CN112675709A - 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法 - Google Patents

一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法 Download PDF

Info

Publication number
CN112675709A
CN112675709A CN202011431312.XA CN202011431312A CN112675709A CN 112675709 A CN112675709 A CN 112675709A CN 202011431312 A CN202011431312 A CN 202011431312A CN 112675709 A CN112675709 A CN 112675709A
Authority
CN
China
Prior art keywords
liquor
storage unit
bipolar membrane
membrane electrodialysis
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011431312.XA
Other languages
English (en)
Inventor
赵颖颖
谢岳
王军
袁俊生
赵一欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202011431312.XA priority Critical patent/CN112675709A/zh
Publication of CN112675709A publication Critical patent/CN112675709A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法,所述双极膜电渗析装置包括二氧化碳通入管道、碱液存储单元、盐水存储单元、盐酸液存储单元、硫酸液存储单元、极液存储单元与双极膜电渗析膜堆;所述方法包括:(1)分别独立地配制碱液、盐水、盐酸液、硫酸液与极液;(2)碱液、盐水、盐酸液、硫酸液与极液分别独立地循环操作;(3)步骤(2)所述碱液、盐水、盐酸液、硫酸液与极液开始循环后,向碱液中通入二氧化碳,然后开始通电,当盐水中钠离子浓度不变时,停止通电,结束双极膜电渗析过程。本发明利用海水中的钠资源与温室气体二氧化碳,所得碳酸氢钠溶液浓度≥800mmol/L,固碳率≥30%,符合绿色环保要求。

Description

一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法
技术领域
本发明属于海水资源化利用和矿化固碳技术领域,涉及一种用于海水固碳制碱浓溶液的装置及方法,尤其涉及一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法。
背景技术
海洋作为全球巨大的资源宝库,海水中化学资源的开发与利用受到了人们高度重视,特别是有关钠资源高值利用的新兴技术极具发展潜力。与此同时,温室气体二氧化碳的排放量不断增加,导致了全球气候变暖、冰川融化等一系列环境问题,因此国内外很多学者致力于新型二氧化碳捕集和利用技术的研究探索,利用海水中的钠资源与温室气体二氧化碳制碱便是一个很好的思路。传统的制碱工艺如索维尔制碱法、侯氏制碱法面临着成本高、反应条件苛刻、有废气废液生成等难题;并且近年来新兴的电解法制碱能耗高,不利于大规模投入生产。
CN 108218072A公开了一种高盐水制碱工艺及其装置,所述工艺包括:(1)向高盐水中加碱,形成碳酸钙和氢氧化镁,除去沉淀物,经过第一级陶瓷膜装置过滤,产水加酸后进行脱盐处理;(2)膜脱盐装置的浓水再次加碱后通过第二级陶瓷膜装置处理,产水经加酸调节pH后进入纳滤装置;(3)纳滤装置产水主要为氯化钠溶液,氯化钠溶液经过膜浓缩装置、弱酸阳床、脱碳装置处理后,产水进入双极膜电渗析,经双极膜电渗析将氯化钠溶液制成氢氧化钠和盐酸;(4)纳滤装置的浓水主要成分为硫酸钠溶液,该溶液经冷冻后结晶成芒硝。所述发明使高盐水的产水全部回用,水中的盐份都能得到资源化利用。然而所述工艺并不适用于海水制碱,且无法实现对温室气体二氧化碳的资源化利用。
CN 102198952A公开了一种联合制碱大循环工艺,所述工艺包括:a.采用渗溶采碱法得到制碱原料;b.利用碱卤中的微生物资源得到硫化氢和沼气;c.利用自然能源实现淡碱液蒸发浓缩;d.将天然碱法与化合法结合制得多种产品;e.将煤化工深加工与制碱工艺结合制得辅助产品;f.将电解法与化合法结合制得系列产品。所述发明挖掘了天然碱废弃资源和隐藏资源,发挥了煤化工深加工的潜力并将活性炭净化技术应用于低碳经济,使得各领域技术与制碱工艺紧密结合,实现了联合制碱的大循环。然而所述工艺流程复杂,涉及多套装置,生产成本高,较难推广应用。
CN 108117092A公开了一种气烧窑低二氧化碳浓度窑气直接加压制碱工艺,所述工艺为:煅烧石灰石的石灰窑以天然气为燃料,产生的高温二氧化碳气体不经过额外的提浓处理,仅经除尘、降温后,直接送入二氧化碳压缩机组,经加压后的二氧化碳气体直接送入碳化塔进行化学反应生产纯碱。所述发明以天然气为石灰窑燃料,利用低二氧化碳浓度的窑气直接加压进行纯碱生产,降低了生产成本,同时纯碱产品质量等于或高于以焦炭或白煤为燃料的石灰窑工艺技术指标,增强了企业竞争力,提高了经济效益。然而所述工艺易产生废气废液,不符合绿色环保要求,且不能实现对海水中钠资源的开发利用。
由此可见,如何提供一种制碱方法,综合利用海水中的钠资源与温室气体二氧化碳,同时降低生产成本,符合绿色环保要求,成为了目前本领域技术人员迫切需要解决的问题。
发明内容
本发明的目的在于提供一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法,所述方法综合利用了海水中的钠资源与温室气体二氧化碳,采用双极膜电渗析装置解离海水并提供碱性环境,实现了二氧化碳的离子化吸收,无需外加碱源、原料易得、源头上绿色环保,制得了高价值的碳酸氢钠浓溶液,具有良好的经济效益和市场应用前景。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种用于海水固碳制碱浓溶液的双极膜电渗析装置,所述双极膜电渗析装置包括二氧化碳通入管道、碱液存储单元、盐水存储单元、盐酸液存储单元、硫酸液存储单元、极液存储单元与双极膜电渗析膜堆。
所述二氧化碳通入管道与所述碱液存储单元连接。
所述碱液存储单元的碱液出口与所述双极膜电渗析膜堆的碱室入口连接,双极膜电渗析膜堆的碱室出口与所述碱液存储单元的碱液入口连接。
所述盐水存储单元的盐水出口与所述双极膜电渗析膜堆的盐室入口连接,双极膜电渗析膜堆的盐室出口与所述盐水存储单元的盐水入口连接。
所述盐酸液存储单元的盐酸液出口与所述双极膜电渗析膜堆的盐酸室入口连接,双极膜电渗析膜堆的盐酸室出口与所述盐酸液存储单元的盐酸液入口连接。
所述硫酸液存储单元的硫酸液出口与所述双极膜电渗析膜堆的硫酸室入口连接,双极膜电渗析膜堆的硫酸室出口与所述硫酸液存储单元的硫酸液入口连接。
所述极液存储单元的极液出口与所述双极膜电渗析膜堆的极室入口连接,双极膜电渗析膜堆的极室出口与所述极液存储单元的极液入口连接。
所述双极膜电渗析膜堆由阳电极、阴电极以及设置于阳电极与阴电极之间的至少一组四隔室电渗析单元组成,所述四隔室电渗析单元由双极膜、阳膜、阴膜、阳膜与双极膜组成。
本发明的双极膜电渗析膜堆中的四隔室电渗析单元由双极膜、阳膜、阴膜、阳膜与双极膜组成,相邻的两个四隔室电渗析单元共用一个双极膜。双极膜电渗析膜堆运行时,双极膜解离水产生的阴离子由阴离子交换膜进入碱室,与通入的二氧化碳气体达到溶解和吸收平衡后,双极膜电渗析结束。
本发明通过双极膜电渗析的方法使得海水固碳并制取碳酸氢钠浓溶液,实现了温室气体二氧化碳的离子化吸收,无需外加碱源、原料易得、源头上绿色环保,制得了高价值的碳酸氢钠浓溶液,具有良好的经济效益和市场应用前景。
本发明中,所述浓溶液为碱液中碳酸氢钠浓度≥800mmol/L的溶液。
本发明中,所述碱液存储单元为存储碱液的容器,包括存储碱液的规则容器与不规则容器,本领域技术人员可以根据需要进行合理地选择。
本发明中,所述盐水存储单元为存储盐水的容器,包括存储盐水的规则容器与不规则容器,本领域技术人员可以根据需要进行合理地选择。
本发明中,所述盐酸液存储单元为存储盐酸液的容器,包括存储盐酸液的规则容器与不规则容器,本领域技术人员可以根据需要进行合理地选择。
本发明中,所述硫酸液存储单元为存储硫酸液的容器,包括存储硫酸液的规则容器与不规则容器,本领域技术人员可以根据需要进行合理地选择。
本发明中,所述极液存储单元为存储极液的容器,包括存储极液的规则容器与不规则容器,本领域技术人员可以根据需要进行合理地选择。
本发明中,所述双极膜电渗析膜堆中包括至少一组四隔室电渗析单元,例如可以是1组、2组、3组、4组、5组、6组、7组、8组、9组或10组,本领域技术人员可根据盐水中钠离子的浓度及二氧化碳的通入量进行合理地选择。
优选地,所述双极膜电渗析膜堆的阳电极包括钛电极和/或铂电极。
优选地,所述双极膜电渗析膜堆的阴电极包括钛电极和/或不锈钢电极。
第二方面,本发明提供一种应用如第一方面所述的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地配制碱液、盐水、盐酸液、硫酸液与极液;
(2)碱液、盐水、盐酸液、硫酸液与极液分别独立地循环操作;
(3)步骤(2)所述碱液、盐水、盐酸液、硫酸液与极液开始循环后,向碱液中通入二氧化碳,然后开始通电进行双极膜电渗析,当碱液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
优选地,步骤(1)所述碱液包括碳酸氢钠溶液。
优选地,步骤(1)所述盐水为软化后的海水。
本发明中,所述软化后的海水是经过脱钙提镁后的海水,所述脱钙提镁的方法为常规的技术手段,只要能实现脱钙提镁的功能即可,故在此不做特别限定,例如可以采用CN106904647A公开的方法对海水进行脱钙提镁。
优选地,步骤(1)所述盐酸液包括盐酸溶液。
优选地,步骤(1)所述硫酸液包括硫酸溶液。
优选地,步骤(1)所述极液包括硝酸钠溶液和/或硫酸钠溶液。
优选地,步骤(1)所述碱液中钠离子的浓度为0.01-0.1mol/L,例如可以是0.01mol/L、0.02mol/L、0.03mol/L、0.04mol/L、0.05mol/L、0.06mol/L、0.07mol/L、0.08mol/L、0.09mol/L或0.1mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述盐水中钠离子的浓度为1-2mol/L,例如可以是1mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L或2mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述盐酸液中氢离子的浓度为0.01-1mol/L,例如可以是0.01mol/L、0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L或1mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述硫酸液中氢离子的浓度为0.01-1mol/L,例如可以是0.01mol/L、0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L或1mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(1)所述极液中钠离子的浓度为0.01-0.05mol/L,例如可以是0.01mol/L、0.015mol/L、0.02mol/L、0.025mol/L、0.03mol/L、0.035mol/L、0.04mol/L、0.045mol/L或0.05mol/L,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述二氧化碳的通入速率为320-720mL/min,例如可以是320mL/min、400mL/min、480mL/min、560mL/min、640mL/min、680mL/min或720mL/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述双极膜电渗析采用电压恒定模式,且恒定电压为18-24V,例如可以是18V、19V、20V、21V、22V、23V或24V,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,步骤(3)所述双极膜电渗析的膜表面流速为1-3cm/s,例如可以是1cm/s、1.2cm/s、1.4cm/s、1.6cm/s、1.8cm/s、2cm/s、2.2cm/s、2.4cm/s、2.6cm/s、2.8cm/s或3.0cm/s,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明第二方面所述方法的优选技术方案,所述方法包括如下步骤:
(1)分别独立地配制钠离子浓度为0.01-0.1mol/L的的碱液、钠离子浓度为1-2mol/L的盐水、氢离子浓度为0.01-1mol/L的盐酸液、氢离子浓度为0.01-1mol/L的硫酸液与钠离子浓度为0.01-0.05mol/L的极液;
(2)碱液、盐水、盐酸液、硫酸液与极液分别独立地循环操作;
(3)步骤(2)所述碱液、盐水、盐酸液、硫酸液与极液开始循环后,向碱液中通入速率为320-720mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为18-24V,膜表面流速为1-3cm/s,当碱液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的双极膜电渗析装置将传统的双极膜、阳膜、阴膜与双极膜三隔室结构改进为双极膜、阳膜、阴膜、阳膜与双极膜四隔室结构,可分别在碱液存储单元、盐酸液存储单元与硫酸液存储单元中生产纯度较高的碳酸氢钠溶液、盐酸溶液与硫酸溶液,提高了双极膜电渗析的效率,经济效益可观;
(2)本发明提供的海水固碳制碱浓溶液的方法简单,盐水存储单元使用软化后的海水,原料易得,且有效避免了膜污染;在常温常压、无需添加化学试剂的情况下,碳酸氢钠溶液的制取在碱液存储单元中平稳进行,反应条件温和、绿色环保;应用本发明提供的双极膜电渗析装置进行海水固碳制碱时,所得碳酸氢钠溶液浓度≥800mmol/L,且固碳率≥30%。
附图说明
图1是本发明提供的用于海水固碳制碱浓溶液的双极膜电渗析装置的结构示意图。
其中:100-二氧化碳通入管道;200-碱液存储单元;300-盐水存储单元;400-盐酸液存储单元;500-硫酸液存储单元;600-极液存储单元;700-双极膜电渗析膜堆;710-阳电极;720-阴电极;730-四隔室电渗析单元;731-双极膜;732-阳膜;733-阴膜。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供一种如图1所示的用于海水固碳制碱浓溶液的双极膜电渗析装置,所述双极膜电渗析装置包括二氧化碳通入管道100、碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500、极液存储单元600与双极膜电渗析膜堆700。
所述二氧化碳通入管道100与所述碱液存储单元200连接。
所述碱液存储单元200的碱液出口与所述双极膜电渗析膜堆700的碱室入口连接,双极膜电渗析膜堆700的碱室出口与所述碱液存储单元200的碱液入口连接。
所述盐水存储单元300的盐水出口与所述双极膜电渗析膜堆700的盐室入口连接,双极膜电渗析膜堆700的盐室出口与所述盐水存储单元300的盐水入口连接。
所述盐酸液存储单元400的盐酸液出口与所述双极膜电渗析膜堆700的盐酸室入口连接,双极膜电渗析膜堆700的盐酸室出口与所述盐酸液存储单元400的盐酸液入口连接。
所述硫酸液存储单元500的硫酸液出口与所述双极膜电渗析膜堆700的硫酸室入口连接,双极膜电渗析膜堆700的硫酸室出口与所述硫酸液存储单元500的硫酸液入口连接。
所述极液存储单元600的极液出口与所述双极膜电渗析膜堆700的极室入口连接,双极膜电渗析膜堆700的极室出口与所述极液存储单元600的极液入口连接。
所述双极膜电渗析膜堆700由阳电极710、阴电极720以及设置于阳电极710与阴电极720之间的八组四隔室电渗析单元组成730,所述四隔室电渗析单元730由双极膜731、阳膜732、阴膜733、阳膜732与双极膜731组成,且所述阳电极710为铂电极,所述阴电极720为钛电极。
实施例2
本实施例提供一种如图1所示的用于海水固碳制碱浓溶液的双极膜电渗析装置,所述双极膜电渗析装置中除了将阳电极710改为钛电极,将阴电极720改为不锈钢电极之外,其余结构均与实施例1相同,故在此不做赘述。
对比例1
本对比例提供一种双极膜电渗析装置,所述双极膜电渗析装置包括二氧化碳通入管道、碱液存储单元、盐水存储单元、盐酸液存储单元、极液存储单元与双极膜电渗析膜堆。
所述二氧化碳通入管道与所述碱液存储单元连接。
所述碱液存储单元的碱液出口与所述双极膜电渗析膜堆的碱室入口连接,双极膜电渗析膜堆的碱室出口与所述碱液存储单元的碱液入口连接。
所述盐水存储单元的盐水出口与所述双极膜电渗析膜堆的盐室入口连接,双极膜电渗析膜堆的盐室出口与所述盐水存储单元的盐水入口连接。
所述盐酸液存储单元的盐酸液出口与所述双极膜电渗析膜堆的盐酸室入口连接,双极膜电渗析膜堆的盐酸室出口与所述盐酸液存储单元的盐酸液入口连接。
所述极液存储单元的极液出口与所述双极膜电渗析膜堆的极室入口连接,双极膜电渗析膜堆的极室出口与所述极液存储单元的极液入口连接。
所述双极膜电渗析膜堆由阳电极、阴电极以及设置于阳电极与阴电极之间的八组三隔室电渗析单元组成,所述三隔室电渗析单元由双极膜、阳膜、阴膜与双极膜组成,且所述阳电极为铂电极,所述阴电极为钛电极。
应用例1
本应用例提供一种应用实施例1提供的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500与极液存储单元600中对应地配制钠离子浓度为0.05mol/L的碳酸氢钠溶液、钠离子浓度为1.5mol/L的模拟软化后海水、氢离子浓度为0.5mol/L的盐酸溶液、氢离子浓度为0.5mol/L的硫酸溶液与钠离子浓度为0.025mol/L的硫酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为520mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为21V,膜表面流速为2cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,1.6mol/L的氯离子及其他微量杂离子。
本应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
应用例2
本应用例提供一种应用实施例1提供的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500与极液存储单元600中对应地配制钠离子浓度为0.03mol/L的碳酸氢钠溶液、钠离子浓度为1.25mol/L的模拟软化后海水、氢离子浓度为0.25mol/L的盐酸溶液、氢离子浓度为0.25mol/L的硫酸溶液与钠离子浓度为0.02mol/L的硝酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硝酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硝酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为420mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为20V,膜表面流速为1.5cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,1.3mol/L的氯离子及其他微量杂离子。
本应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
应用例3
本应用例提供一种应用实施例1提供的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500与极液存储单元600中对应地配制钠离子浓度为0.08mol/L的碳酸氢钠溶液、钠离子浓度为1.75mol/L的模拟软化后海水、氢离子浓度为0.75mol/L的盐酸溶液、氢离子浓度为0.75mol/L的硫酸溶液与钠离子浓度为0.04mol/L的硫酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为620mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为23V,膜表面流速为2.5cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,1.8mol/L的氯离子及其他微量杂离子。
本应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
应用例4
本应用例提供一种应用实施例2提供的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500与极液存储单元600中对应地配制钠离子浓度为0.01mol/L的碳酸氢钠溶液、钠离子浓度为2mol/L的模拟软化后海水、氢离子浓度为0.01mol/L的盐酸溶液、氢离子浓度为0.01mol/L的硫酸溶液与钠离子浓度为0.01mol/L的硝酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硝酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硝酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为320mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为18V,膜表面流速为1cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,1.1mol/L的氯离子及其他微量杂离子。
本应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
应用例5
本应用例提供一种应用实施例2提供的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元200、盐水存储单元300、盐酸液存储单元400、硫酸液存储单元500与极液存储单元600中对应地配制钠离子浓度为0.1mol/L的碳酸氢钠溶液、钠离子浓度为1mol/L的模拟软化后海水、氢离子浓度为1mol/L的盐酸溶液、氢离子浓度为1mol/L的硫酸溶液与钠离子浓度为0.05mol/L的硫酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液、硫酸溶液与硫酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为720mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为24V,膜表面流速为3cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,2.1mol/L的氯离子及其他微量杂离子。
本应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
对比应用例1
本对比应用例提供一种应用对比例1提供的双极膜电渗析装置进行海水固碳制碱的方法,所述方法包括如下步骤:
(1)分别独立地在碱液存储单元、盐水存储单元、盐酸液存储单元与极液存储单元中对应地配制钠离子浓度为0.05mol/L的碳酸氢钠溶液、钠离子浓度为1.5mol/L的模拟软化后海水、氢离子浓度为0.5mol/L的盐酸溶液与钠离子浓度为0.025mol/L的硫酸钠溶液;
(2)碳酸氢钠溶液、模拟软化后海水、盐酸溶液与硫酸钠溶液分别独立地循环操作;
(3)步骤(2)所述碳酸氢钠溶液、模拟软化后海水、盐酸溶液与硫酸钠溶液开始循环后,向碳酸氢钠溶液中通入速率为520mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为21V,膜表面流速为2cm/s,当碳酸氢钠溶液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
本对比应用例所述模拟软化后海水中除含有钠离子外,还含有0.02mol/L的镁离子,0.01mol/L的钙离子,1.6mol/L的氯离子及其他微量杂离子。
本对比应用例所得碳酸氢钠溶液的浓度及固碳率见表1。
表1
Figure BDA0002820729550000151
其中,碳酸氢钠溶液浓度的测试方法为:应用GB/T 9736-2008公开的双指示剂酸碱中和滴定法,测定溶液中碳酸根、碳酸氢根离子浓度,从而确定碳酸氢钠的浓度。
固碳率的计算方法为:
Figure BDA0002820729550000152
其中,L0(L/h)为双极膜电渗析运行时,流入碱液存储单元的气体流量;
Figure BDA0002820729550000153
为双极膜电渗析运行时,流入碱液存储单元的气体中二氧化碳的体积分数;Δt(h)为气体通入时间;22.4(L/mol)为气体摩尔体积;
Figure BDA0002820729550000161
为碱液存储单元中碳酸氢根的摩尔增量;
Figure BDA0002820729550000162
为碱液存储单元中碳酸根的摩尔增量。
由表1可知,本发明提供的双极膜电渗析装置用于海水固碳制碱浓溶液时,所得碳酸氢钠溶液浓度≥800mmol/L,且固碳率≥30%;相较于应用例1,对比应用例1采用三隔室的双极膜电渗析装置,因此只能使用盐酸液存储单元或硫酸液存储单元。如果采用硫酸液存储单元,那么氯离子会通过阴膜进入到硫酸液存储单元,获得的是盐酸、硫酸混合溶液,应用价值降低;如果采用盐酸液存储单元,那么盐酸液存储单元和阳极相邻,氯离子会被氧化生成氯气,一方面降低了盐溶液的浓度,使副产盐溶液应用价值降低,另一方面产生的氯气污染环境。
由此可见,本发明提供的双极膜电渗析装置将传统的双极膜、阳膜、阴膜与双极膜三隔室结构改进为双极膜、阳膜、阴膜、阳膜与双极膜四隔室结构,可分别在碱液存储单元、盐酸液存储单元与硫酸液存储单元中生产纯度较高的碳酸氢钠溶液、盐酸溶液与硫酸溶液,提高了双极膜电渗析的效率,经济效益可观;此外,本发明提供的海水固碳制碱浓溶液方法简单,盐水存储单元使用软化后的海水,原料易得,且有效避免了膜污染;在常温常压、无需添加化学试剂的情况下,碳酸氢钠溶液的制取在碱液存储单元中平稳进行,反应条件温和、绿色环保;应用本发明提供的双极膜电渗析装置进行海水固碳制碱浓溶液时,所得碳酸氢钠溶液浓度≥800mmol/L,且固碳率≥30%。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种用于海水固碳制碱浓溶液的双极膜电渗析装置,其特征在于,所述双极膜电渗析装置包括二氧化碳通入管道、碱液存储单元、盐水存储单元、盐酸液存储单元、硫酸液存储单元、极液存储单元与双极膜电渗析膜堆;
所述二氧化碳通入管道与所述碱液存储单元连接;
所述碱液存储单元的碱液出口与所述双极膜电渗析膜堆的碱室入口连接,双极膜电渗析膜堆的碱室出口与所述碱液存储单元的碱液入口连接;
所述盐水存储单元的盐水出口与所述双极膜电渗析膜堆的盐室入口连接,双极膜电渗析膜堆的盐室出口与所述盐水存储单元的盐水入口连接;
所述盐酸液存储单元的盐酸液出口与所述双极膜电渗析膜堆的盐酸室入口连接,双极膜电渗析膜堆的盐酸室出口与所述盐酸液存储单元的盐酸液入口连接;
所述硫酸液存储单元的硫酸液出口与所述双极膜电渗析膜堆的硫酸室入口连接,双极膜电渗析膜堆的硫酸室出口与所述硫酸液存储单元的硫酸液入口连接;
所述极液存储单元的极液出口与所述双极膜电渗析膜堆的极室入口连接,双极膜电渗析膜堆的极室出口与所述极液存储单元的极液入口连接;
所述双极膜电渗析膜堆由阳电极、阴电极以及设置于阳电极与阴电极之间的至少一组四隔室电渗析单元组成,所述四隔室电渗析单元由双极膜、阳膜、阴膜、阳膜与双极膜组成。
2.根据权利要求1所述的双极膜电渗析装置,其特征在于,所述双极膜电渗析膜堆的阳电极包括钛电极和/或铂电极。
3.根据权利要求1或2所述的双极膜电渗析装置,其特征在于,所述双极膜电渗析膜堆的阴电极包括钛电极和/或不锈钢电极。
4.应用如权利要求1-3任一项所述的双极膜电渗析装置进行海水固碳制碱浓溶液的方法,其特征在于,所述方法包括如下步骤:
(1)分别独立地配制碱液、盐水、盐酸液、硫酸液与极液;
(2)碱液、盐水、盐酸液、硫酸液与极液分别独立地循环操作;
(3)步骤(2)所述碱液、盐水、盐酸液、硫酸液与极液开始循环后,向碱液中通入二氧化碳,然后开始通电进行双极膜电渗析,当碱液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
5.根据权利要求4所述的方法,其特征在于,步骤(1)所述碱液包括碳酸氢钠溶液;
优选地,步骤(1)所述盐水为软化后的海水;
优选地,步骤(1)所述盐酸液包括盐酸溶液;
优选地,步骤(1)所述硫酸液包括硫酸溶液;
优选地,步骤(1)所述极液包括硝酸钠溶液和/或硫酸钠溶液。
6.根据权利要求4或5所述的方法,其特征在于,步骤(1)所述碱液中钠离子的浓度为0.01-0.1mol/L;
优选地,步骤(1)所述盐水中钠离子的浓度为1-2mol/L;
优选地,步骤(1)所述盐酸液中氢离子的浓度为0.01-1mol/L;
优选地,步骤(1)所述硫酸液中氢离子的浓度为0.01-1mol/L;
优选地,步骤(1)所述极液中钠离子的浓度为0.01-0.05mol/L。
7.根据权利要求4-6任一项所述的方法,其特征在于,步骤(3)所述二氧化碳的通入速率为320-720mL/min。
8.根据权利要求4-7任一项所述的方法,其特征在于,步骤(3)所述双极膜电渗析采用电压恒定模式,且恒定电压为18-24V。
9.根据权利要求4-8任一项所述的方法,其特征在于,步骤(3)所述双极膜电渗析的膜表面流速为1-3cm/s。
10.根据权利要求4-9任一项所述的方法,其特征在于,所述方法包括如下步骤:
(1)分别独立地配制钠离子浓度为0.01-0.1mol/L的碱液、钠离子浓度为1-2mol/L的盐水、氢离子浓度为0.01-1mol/L的盐酸液、氢离子浓度为0.01-1mol/L的硫酸液与钠离子浓度为0.01-0.05mol/L的极液;
(2)碱液、盐水、盐酸液、硫酸液与极液分别独立地循环操作;
(3)步骤(2)所述碱液、盐水、盐酸液、硫酸液与极液开始循环后,向碱液中通入速率为320-720mL/min的二氧化碳,然后开始采用电压恒定模式通电进行双极膜电渗析,且恒定电压为18-24V,膜表面流速为1-3cm/s,当碱液中的二氧化碳达到溶解与吸收平衡时,停止通电,结束双极膜电渗析过程。
CN202011431312.XA 2020-12-07 2020-12-07 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法 Pending CN112675709A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011431312.XA CN112675709A (zh) 2020-12-07 2020-12-07 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011431312.XA CN112675709A (zh) 2020-12-07 2020-12-07 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法

Publications (1)

Publication Number Publication Date
CN112675709A true CN112675709A (zh) 2021-04-20

Family

ID=75446582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011431312.XA Pending CN112675709A (zh) 2020-12-07 2020-12-07 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法

Country Status (1)

Country Link
CN (1) CN112675709A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087229A (zh) * 2021-04-28 2021-07-09 中国华能集团清洁能源技术研究院有限公司 一种浓海水的固碳应用系统及方法
CN114477387A (zh) * 2022-01-19 2022-05-13 南京延长反应技术研究院有限公司 一种海水电泳脱盐结合微界面强化制碱的装置及方法
CN114804455A (zh) * 2022-03-30 2022-07-29 浙江工业大学 一种双极膜电渗析耦合中空纤维膜处理浓海水产碱固碳的方法
CN114906957A (zh) * 2022-05-31 2022-08-16 宝武水务科技有限公司 浓盐水资源化处理方法及处理系统
CN115369473A (zh) * 2022-09-27 2022-11-22 河北工业大学 一种制备三水碳酸镁晶须的高附加值闭环工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087229A (zh) * 2021-04-28 2021-07-09 中国华能集团清洁能源技术研究院有限公司 一种浓海水的固碳应用系统及方法
CN113087229B (zh) * 2021-04-28 2022-06-28 中国华能集团清洁能源技术研究院有限公司 一种浓海水的固碳应用系统及方法
CN114477387A (zh) * 2022-01-19 2022-05-13 南京延长反应技术研究院有限公司 一种海水电泳脱盐结合微界面强化制碱的装置及方法
CN114804455A (zh) * 2022-03-30 2022-07-29 浙江工业大学 一种双极膜电渗析耦合中空纤维膜处理浓海水产碱固碳的方法
CN114906957A (zh) * 2022-05-31 2022-08-16 宝武水务科技有限公司 浓盐水资源化处理方法及处理系统
CN115369473A (zh) * 2022-09-27 2022-11-22 河北工业大学 一种制备三水碳酸镁晶须的高附加值闭环工艺
CN115369473B (zh) * 2022-09-27 2024-02-02 河北工业大学 一种制备三水碳酸镁晶须的高附加值闭环工艺

Similar Documents

Publication Publication Date Title
CN112675709A (zh) 一种用于海水固碳制碱浓溶液的双极膜电渗析装置及方法
CN110065958B (zh) 一种集成选择性电渗析和选择性双极膜电渗析处理盐湖卤水制备氢氧化锂的方法
CN102320641B (zh) 一种氯醇法环氧丙烷皂化废水资源化利用的方法
CN110656343B (zh) 利用pcet反应以芒硝和石灰石制取两碱联产高纯石膏的方法
CN110282637B (zh) 一种提高制离子膜烧碱中芒硝型卤水用量的方法
CN107366005B (zh) 一种硫酸钠型卤水全卤离子膜制烧碱副产元明粉的工艺方法
CN103449484A (zh) 一种连续生产拟薄水铝石的方法
CN103388198A (zh) 一种双极膜电渗析法从粘胶纤维硫酸钠废液制取酸碱的方法
CN203393285U (zh) 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的系统
CN111170421A (zh) 双极膜电渗析技术处理高盐废水并进行资源化回收的方法
CN109134317B (zh) 一种双极膜电渗析制备l-10-樟脑磺酸的方法
CN114380428A (zh) 一种高浓盐水资源化利用系统及方法
CN113694733B (zh) 一种基于双极膜电渗析装置的锂分离方法
CN219297341U (zh) 一种高盐废水处理系统
CN214051178U (zh) 一种用于海水固碳制碱浓溶液的双极膜电渗析装置
CN115159550B (zh) 一种盐湖卤水循环提锂工艺及装置
CN113830740B (zh) 一种基于电渗析技术的双极膜制备酸碱的方法
CN203507825U (zh) 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的新回收系统
CN105237402A (zh) 一种连续制备亚硝酸酯的方法及装置
CN210340592U (zh) 一种高盐废水精制工业盐装置
CN211111482U (zh) 一种碳酸锂洗水资源化综合利用的装置
CN113753923A (zh) 利用电石渣反应制氨气与二氧化碳双循环利用的制碱工艺
CN114000163A (zh) 一种含盐废水电解制氢系统及其工作方法
CN203507826U (zh) 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的新系统
CN203393287U (zh) 一种粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination