CN112705209B - 一种重整制氢催化剂及其制备方法和应用 - Google Patents

一种重整制氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112705209B
CN112705209B CN202011595522.2A CN202011595522A CN112705209B CN 112705209 B CN112705209 B CN 112705209B CN 202011595522 A CN202011595522 A CN 202011595522A CN 112705209 B CN112705209 B CN 112705209B
Authority
CN
China
Prior art keywords
catalyst
nickel
mass
nitrate
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011595522.2A
Other languages
English (en)
Other versions
CN112705209A (zh
Inventor
罗象
赵青
王勤
吴荣生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO SHENJIANG TECHNOLOGY CO LTD
Original Assignee
NINGBO SHENJIANG TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO SHENJIANG TECHNOLOGY CO LTD filed Critical NINGBO SHENJIANG TECHNOLOGY CO LTD
Priority to CN202011595522.2A priority Critical patent/CN112705209B/zh
Publication of CN112705209A publication Critical patent/CN112705209A/zh
Application granted granted Critical
Publication of CN112705209B publication Critical patent/CN112705209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明提供一种重整制氢催化剂及其制备方法和应用,所述催化剂按照质量占比包括以下成分:镍元素3‑10%、镁元素50‑60%、镧元素0.6‑0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。该催化剂由水热法和共沉淀法制备得到,镍和镁形成了NixMgyO固溶体,具有非常优越的抗结烧和抗积碳性能;在此基础上通过微量镧元素的修饰,在低温的环境中表现出了良好的催化活性;可以应用于乙醇重整制氢。

Description

一种重整制氢催化剂及其制备方法和应用
技术领域
本发明涉及催化技术领域,具体涉及一种重整制氢催化剂、一种重整制氢催化剂的制备方法和一种重整制氢催化剂的应用。
背景技术
近年来,低温催化技术备受关注,大量工作瞄准贵金属或镍基催化材料的开发,材料体系多集中在双金属结构,并重点关注含氧碳氢化合物的转化速率和催化剂抗积碳能力。研究人员认为在水蒸气催化重整制氢反应中贵金属(例如Rh、Ru、Pt等)的固有活性要高于常规过渡金属(例如Ni、Co、Fe),更值得一提的是贵金属活性组分对积碳产生的抑制能力要高于常规过渡金属。因此,从催化材料的稳定性及使用寿命来看,贵金属催化剂也更占优势。
尽管贵金属催化剂通常采用极低的负载率(≤1wt%)以弥补其价格劣势,但贵金属的稀缺程度及价格劣势一定程度上会对其大规模应用产生限制。近几年,Angeli等人的工作显示Ni基催化剂也能拥有与Rh催化剂相近的催化活性。不过,镍基催化剂在抗积碳、抗烧结等稳定性上较贵金属催化剂依旧存在劣势。由此可见,系统研究Ni和助催化剂的相互作用机理与催化性能的构效关系,通过引入合适的助催化剂并实现材料可控制备,进一步实现高稳定性和低成本的新型低温镍基材料的开发应该是低温催化工艺发展的主要方向。
目前,镍基催化剂稳定性差是影响其市场应用竞争力的主要原因。其失活通常与蒸汽重整过程中由于催化剂活性组分氧化、烧结及反应器堵塞等问题有关,其中积碳问题尤为突出。
发明内容
基于上述问题,本发明结合镍基固溶体催化剂的稳定结构、微量稀土元素La的助低温催化与助抗积碳性能,提供一种微量La修饰的纳米级片状NixMgyO固溶体。
本发明通过以下技术方案实现:
一种重整制氢催化剂,按质量占比包括以下成分:镍元素3-10%、镁元素50-60%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。
作为优选,所述催化剂按质量占比包括以下成分:镍元素3-8%、镁元素54-60%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。
作为优选,所述催化剂按质量占比包括以下成分:镍元素5-10%、镁元素50-56%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。
进一步地,所述催化剂中,镁元素、镍元素和镧元素的质量满足以下关系:Mg:Ni:La=(84-94):(5-15):1。
进一步地,所述催化剂包括以下成分:NixMgyO固溶体和La2O3;其中x+y=1,且0<x<1,0<y<1。该纳米级镍镁固溶体借助固溶体的稳定结构,大大提升了表面镍颗粒的分散度,并进一步提升了活性金属镍颗粒的抗烧结能力,也对减少积碳起到促进作用。此外,微量La元素能大幅增加NixMgyO固溶体的低温催化性能,并提升催化材料的抗积碳能力。
进一步地,所述催化剂呈现纳米片状结构。
进一步地,所述催化剂由水热法和共沉淀法制备得到。具体包括以下步骤:
S10:获取硝酸金属盐与尿素的混合溶液;
S20:将所述混合溶液在密封的环境中,在120-130℃的条件下保温12-13小时,得到共沉淀产物;
S30:对所述共沉淀产物进行干燥和煅烧,得到所述催化剂。
进一步地,所述硝酸金属盐与尿素的混合溶液中的制备方法包括以下步骤:按质量分称取160-190份硝酸镁、8-25份硝酸镍、1份硝酸镧和50份尿素,加入1500份去离子水混合均匀,得到硝酸金属盐与尿素的混合溶液。
更进一步地,所述干燥和煅烧包括以下步骤:将所述共沉淀产物在105-115℃的条件下干燥3-4小时,并在600-650℃的条件下煅烧5-6小时。
进一步地,所述催化剂可以用于中低温乙醇重整制氢。
综上所述,本申请提供的催化剂及其制备方法具有如下一个或多个优点或有益效果:
1、本发明提供的催化剂通过合理的组分设计和物相结构设计,通过固溶体结构强化金属-载体作用力,减少活性组分颗粒烧结长大可能,进一步降低积碳增多风险,提升催化材料使用寿命。
2、催化剂合成步骤简单,只需要按照合适的前驱体比例一次性完成物料添加与合成,不需要分多步完成,能大大提升制备效率与生产成本,更易于生产工艺放大。
3.采用了水热法和共沉淀法,使得金属间结合度更高,容易形成多金属氧化物,从而使金属元素在高温下更为稳定,不易结烧。
4、最终产物呈现纳米片状结构,形状多为不规则六边形,纳米片状结构具有较大的比表面积,催化剂的活性物质分散度更好,因此催化效果得到了进一步优化。
5、添加微量的La元素显著提高了催化剂在低温条件下的反应产氢效率。
6、La元素的含量控制在0.6-0.7%,以微量的镧元素获得产氢率的显著提高,既控制了生产成本,又提高了催化效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为催化剂1的一种电镜图。
图2为催化剂1的另一种电镜图。
图3为不同温度下乙醇催化重整产氢率。
图4为不同温度下乙醇催化重整转化率。
图5为乙醇催化重整反应气体分布对比。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种重整制氢催化剂及其制备方法,该制备方法结合了水热法和共沉淀法,然后通过干燥和煅烧得到上述重整制氢催化剂。两种制备方法的结合使得催化剂中粒子的分散度得到提升,从而优化了其催化活性;从结构上看,催化剂中的镍元素和镁元素以镍镁固溶体的形态存在,催化剂呈现纳米片状结构,使得金属间的结合度更高,因而具备抗结烧、抗积碳的性能。
【实施例1】
一种重整制氢催化剂的制备方法,包括以下步骤:
S10:称取100克尿素、350克硝酸镁、20克硝酸镍及2克硝酸镧投至5L的高压反应釜中,加入3L去离子水,持续搅拌30min,得到硝酸金属盐和尿素的混合溶液;
S20:将上述硝酸金属盐和尿素的混合溶液移至高压反应釜密封,在120℃的条件下保温12小时,得到共沉淀产物;
S30:将上述共沉淀产物在105℃下干燥3小时,并在600℃下煅烧5小时,得到催化剂1。
催化剂1的各个元素的质量占比为:镁元素56.8%、镍元素4%、镧元素0.64%、氧元素38.56%。
催化剂1为片状纳米结构,且多为不规则六边形,参见图1和图2。
【实施例2】
一种重整制氢催化剂的制备方法,包括以下步骤:
S10:称取100克尿素、360克硝酸镁、16克硝酸镍及2克硝酸镧投至5L的高压反应釜中,加入3L去离子水,持续搅拌30min,得到硝酸金属盐和尿素的混合溶液;
S20:将上述硝酸金属盐和尿素的混合溶液移至高压反应釜密封,在120℃的条件下保温12小时,得到共沉淀产物;
S30:将上述共沉淀产物在105℃下干燥3小时,并在600℃下煅烧5小时,得到催化剂2。
催化剂2的各个元素的质量占比为:镁元素57.4%、镍元素3.1%、镧元素0.62%、氧元素38.88%。
【实施例3】
一种重整制氢催化剂的制备方法,包括以下步骤:
S10:称取100克尿素、330克硝酸镁、50克硝酸镍及2克硝酸镧投至5L的高压反应釜中,加入3L去离子水,持续搅拌30min,得到硝酸金属盐和尿素的混合溶液;
S20:将上述硝酸金属盐和尿素的混合溶液移至高压反应釜密封,在120℃的条件下保温12小时,得到共沉淀产物;
S30:将上述共沉淀产物在105℃下干燥3小时,并在600℃下煅烧5小时,得到催化剂3。
催化剂3的各个元素的质量占比为:镁元素52.4%、镍元素9.8%、镧元素0.62%、氧元素37.18%。
【对比例1】
制备含有镍元素和镁元素且不含镧元素的催化剂作为对比,其制备方法包括以下步骤:
S10:称取100克尿素、350克硝酸镁、20克硝酸镍及投至5L的高压反应釜中,加入3L去离子水,持续搅拌30min,得到硝酸金属盐和尿素的混合溶液;
S20:将上述硝酸金属盐和尿素的混合溶液移至高压反应釜密封,在120℃的条件下保温12小时,得到共沉淀产物;
S30:将上述共沉淀产物在105℃下干燥3小时,并在600℃下煅烧5小时,得到催化剂4。
【对比例2】
将实施例1提供的催化剂1中的镧元素替换为铈元素,制备含有镍元素、镁元素和铈元素的催化剂,其制备方法包括以下步骤:
S10:称取100克尿素、350克硝酸镁、20克硝酸镍及2克硝酸铈投至5L的高压反应釜中,加入3L去离子水,持续搅拌30min,得到硝酸金属盐和尿素的混合溶液;
S20:将上述硝酸金属盐和尿素的混合溶液移至高压反应釜密封,在120℃的条件下保温12小时,得到共沉淀产物;
S30:对上述共沉淀产物进行超声清洗10分钟,超声频率为20000Hz,然后在105℃下干燥3小时,并在600℃下煅烧5小时,得到催化剂5。
催化剂1为微量镧修饰的镍镁固溶体NixMgyO-La,催化剂4为不含镧元素的镍镁固溶体NixMgyO,催化剂5为微量铈元素修饰的镍镁固溶体NixMgyO-Ce。
使用催化剂1和催化剂4、催化剂5进行温度对比实验;具体操作步骤如下:
称取1克催化剂并与15克清洁的石英砂均匀混合,再将混合物装入固定床反应器。在400毫升/分钟的氮气保护下将温度升值600度,再通入100毫升/分钟的氢气,并保持1小时,用于催化剂中镍元素的还原。还原后,切断氢气,将温度反应器温度调至需要的温度,再通入1毫升/分钟的乙醇水的液体混合物,水碳比为3:1,反应空速约为200000h-1。该反应的气体成份检测有在气相色谱完成,为了保证反应在检测取样时已趋于稳定,每次检测将在反应温度稳定后的两小时取样。
图3为不同温度下乙醇催化重整产氢率;图4为不同温度下乙醇催化重整转化率。从图中可见在500-800的温度区间内的四个不同温度点,NixMgyO-La和NixMgyO-Ce的氢气产率都大大提高。特别是在较低温度500度,微量La的添加,将催化剂的氢气产率从12.5%提升至53.1%,乙醇转化率也从21.5%提升至73.1%。相比较,La在低温区间的提升效果非常出色。
此外,图5为乙醇催化重整反应气体分布对比,比较了NixMgyO-La和NixMgyO在乙醇催化重整反应中气体产物的分布。可见,NixMgyO-La的产物中二氧化碳产率较高,一氧化碳产率较低,这一结果说明水煤气变换反应得到了很好的促进,氢气产率更高。在甲烷产率对比中,NixMgyO-La催化剂在反应中能更好的遏制甲烷化反应,保证氢气产率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种重整制氢催化剂,其特征在于,按质量占比包括以下成分:镍元素3-10%、镁元素50-60%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%;
所述催化剂包括:NixMgyO固溶体和La2O3;其中x+y=1,且0<x<1,0<y<1。
2.根据权利要求1所述的催化剂,其特征在于,按质量占比包括以下成分:镍元素3-8%、镁元素54-60%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。
3.根据权利要求1所述的催化剂,其特征在于,按质量占比包括以下成分:镍元素5-10%、镁元素50-56%、镧元素0.6-0.7%,其余为氧元素;以上各个元素的质量百分数之和为100%。
4.据权利要求1述的催化剂,其特征在于,所述催化剂呈现纳米片状结构。
5.一种如权利要求1所述催化剂的制备方法,其特征在于,由水热法和共沉淀法制备得到。
6.根据权利要求5所述的制备方法,其特征在于,包括以下步骤:
S10:获取硝酸金属盐与尿素的混合溶液;
S20:将所述混合溶液在密封的环境中,在120-130℃的条件下保温12-13小时,得到共沉淀产物;
S30:对所述共沉淀产物进行干燥和煅烧,得到所述催化剂。
7.根据权利要求6所述的制备方法,其特征在于,所述硝酸金属盐与尿素的混合溶液中的制备方法包括以下步骤:按质量分称取160-190份硝酸镁、8-25份硝酸镍、1份硝酸镧和50份尿素,加入1500份去离子水混合均匀,得到硝酸金属盐与尿素的混合溶液。
8.根据权利要求6所述的制备方法,其特征在于,所述干燥和煅烧包括以下步骤:将所述共沉淀产物在105-115℃的条件下干燥3-4小时,并在600-650℃的条件下煅烧5-6小时。
9.一种如权利要求1所述催化剂的应用,其特征在于,将所述催化剂用于中低温乙醇重整制氢。
CN202011595522.2A 2020-12-29 2020-12-29 一种重整制氢催化剂及其制备方法和应用 Active CN112705209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011595522.2A CN112705209B (zh) 2020-12-29 2020-12-29 一种重整制氢催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011595522.2A CN112705209B (zh) 2020-12-29 2020-12-29 一种重整制氢催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112705209A CN112705209A (zh) 2021-04-27
CN112705209B true CN112705209B (zh) 2022-09-20

Family

ID=75546506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011595522.2A Active CN112705209B (zh) 2020-12-29 2020-12-29 一种重整制氢催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112705209B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111302B (zh) * 2013-01-12 2015-06-17 天津大学 壳—核型钙钛矿包裹类水滑石基氧化物重整制氢催化剂的制备和应用
WO2017208269A1 (en) * 2016-05-31 2017-12-07 Kt - Kinetics Technology Spa Catalyst for low temperature ethanol steam reforming and related process
CN111346643B (zh) * 2018-12-24 2023-05-12 宁波诺丁汉新材料研究院有限公司 一种用于焦油微波催化裂解的抗烧结催化剂及制备方法
CN110813302A (zh) * 2019-10-31 2020-02-21 昆明理工大学 一种Ni基催化剂的制备方法

Also Published As

Publication number Publication date
CN112705209A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
Torimoto et al. Effects of alloying for steam or dry reforming of methane: a review of recent studies
CN109433192B (zh) 一种贵金属单原子分散型净化催化剂及其制备方法
CN112827483B (zh) 一种制氢催化剂及其制备方法和应用
Tang et al. Morphology-dependent support effect of Ru/MnOx catalysts on CO2 methanation
CN115770603B (zh) 一种氮掺杂碳包覆铜催化剂及其制备方法和应用
CN114733528B (zh) 一种镍/氧化铈催化剂的制备方法与应用
CN109718788B (zh) 甲烷干重整催化剂及其制备方法和应用以及甲烷干重整制合成气的方法
Song et al. The active pairs of Co-Co2C adjusted by La-doped CaTiO3 with perovskite phase for higher alcohol synthesis from syngas
CN114602496B (zh) 纳米碳负载的铂铁双金属催化剂及其制备方法和在富氢气氛下co选择性氧化反应中的应用
Song et al. Self-optimized and renewable Ni–Co alloy@ Co–Co2C catalyst for higher alcohols synthesis from syngas
CN111450834A (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
CN1785516A (zh) 甲烷催化部分氧化制合成气催化剂及其制备方法
CN112191252B (zh) 一种纳米镍颗粒分散于二氧化铈修饰的管状四氧化三钴催化剂及其制备方法与应用
CN112705209B (zh) 一种重整制氢催化剂及其制备方法和应用
CN115920915B (zh) 用于乙酸自热重整制氢的烧绿石型镍基催化剂
CN110026199B (zh) 碳酸氧镧改性的氧化铝负载的镍基催化剂及其制备方法
Hua et al. Ultrafine Ru and γ-Fe2O3 particles supported on MgAl2O4 spinel for water-gas shift reaction
Ma et al. Enhancing carbon dioxide conversion in methane dry reforming multistep reactions through transformation of active species on catalyst surface
CN114984952B (zh) 一种碳包覆铜材料及其制备方法和应用
CN115138359B (zh) 一种负载型单原子协同纳米颗粒双金属催化剂及制备和应用
JP3834621B2 (ja) 水性ガスシフト反応用触媒
CN110270377B (zh) 一种甲烷干重整镍基催化剂及其制备方法和用途
CN113145127A (zh) 一种用于甲醇水蒸气重整制氢的Cu催化剂及其制备方法和应用
CN112619654A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法
CN114308061A (zh) NiAu双金属合金纳米催化剂及其合成与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant