CN112693188A - 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺 - Google Patents

一种高导热性纳米晶增强石墨烯复合薄膜生产工艺 Download PDF

Info

Publication number
CN112693188A
CN112693188A CN202011577502.2A CN202011577502A CN112693188A CN 112693188 A CN112693188 A CN 112693188A CN 202011577502 A CN202011577502 A CN 202011577502A CN 112693188 A CN112693188 A CN 112693188A
Authority
CN
China
Prior art keywords
thermal
conductivity
nano
nanocrystalline
silicone grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011577502.2A
Other languages
English (en)
Inventor
宋波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011577502.2A priority Critical patent/CN112693188A/zh
Publication of CN112693188A publication Critical patent/CN112693188A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种高导热性纳米晶增强石墨烯复合薄膜生产工艺,所述石墨烯薄膜厚度为10‑30μm、纳米晶颗粒直径50‑80nm、高导热硅脂与纳米碳铜箔厚度为20‑40μm。该高导热性纳米晶增强石墨烯复合薄膜生产工艺,通过高导热硅脂、纳米碳铜箔与纳米晶颗粒的添加设置,可以通过高导热硅脂将石墨烯薄膜、纳米谈铜箔与纳米晶薄片更好的接触确保更好的热传导,由纳米晶薄片起到很好的保护作用。

Description

一种高导热性纳米晶增强石墨烯复合薄膜生产工艺
技术领域
本发明涉及高导热性纳米晶增强石墨烯复合薄膜生产工艺技术领域,具体为一种高导热性纳米晶增强石墨烯复合薄膜生产工艺。
背景技术
石墨烯是一种二维平面单原子层厚度六方排列的碳原子所构成的物质,石墨烯薄膜的制备方法中以气相沉积法和氧化还原法最为常见,所得到的石墨烯薄膜具有良好的导电性、导热性以及机械强度,石墨烯,是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法,石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4 个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于 pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能,石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大0.25TPa,石墨烯具有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300W/mK,是为止导热系数最高的碳材料,高于单壁碳纳米管(3500W/mK)和多壁碳纳米管(3000W/mK)。当它作为载体时,导热系数也可达600W/mK。由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。
高导热硅脂又称为散热膏,其成分是以有机硅酮为主要原料,添加耐热、导热性能优异的材料,制成的导热型有机硅脂状复合物,导热硅脂是一种高导热绝缘有机硅材料,几乎永远不固化,可在-50℃—+230℃的温度下长期保持使用时的脂膏状态。
纳米镍粉、超细镍粉通过可变电流激光离子束气相法制备,它集电解镍粉、还原镍粉和雾化镍粉的优点于一体,纯度高,镍含量不小于99.5%,碳、磷、硫、氧等元素的含量低,粒度可控,松比可控,粉末压缩性能好,流动性好。
铜作为金属材料,因其具有良好的化学性质和导电特性,在微电子工业生产中扮演着越来越重要的角色。Cu薄膜的微观结构,如晶体学取向、晶界类型和残余应力等等均会直接影响着电子元器件的可靠性和寿命。纳米Cu薄膜不仅保留了纯铜原有的特性,而且具备着比纯铜更好的物理和化学特性。因此,纳米Cu薄膜是一种非常有应用前景的薄膜材料,纳米碳铜箔材料是新一代的碳基导热散材料,由热扩散高的纳米碳材料和超薄铜箔等组成,具有独特的晶粒取向,沿两个方向均匀导热,片层状结构可很好地使用任何表面,产品均匀散热的同时,也在厚度方面提供热隔离,为此,本发明提供了一种高导热性纳米晶增强石墨烯复合薄膜生产工艺。
发明内容
针对现有技术的不足,本发明提供了一种高导热性纳米晶增强石墨烯复合薄膜生产工艺。
为实现以上目的,本发明通过以下技术方案予以实现:一种高导热性纳米晶增强石墨烯复合薄膜生产工艺,所述石墨烯薄膜厚度为 10-40μm、纳米晶颗粒直径50-80nm、高导热硅脂与纳米碳铜箔厚度为20-50μm。
优选的,所述石墨烯薄膜厚度为10μm、纳米晶颗粒直径50nm、高导热硅脂与纳米碳铜箔厚度为20μm。
优选的,所述石墨烯薄膜厚度为20μm、纳米晶颗粒直径60nm、高导热硅脂与纳米碳铜箔厚度为30μm。
优选的,所述石墨烯薄膜厚度为30μm、纳米晶颗粒直径70nm、高导热硅脂与纳米碳铜箔厚度为40μm。
优选的,所述石墨烯薄膜厚度为40μm、纳米晶颗粒直径80nm、高导热硅脂与纳米碳铜箔厚度为50μm。
优选的,所述高导热硅脂成份为纳米氮化硅镁、纳米碳化硅、纳米氮化硼、高球形度氧化铝与纳米氮化硅。
优选的,所述纳米晶颗粒为纳米晶镍。
本发明还公开了一种高导热性纳米晶增强石墨烯复合薄膜生产工艺,其制备方法具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂均匀喷涂于纳米晶镍薄片上;
步骤三、再将纳米碳铜箔粘附与喷涂有高导热硅脂的纳米晶镍薄片上;
步骤四、再将高导热硅脂均匀喷涂于纳米碳铜箔上;
步骤五、再将石墨烯薄膜粘附与喷涂有高导热硅脂的纳米碳铜箔上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
本发明提供了一种高导热性纳米晶增强石墨烯复合薄膜生产工艺。与现有技术相比,具备以下有益效果:
(1)、该高导热性纳米晶增强石墨烯复合薄膜生产工艺,通过高导热硅脂、纳米碳铜箔与纳米晶颗粒的添加设置,可以通过高导热硅脂将石墨烯薄膜、纳米谈铜箔与纳米晶薄片更好的接触确保更好的热传导,由纳米晶薄片起到很好的保护作用。
具体实施方式
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供三种技术方案:一种高导热性纳米晶增强石墨烯复合薄膜生产工艺,具体包括以下实施例:
实施例1
所述石墨烯薄膜厚度为10μm、纳米晶颗粒直径50nm、高导热硅脂与纳米碳铜箔厚度为20μm。
其制备方法具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂10nm均匀喷涂于纳米晶镍薄片50nm上;
步骤三、再将纳米碳铜箔粘20μm附与喷涂有高导热硅脂10nm 的纳米晶镍薄片50nm上;
步骤四、再将高导热硅脂10nm均匀喷涂于纳米碳铜箔20μm上;
步骤五、再将石墨烯薄膜10μm粘附与喷涂有高导热硅脂10nm 的纳米碳铜箔20nm上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
材料 导热系数W·(m·K)-1
纳米晶镍50nm 71.8
纳米碳铜箔20μm 120
实施例2
所述石墨烯薄膜厚度为20μm、纳米晶颗粒直径60nm、高导热硅脂与纳米碳铜箔厚度为30μm。
其制备方法具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂10nm均匀喷涂于纳米晶镍薄片60nm上;
步骤三、再将纳米碳铜箔粘30μm附与喷涂有高导热硅脂10nm 的纳米晶镍薄片60nm上;
步骤四、再将高导热硅脂10nm均匀喷涂于纳米碳铜箔30μm上;
步骤五、再将石墨烯薄膜20μm粘附与喷涂有高导热硅脂10nm 的纳米碳铜箔30nm上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
材料 导热系数W·(m·K)-1
纳米晶镍50nm 73
纳米碳铜箔20μm 130
实施例3
所述石墨烯薄膜厚度为30μm、纳米晶颗粒直径70nm、高导热硅脂与纳米碳铜箔厚度为40μm。
其制备方法具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂10nm均匀喷涂于纳米晶镍薄片70nm上;
步骤三、再将纳米碳铜箔粘40μm附与喷涂有高导热硅脂10nm 的纳米晶镍薄片50nm上;
步骤四、再将高导热硅脂10nm均匀喷涂于纳米碳铜箔40μm上;
步骤五、再将石墨烯薄膜30μm粘附与喷涂有高导热硅脂10nm 的纳米碳铜箔40nm上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
材料 导热系数W·(m·K)<sup>-1</sup>
纳米晶镍50nm 74.2
纳米碳铜箔20μm 140
实施例4
所述石墨烯薄膜厚度为40μm、纳米晶颗粒直径80nm、高导热硅脂与纳米碳铜箔厚度为50μm。
其制备方法具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂10nm均匀喷涂于纳米晶镍薄片80nm上;
步骤三、再将纳米碳铜箔40μm粘附与喷涂有高导热硅脂10nm 的纳米晶镍薄片80nm上;
步骤四、再将高导热硅脂10nm均匀喷涂于纳米碳铜箔40μm上;
步骤五、再将石墨烯薄膜40μm粘附与喷涂有高导热硅脂10nm 的纳米碳铜箔40μm上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
材料 导热系数W·(m·K)<sup>-1</sup>
纳米晶镍80nm 75.4
纳米碳铜箔40μm 150
同时本说明书中未作详细描述的内容均属于本领域技术人员公知的现有技术。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述石墨烯薄膜厚度为10-40μm、纳米晶颗粒直径50-80nm、高导热硅脂与纳米碳铜箔厚度为20-50μm。
2.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述石墨烯薄膜厚度为10μm、纳米晶颗粒直径50nm、高导热硅脂与纳米碳铜箔厚度为20μm。
3.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述石墨烯薄膜厚度为20μm、纳米晶颗粒直径60nm、高导热硅脂与纳米碳铜箔厚度为30μm。
4.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述石墨烯薄膜厚度为30μm、纳米晶颗粒直径70nm、高导热硅脂与纳米碳铜箔厚度为40μm。
5.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述石墨烯薄膜厚度为40μm、纳米晶颗粒直径80nm、高导热硅脂与纳米碳铜箔厚度为50μm。
6.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述高导热硅脂成份为纳米氮化硅镁、纳米碳化硅、纳米氮化硼、高球形度氧化铝与纳米氮化硅。
7.根据权利要求1所述的一种高导热性纳米晶增强石墨烯复合薄膜,其特征在于:所述纳米晶颗粒为纳米晶镍。
8.一种高导热性纳米晶增强石墨烯复合薄膜生产工艺,其特征在于:其生产工艺具体包括以下步骤:
步骤一、通过高压固相烧结金属粉体法制备得到了纳米晶镍薄片,其压力为5GPa,烧结温度从900℃到1200℃;
步骤二、将高导热硅脂均匀喷涂于纳米晶镍薄片上;
步骤三、再将纳米碳铜箔粘附与喷涂有高导热硅脂的纳米晶镍薄片上;
步骤四、再将高导热硅脂均匀喷涂于纳米碳铜箔上;
步骤五、再将石墨烯薄膜粘附与喷涂有高导热硅脂的纳米碳铜箔上,即可制得高导热性纳米晶增强石墨烯复合薄膜。
CN202011577502.2A 2020-12-28 2020-12-28 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺 Pending CN112693188A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011577502.2A CN112693188A (zh) 2020-12-28 2020-12-28 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011577502.2A CN112693188A (zh) 2020-12-28 2020-12-28 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺

Publications (1)

Publication Number Publication Date
CN112693188A true CN112693188A (zh) 2021-04-23

Family

ID=75511261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011577502.2A Pending CN112693188A (zh) 2020-12-28 2020-12-28 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺

Country Status (1)

Country Link
CN (1) CN112693188A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038631A (zh) * 2015-08-12 2015-11-11 嘉兴中易碳素科技有限公司 高导热绝缘纳米碳铜箔
WO2016093617A1 (ko) * 2014-12-09 2016-06-16 (주)엘지하우시스 방열시트
CN106079693A (zh) * 2016-06-21 2016-11-09 上海多希石墨烯材料科技有限公司 一种石墨烯‑金属复合片材及其制备方法
US20170115074A1 (en) * 2015-10-27 2017-04-27 Chang Chun Petrochemical Co., Ltd. Heat-dissipating copper foil and graphene composite
CN107512041A (zh) * 2017-07-17 2017-12-26 青岛超碳新材料科技有限公司 一种铜箔‑石墨烯/碳纳米管或铜箔‑石墨烯/碳纳米管‑铜箔导热薄膜的制备方法
CN211210301U (zh) * 2019-12-10 2020-08-07 东莞市鸿亿导热材料有限公司 一种无胶型人工石墨散热片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093617A1 (ko) * 2014-12-09 2016-06-16 (주)엘지하우시스 방열시트
CN105038631A (zh) * 2015-08-12 2015-11-11 嘉兴中易碳素科技有限公司 高导热绝缘纳米碳铜箔
US20170115074A1 (en) * 2015-10-27 2017-04-27 Chang Chun Petrochemical Co., Ltd. Heat-dissipating copper foil and graphene composite
CN106079693A (zh) * 2016-06-21 2016-11-09 上海多希石墨烯材料科技有限公司 一种石墨烯‑金属复合片材及其制备方法
CN107512041A (zh) * 2017-07-17 2017-12-26 青岛超碳新材料科技有限公司 一种铜箔‑石墨烯/碳纳米管或铜箔‑石墨烯/碳纳米管‑铜箔导热薄膜的制备方法
CN211210301U (zh) * 2019-12-10 2020-08-07 东莞市鸿亿导热材料有限公司 一种无胶型人工石墨散热片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周文英等: "《导热高分子材料》", 31 January 2014, 国防工业出版社 *

Similar Documents

Publication Publication Date Title
Yan et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader
KR102621583B1 (ko) 고전도율 그라판-금속 복합물 및 제조 방법
Song et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders
Wu et al. A review of graphene synthesis by indirect and direct deposition methods
JP5065336B2 (ja) カーボンナノチューブフィルムの製造方法
KR101284059B1 (ko) 그라핀-산화물반도체 이종접합 소자 및 그의 제조방법
KR101318536B1 (ko) 스트립 재료 상의 금속/cnt 및/또는 풀러렌 조성물 코팅
US9284196B2 (en) Graphene-like nanosheet structure network on a substrate and the method for forming the same
JP6078024B2 (ja) 2次元六角形格子化合物製造用圧延銅箔、及び2次元六角形格子化合物の製造方法
CN104029461A (zh) 一种石墨烯/碳纳米管/石墨膜复合材料及其制备方法
US7402206B2 (en) Method of synthesizing a compound of the formula Mn+1AXn, film of the compound and its use
Xu et al. Vertically aligned graphene for thermal interface materials
Shi et al. Narrow‐Gap Quantum Wires Arising from the Edges of Monolayer MoS2 Synthesized on Graphene
CN108430919B (zh) 碳纳米管接合片以及碳纳米管接合片的制造方法
JP2014084272A (ja) 銅基板上のカーボンナノチューブ成長
CN109136924B (zh) 航天火工分离用石墨烯二硫化钼多层耐磨涂层及制备方法
JP2020043261A (ja) 放熱構造体、電子装置、及び放熱構造体の製造方法
WO2012131630A1 (en) CATALYST FREE SYNTHESIS OF VERTICALLY ALIGNED CNTs ON SiNW ARRAYS
Ferralis et al. Determination of substrate pinning in epitaxial and supported graphene layers via Raman scattering
Zhuang et al. Graphene/3C-SiC hybrid nanolaminate
Jones et al. Thermal conductivity of carbon/boron nitride heteronanotube and boron nitride nanotube buckypapers: implications for thermal management composites
CN112693188A (zh) 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺
JP2010253730A (ja) 放熱材料、プリント基板およびプリント基板の製造方法
Muhsan et al. Fabrication and characterization of graphene-based paper for heat spreader applications
KR101400163B1 (ko) 탄소나노트리 및 그의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210423

WD01 Invention patent application deemed withdrawn after publication