CN105038631A - 高导热绝缘纳米碳铜箔 - Google Patents

高导热绝缘纳米碳铜箔 Download PDF

Info

Publication number
CN105038631A
CN105038631A CN201510492312.3A CN201510492312A CN105038631A CN 105038631 A CN105038631 A CN 105038631A CN 201510492312 A CN201510492312 A CN 201510492312A CN 105038631 A CN105038631 A CN 105038631A
Authority
CN
China
Prior art keywords
copper foil
layer
insulating nano
heat
foil layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510492312.3A
Other languages
English (en)
Inventor
屈洁昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIAXING ZHONGYI CARBON Technology Co Ltd
Original Assignee
JIAXING ZHONGYI CARBON Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIAXING ZHONGYI CARBON Technology Co Ltd filed Critical JIAXING ZHONGYI CARBON Technology Co Ltd
Priority to CN201510492312.3A priority Critical patent/CN105038631A/zh
Publication of CN105038631A publication Critical patent/CN105038631A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明涉及一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层。

Description

高导热绝缘纳米碳铜箔
技术领域
本发明涉及一种高导热绝缘复合材料,特别涉及一种高导热绝缘纳米碳铜箔。
背景技术
随着微电子集成技术的高速发展,电子元器件的尺寸、体积正在急剧缩小,由此带来的散热困难严重影响到了电子器件的精度和寿命,成为器件微型化的技术瓶颈,在很大程度上制约了集成技术的进一步发展。有资料显示,温度每升高2℃,电子器件的稳定性降低约10%;若达到50℃,那么其寿命仅为25℃时的17%左右。因此,对电子器件进行及时而高效的散热是其可靠使用的关键。传统导热材料如金属、无机陶瓷和金属氧化物等,虽导热性良好,但存在诸多缺陷,如单一使用金属材料难以满足绝缘性、化学稳定性等要求;无机陶瓷则存在抗冲击性能差、不易加工等问题。在科学技术和国民经济日益成长的当下,对导热材料的功能多样性也相应提出了更高的要求,如要求导热材料具有轻质、易加工成型、力学性能佳、耐化学腐蚀、电绝缘、低成本等优良的综合性能。传统导热材料因自身的局限性(主要表现在单一使用时)已经无法满足工业和科技的发展需求,如电子元器件所需的高导热绝缘柔性聚合物界面材料,以及化工换热器中具有卓越耐化学腐蚀的轻质导热聚合物材料等。
近期,导热复合材料以其低成本、易加工、良好的力学及电绝缘性等优势而受到广泛地关注,其应用更是囊括了诸如LED照明、太阳能、微电子、电气电工、航空航天等领域,形成了一种逐步取代传统导热材料的趋势。故而,开发高导热绝缘复合材料,不仅可实现电子产品的长期可靠运行,且为解决微电子器件的散热困难提供了重要的材料基础,从而成为目前导热材料的研究热点。
目前,高导热绝缘复合材料以填充型为主,即将具有高导热性填料粒子分散于高分子基体,形成具有优异力学和导热性能的复合材料,其导热能力可用热导率来衡量,数值越大表示材料的导热性能越好。对于填充型复合材料而言,热导率主要取决于高分子基体与导热填料的本征散热性能,以及填料的分散状态,其中导热填料在高分子基体中的分散性是影响材料导热性的重要因素。基于纳米填料的催化效应,纳米粒子更易在高分子基体内部形成导热通道,降低材料内部的孔隙率;相同条件下,比微米粒子更能提高材料的热导率和力学性能,且耐疲劳性更优。然而,纳米粒子的易团聚性会严重阻碍热量的有效传递,故纳米粒子的分散问题成为导热复合材料研究中的难点。此外,当填料用量较少时,填料粒子之间是彼此孤立的,没有相互接触,体系的热导率无法明显提高;随着填料含量的增加,粒子开始相互接触,当超过形成导热通道的临界值时,热量便能经此通道进行快速扩散,材料的导热能力显著提高。
另外,有研究表明:热传递常见的三种形式即热传导、热对流和热辐射,在不同的场合与条件下,所发挥的作用也会随之改变,如果将不同传热方式进行优化组合,可改善综合传热效能。随着高导热绝缘复合材料的发展,在有效弥补传统导热材料不足的同时,亦满足了科技发展的最新要求。
发明内容
本发明所要解决的技术问题是提供一种新型的高导热绝缘复合材料,它所采用的技术方案是:一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层。
本发明更进一步的技术特征是:
所述铜箔层上方的高辐射纳米散热层按重量百分比包括:2~20%树脂,2~25%石墨烯、2~25%碳纳米管、2~25%碳化硅以及5~30%氮化硼。
所述树脂为聚偏氟乙烯或环氧树脂或聚氨酯或聚丙烯酸酯。
所述背胶层为弹性体型压敏胶或树脂型压敏胶或丙烯酸类压敏胶。
本发明的有益效果是:
由于本发明一种高导热绝缘纳米碳铜箔其有效导热结构由高辐射纳米散热层和铜箔层组成,热量经本征导热性优良的铜箔传导后,基于纳米散热层的高热辐射性,部分转换为热辐射,根据辐射传热和温度间的函数关系,热源温度越高,辐射散热效果越显著,因此高导热绝缘纳米碳铜箔最终可实现高效散热;高辐射纳米散热层中纳米粒子的高比表面积,显著增加了有效传热面积,对散热性能的提高发挥了重要作用。而且铜箔层下方有背胶层,可以方便粘贴在需散热的电子元件上,因此在电子元件微型化的趋势下,高导热绝缘纳米碳铜箔能给予电子设备及时而高效地散热,从而显著提高其稳定性与使用寿命。采用导热仪和手机实测对纳米碳铜箔的散热效果进行测试,结果表明:其热扩散系数高达700.43mm^2/s;且散热效果明显优于纯铜箔,最大温差达到4℃。
具体实施方式
实施例1:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:2%聚偏氟乙烯,25%石墨烯、25%碳纳米管25%碳化硅以及23%氮化硼。所述背胶层为弹性体型压敏胶。
实施例2:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:20%环氧树脂、2%石墨烯、23%碳纳米管、25%碳化硅以及30%氮化硼。所述背胶层为树脂型压敏胶。
实施例3:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:20%聚氨酯、25%石墨烯、2%碳纳米管、23%碳化硅以及30%氮化硼。所述背胶层为丙烯酸类压敏胶。
实施例4:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:20%聚丙烯酸酯、23%石墨烯、25%碳纳米管、2%碳化硅以及30%氮化硼。所述背胶层为丙烯酸类压敏胶。
实施例5:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:20%聚偏氟乙烯,25%石墨烯、25%碳纳米管25%碳化硅以及5%氮化硼。所述背胶层为弹性体型压敏胶。
实施例6:
一种高导热绝缘纳米碳铜箔,包括铜箔层,还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层,其中所述铜箔层上方的高辐射纳米散热层按重量百分比包括:10%环氧树脂、20%石墨烯、22%碳纳米管、20%碳化硅以及28%氮化硼。所述背胶层为树脂型压敏胶。
散热性能测试:
热扩散系数:基于NETZSCHLFA447导热仪的测试要求,将实施例1的纳米碳铜箔裁剪成规定形状,进行热扩散系数检测。与纯铜箔材料手机实测对比:在相同条件下,将所测另种样品裁剪成相同形状后,分别贴于相同型号手机的最大发热部位表面,并盖紧后壳。通过FlukeTi32红外线热成像仪监测手机升温过程,每隔十分钟取样,共1小时。
结果分析:
导热仪测试结果显示高导热绝缘纳米碳铜箔的热扩散系数高达700.43mm^2/s;与纯铜箔材料间的手机实测结果对比,其中高导热绝缘纳米碳铜箔的散热效果更好,在第10分钟时,两者温差接近4℃,高导热绝缘纳米碳铜箔明显优于纯铜箔。
虽然已经在此处描述了具体实施方式,但应当理解的是,这里所披露的实施方式仅仅是本发明的典型例子而已,其可体现为各种形式。因此,这里披露的具体细节不被认为是限制性的,而仅仅是作为权利要求的基础以及作为用于教导本领域技术人员以实际中任何恰当的方式不同地应用本发明的代表性的基础,包括采用这里所披露的各种特征并结合这里可能没有明确披露的特征。本发明的保护范围以权利要求书为准。

Claims (4)

1.一种高导热绝缘纳米碳铜箔,包括铜箔层,其特征在于还包括位于铜箔层上方的高辐射纳米散热层,以及位于铜箔层下方的背胶层。
2.如权利要求1所述的高导热绝缘纳米碳铜箔,其特征在于:所述铜箔层上方的高辐射纳米散热层按重量百分比包括:2~20%树脂,2~25%石墨烯、2~25%碳纳米管、2~25%碳化硅以及5~30%氮化硼。
3.如权利要求2所述的高导热绝缘纳米碳铜箔,其特征在于:所述树脂为聚偏氟乙烯或环氧树脂或聚氨酯或聚丙烯酸酯。
4.如权利要求1所述的高导热绝缘纳米碳铜箔,其特征在于:所述背胶层为弹性体型压敏胶或树脂型压敏胶或丙烯酸类压敏胶。
CN201510492312.3A 2015-08-12 2015-08-12 高导热绝缘纳米碳铜箔 Pending CN105038631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510492312.3A CN105038631A (zh) 2015-08-12 2015-08-12 高导热绝缘纳米碳铜箔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510492312.3A CN105038631A (zh) 2015-08-12 2015-08-12 高导热绝缘纳米碳铜箔

Publications (1)

Publication Number Publication Date
CN105038631A true CN105038631A (zh) 2015-11-11

Family

ID=54445612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510492312.3A Pending CN105038631A (zh) 2015-08-12 2015-08-12 高导热绝缘纳米碳铜箔

Country Status (1)

Country Link
CN (1) CN105038631A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105505249A (zh) * 2016-02-03 2016-04-20 嘉兴中易碳素科技有限公司 新型功能化胶带及其生产方法
CN106634653A (zh) * 2016-12-14 2017-05-10 苏州中来光伏新材股份有限公司 具有三维导热通道的光伏组件封装胶膜及制备方法和组件
CN107031144A (zh) * 2017-04-19 2017-08-11 江苏联科纳米科技有限公司 一种高效散热金属箔及其制备方法与应用
CN107458062A (zh) * 2017-08-22 2017-12-12 江苏泛亚微透科技股份有限公司 碳导热片与膨体聚四氟乙烯隔热涂层膜及其制备方法
CN112693188A (zh) * 2020-12-28 2021-04-23 宋波 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157055A (ja) * 2007-12-26 2009-07-16 Glory Ltd 識別ラベル
CN204151284U (zh) * 2014-11-04 2015-02-11 络派模切(北京)有限公司 导热胶带
CN104559424A (zh) * 2014-12-26 2015-04-29 苏州格瑞丰纳米科技有限公司 高效石墨烯基散热涂料、其制备方法及应用
CN104559819A (zh) * 2014-12-16 2015-04-29 惠州力王佐信科技有限公司 一种高性能纳米碳散热复合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157055A (ja) * 2007-12-26 2009-07-16 Glory Ltd 識別ラベル
CN204151284U (zh) * 2014-11-04 2015-02-11 络派模切(北京)有限公司 导热胶带
CN104559819A (zh) * 2014-12-16 2015-04-29 惠州力王佐信科技有限公司 一种高性能纳米碳散热复合材料
CN104559424A (zh) * 2014-12-26 2015-04-29 苏州格瑞丰纳米科技有限公司 高效石墨烯基散热涂料、其制备方法及应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105505249A (zh) * 2016-02-03 2016-04-20 嘉兴中易碳素科技有限公司 新型功能化胶带及其生产方法
CN106634653A (zh) * 2016-12-14 2017-05-10 苏州中来光伏新材股份有限公司 具有三维导热通道的光伏组件封装胶膜及制备方法和组件
CN107031144A (zh) * 2017-04-19 2017-08-11 江苏联科纳米科技有限公司 一种高效散热金属箔及其制备方法与应用
CN107458062A (zh) * 2017-08-22 2017-12-12 江苏泛亚微透科技股份有限公司 碳导热片与膨体聚四氟乙烯隔热涂层膜及其制备方法
CN112693188A (zh) * 2020-12-28 2021-04-23 宋波 一种高导热性纳米晶增强石墨烯复合薄膜生产工艺

Similar Documents

Publication Publication Date Title
Renteria et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications
Lewis et al. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications
CN105038631A (zh) 高导热绝缘纳米碳铜箔
Chung Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing
Loeblein et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material
JP4704899B2 (ja) 熱伝導材料の製造方法
Wu et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks
CN203504880U (zh) 石墨烯导热电路基板
US20150313041A1 (en) Graphene dissipation structure
Guo et al. Electrothermal conversion phase change composites: the case of polyethylene glycol infiltrated graphene oxide/carbon nanotube networks
CN106810719A (zh) 一种热功能复合材料及其制备方法和应用
CN107221506A (zh) 一种高导热效率石墨复合片的制作方法
Chen et al. Directional dependence of electrical and thermal properties in graphene-nanoplatelet-based composite materials
Zhao et al. Heat conduction of electrons and phonons in thermal interface materials
CN101864280A (zh) 芯片封装与散热用热界面材料及其制法
CN105482435A (zh) 三维褶皱状石墨烯散热浆料、其制备方法及应用
Nguyen et al. High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets
Chen et al. Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminum-based particles
He et al. Designing poly (vinylidene fluoride)-silicon carbide nanowire composite structures to achieve high thermal conductivity
WO2014204828A2 (en) Thermal interface nanocomposite
CN105859291B (zh) 三维高导热碳基复合材料的制备方法
Huang et al. A novel silver nanoparticle-deposited aluminum oxide hybrids for epoxy composites with enhanced thermal conductivity and energy density
Hou et al. Aluminum borate/boron nitride nanosheet fibers for enhancing the thermal conductivity of polymer composites
Alekseev et al. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes
Zhang et al. Nacre-inspired conductive carbon nanotube-intercalated graphite nanoplatelet network as multifunctional thermal management materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 314006 Jiaxing, South Lake District, Zhejiang, No. 777 Middle Road (Jiaxing science and technology city) plant

Applicant after: Jiaxing Zhongyi Carbon Technlogy Co., Ltd.

Address before: Jiaxing City, Zhejiang province 314006 Nanhu District Ling Gong Tang Road No. 3339 Building No. 1 room 113

Applicant before: Jiaxing Zhongyi Carbon Technlogy Co., Ltd.

COR Change of bibliographic data
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151111