-10且不为0;
高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂制备方法,包括以下步骤:
(1)制备表面一层带介孔内部实心的核壳球状SiO2模板;
(2)采用负压超声法制备空心氮化碳纳米球(H-CNS),将步骤(1)所得的核壳球状SiO2模板在抽真空且同时伴有超声的条件下吸附负载氰胺,然后煅烧,再用NH4HF2去除SiO2模板,得到空心氮化碳纳米球(H-CNS);
(3)采用化学气相沉积法制备磷掺杂超薄空心氮化碳纳米球,空心氮化碳纳米球(H-CNS)、碘和纯化后的红磷添加到石英安瓿瓶中,抽真空并用乙炔火焰密封;然后将上述石英安瓿瓶以2℃/min的速率加热到420-480℃,保温3-5h;以1℃/min的速率冷却到260-300℃,保温3-5h;接着以0.2℃/min的速率缓慢冷却至室温;最后,将所制备的样品用CS2、蒸馏水和乙醇洗涤,干燥得到xwt%P/UH-CNS催化剂。
2.按照权利要求1所述的一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂,其特征在于,球壁的厚度为20-30nm;空心球的内直径为400-600nm。
3.按照权利要求1所述的一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂,其特征在于,球壁上还有孔。
4.权利要求1-3任一项所述的一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂的制备方法,其特征在于,包括以下步骤:
(1)制备表面一层带介孔内部实心的核壳球状SiO2模板;
(2)采用负压超声法制备空心氮化碳纳米球(H-CNS),将步骤(1)所得的核壳球状SiO2模板在抽真空且同时伴有超声的条件下吸附负载氰胺,然后煅烧,再用NH4HF2去除SiO2模板,得到空心氮化碳纳米球(H-CNS);
(3)采用化学气相沉积法制备磷掺杂超薄空心氮化碳纳米球,空心氮化碳纳米球(H-CNS)、碘和纯化后的红磷添加到石英安瓿瓶中,抽真空并用乙炔火焰密封;然后将上述石英安瓿瓶以2℃/min的速率加热到420-480℃,保温3-5h;以1℃/min的速率冷却到260-300℃,保温3-5h;接着以0.2℃/min的速率缓慢冷却至室温;最后,将所制备的样品用CS2、蒸馏水和乙醇洗涤,干燥得到xwt%P/UH-CNS催化剂。
5.按照权利要求4所述的制备方法,其特征在于,H-CNS粉末与碘的质量比为100:(0.5-1.5),P根据掺杂量调节。
6.权利要求1-3任一项所述的一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂的应用,用于光催化分解水制备氢气。
7.权利要求6所述的一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂的应用,具体步骤:将催化剂、水、三乙醇胺、Pt混合在可见光或太阳光照射下制氢气。
CN202011325156.9A 2020-11-23 2020-11-23 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂 Active CN112717974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011325156.9A CN112717974B (zh) 2020-11-23 2020-11-23 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011325156.9A CN112717974B (zh) 2020-11-23 2020-11-23 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂

Publications (2)

Publication Number Publication Date
CN112717974A CN112717974A (zh) 2021-04-30
CN112717974B true CN112717974B (zh) 2023-04-07

Family

ID=75597619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011325156.9A Active CN112717974B (zh) 2020-11-23 2020-11-23 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂

Country Status (1)

Country Link
CN (1) CN112717974B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084875B (zh) * 2021-11-23 2023-01-24 吉林大学 一种无机-无机核壳粒子及其制备方法和应用、高性能聚合物基复合材料
CN115318315B (zh) * 2022-09-07 2023-08-04 东北师范大学 一种磁性碳纳米管/红磷/氮化碳三元非金属光催化剂及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107803216A (zh) * 2017-10-26 2018-03-16 苏州大学 负载溴化银纳米粒子的中空介孔氮化碳纳米球复合材料及其制备方法与在降解染料中的应用
CN108704657A (zh) * 2018-05-31 2018-10-26 广东工业大学 一种红磷/石墨相氮化碳复合纳米片及其制备方法和应用
JP2019130523A (ja) * 2018-01-30 2019-08-08 株式会社日本触媒 メタン合成用触媒、メタン製造方法、およびメタン合成用触媒の製造方法
WO2019229255A1 (en) * 2018-05-31 2019-12-05 Cambridge Enterprise Limited Photocatalyst and photocatalytic methods for producing hydrogen
CN110841670A (zh) * 2019-11-21 2020-02-28 湖南大学 零维黑磷量子点/一维管状氮化碳复合光催化剂及其制备方法
CN111318298A (zh) * 2020-03-04 2020-06-23 燕山大学 一种p掺杂的空心多孔蠕虫状石墨相氮化碳光催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107803216A (zh) * 2017-10-26 2018-03-16 苏州大学 负载溴化银纳米粒子的中空介孔氮化碳纳米球复合材料及其制备方法与在降解染料中的应用
JP2019130523A (ja) * 2018-01-30 2019-08-08 株式会社日本触媒 メタン合成用触媒、メタン製造方法、およびメタン合成用触媒の製造方法
CN108704657A (zh) * 2018-05-31 2018-10-26 广东工业大学 一种红磷/石墨相氮化碳复合纳米片及其制备方法和应用
WO2019229255A1 (en) * 2018-05-31 2019-12-05 Cambridge Enterprise Limited Photocatalyst and photocatalytic methods for producing hydrogen
CN110841670A (zh) * 2019-11-21 2020-02-28 湖南大学 零维黑磷量子点/一维管状氮化碳复合光催化剂及其制备方法
CN111318298A (zh) * 2020-03-04 2020-06-23 燕山大学 一种p掺杂的空心多孔蠕虫状石墨相氮化碳光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112717974A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
CN110013869B (zh) 一种氮化碳纳米片负载碳化钛量子点及其制备方法和应用
CN104549500B (zh) 一种非金属液相掺杂制备B掺杂g-C3N4光催化剂的方法
CN112717974B (zh) 一种高效光催化裂解水制氢的磷掺杂超薄空心氮化碳纳米球催化剂
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN112495421B (zh) 一种氮掺杂碳量子点修饰富氮石墨型氮化碳光催化剂的制备方法
CN110586183B (zh) 一种利用超临界二氧化碳制备TiO2/COF催化材料的方法
CN110548534A (zh) 一种氨基修饰片状氮化碳光催化材料的制备方法
CN110961133A (zh) 非金属BCN/g-C3N4范德华异质结光催化剂及其制备方法和应用
CN111841592A (zh) 一种利用Ti基MOF原位衍生合成TiO2-Ti3C2Tx复合光催化剂及其应用
CN113042049A (zh) 一种半导体光催化剂及其制备方法和应用
CN113058601B (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用
CN113578370A (zh) 一种碳材料负载的管状氮化碳光催化剂的制备方法
CN110102326B (zh) 一种纳米金负载多孔炭改性氮化碳复合光催化材料及其制备方法与应用
CN109847753B (zh) 一种多孔Co@C纳米材料及其制备方法和应用
CN115090318B (zh) 一种高比表面积分子间异质结氮化碳光催化剂的制备方法及其应用
CN116371433A (zh) 一种花球状TiO2/BiOBr核壳结构异质结材料及其制备方法、应用
CN115555030A (zh) 具有受阻路易斯对的多孔层状高熵氧化物制备方法及应用
CN113318723A (zh) 一种二氧化钛光催化材料及其制备方法和应用
CN113877556A (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN111450863A (zh) 一种Cu2+修饰g-C3N4-Bi2Fe4O9异质结光催化产氢材料及其制法
CN110841688A (zh) 基于自组装氮化碳球/片同质异构结的共催化剂的制备方法
CN114950397B (zh) 一种三氟乙酸改性硅表面TFA-Si光催化剂及其制备方法和应用
CN114672844B (zh) 一种复合材料的制备方法及应用
CN116371425B (zh) 富有硫空位的CdS-Vs/Co2RuS6复合催化剂的制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant