CN112625996A - 一株变形假单胞菌znuA基因稳定沉默菌株及应用 - Google Patents

一株变形假单胞菌znuA基因稳定沉默菌株及应用 Download PDF

Info

Publication number
CN112625996A
CN112625996A CN202110152616.0A CN202110152616A CN112625996A CN 112625996 A CN112625996 A CN 112625996A CN 202110152616 A CN202110152616 A CN 202110152616A CN 112625996 A CN112625996 A CN 112625996A
Authority
CN
China
Prior art keywords
strain
znua
gene
pseudomonas
epinephelus coioides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110152616.0A
Other languages
English (en)
Other versions
CN112625996B (zh
Inventor
赵玲敏
王路英
鄢庆枇
何乐
黄力行
覃映雪
徐晓津
马英
郑江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN202110152616.0A priority Critical patent/CN112625996B/zh
Publication of CN112625996A publication Critical patent/CN112625996A/zh
Application granted granted Critical
Publication of CN112625996B publication Critical patent/CN112625996B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明通过基因沉默技术构建了一株变形假单胞菌znuA基因稳定高效沉默菌株,然后通过人工感染实验确定znuA基因稳定高效沉默菌株对斜带石斑鱼的致病性,并利用dual RNA‑seq技术对野生菌株和znuA基因稳定高效沉默菌株感染后的斜带石斑鱼脾脏的转录组数据进行分析,同时对宿主和病原菌的转录组数据进行研究,从转录组层面探讨znuA基因在变形假单胞菌与斜带石斑鱼互作中的功能,进而揭示了znuA基因对变形假单胞菌毒力的影响。本发明所构建的菌株对斜带石斑鱼的致病力极显著下降,而且能够引起感染脾脏中变形假单胞菌和斜带石斑鱼转录组数据发生显著变化,因此该菌株可用于研究变形假单胞菌的致病机理。

Description

一株变形假单胞菌znuA基因稳定沉默菌株及应用
技术领域
本发明属于微生物技术领域,更具体涉及一株具有研究变形假单胞菌致病机理价值的菌株。
背景技术
变形假单胞菌(Pseudomonas plecoglossicida)是大黄鱼、斜带石斑鱼等海水养殖鱼类“内脏白点病”的病原菌,每年造成的直接经济损失超亿元。
Zn(II)是细菌不可缺少的物质,存在于许多参与核酸代谢过程的蛋白质和酶中,以及一些核糖体蛋白中。在缺乏锌的情况下,ZnuABC和ZupT是许多细菌最保守的锌转运系统,ZnuABC失活会降低细菌的毒力和定植能力。ZnuABC转运体由ZnuA、ZnuB和ZnuC组成。ZnuA是一种可溶的周质成分,它捕获Zn(II)并将其传递给膜渗透酶(ZnuB),而ZnuC提供离子通过内膜运输所需的能量。研究发现,ZnuA在Zn(II)摄取中起关键作用,znuA基因失活将导致细菌毒性的降低,ZnuB不能弥补ZnuA缺失的不足。已有研究表明,敲除胸膜肺炎放线菌znuA基因不仅能降低细菌的毒力,还能有效保护宿主免受同源或异源细菌的攻击。迄今为止,还没有关于变形假单胞菌znuA基因对宿主影响的报道。因此, 探明变形假单胞菌znuA基因在病原-宿主互作中的功能能够揭示其对变形假单胞菌致病性的意义。
本发明通过基因沉默技术构建了一株变形假单胞菌znuA基因稳定高效沉默菌株,然后通过人工感染实验确定znuA基因稳定高效沉默菌株对斜带石斑鱼的致病性,并利用dual RNA-seq技术对野生菌株和znuA基因稳定沉默高效菌株感染后的斜带石斑鱼脾脏的转录组数据进行分析,同时对宿主和病原菌的转录组数据进行研究,从转录组层面探讨znuA基因在变形假单胞菌与斜带石斑鱼互作中的功能,进而揭示了znuA基因对变形假单胞菌毒力的影响。本发明所构建的变形假单胞菌znuA基因稳定高效沉默菌株对斜带石斑鱼的致病力极显著下降,而且能够引起感染脾脏中变形假单胞菌和斜带石斑鱼转录组数据发生显著变化,因此该菌株可用于研究变形假单胞菌的致病机理,特别是从病原-宿主互作研究变形假单胞菌的致病机理有着独特的优势。
发明内容
本发明的主要目的是提供一株变形假单胞菌znuA基因稳定高效沉默菌株,揭示znuA基因在转录组层面对变形假单胞菌毒力的影响,明确了该菌株的应用范围;
为实现上述目的,本发明采取以下技术方案:
一株变形假单胞菌znuA基因稳定高效沉默菌株,所述菌株命名为Pseudomonas plecoglossicida znuA-RNAi,该菌株已于2019年9月6日保藏于中国典型培养物保藏中心,保藏编号为:CCTCC NO:M 2019693,中国典型培养物保藏中心地址为中国武汉,武汉大学。
本发明提供的这株变形假单胞菌znuA基因稳定高效沉默菌株的构建技术路线及其功能,
步骤一:通过比较转录组学分析,筛选得到感染过程中脾脏内表达量提高的znuA基因;
步骤二:合成shRNA引物,退火后连入pCM130/tac载体,通过电转技术导入变形假单胞菌感受态细胞,构建变形假单胞菌znuA基因稳定高效沉默菌株;利用qRT-PCR技术验证各菌株的沉默效果;
步骤三:用相同剂量的变形假单胞菌野生株和znuA基因稳定高效沉默株分别感染斜带石斑鱼,明确znuA基因对变形假单胞菌毒力的影响。
步骤四:利用dual RNA-seq技术对znuA基因稳定高效沉默株和野生株变形假单胞菌感染后的斜带石斑鱼的脾脏进行转录组测序,比较分析znuA基因的沉默对变形假单胞菌和斜带石斑鱼基因表达的影响。
通过基因测序和比对,本发明提供的菌株为一株变形假单胞菌znuA基因稳定高效沉默菌株,揭示了znuA基因对变形假单胞菌毒力的影响以及在病原-宿主互作中的功能。
znuA基因的基因序列(SEQ ID NO.1)为:
ATGTTCCGTTCCGCCCTCGCCCTGCTGCTGGCCTGCGCCTTCCCCGTGCTGGCCCTGGCCGATACCGGCAAACCCCTGCGCATCGGTATCACCCTGCACCCTTACTACAGCTACGTGAGCAACATCGTCGGCGACAAGGCCGAAGTGGTACCGCTGATCCCGGCGGGCTTCAACCCGCACGCCTACGAGCCACGGGCCGAGGACATCAAGCGCATCGGCACCCTGGACGTGGTGGTGCTCAACGGCGTCGGCCATGACGACTTCGCCGACCGCATGATCGCCGCCAGCGAAAAGCCCGACATCAAGACCATCGAGGCCAACCAGAACGTGCCACTGCTGGCGGCCACCGGCATCGCCGCCCGCGGCGCCGGCAAGGTGGTCAACCCGCACACCTTCCTGTCGATCAGCACCACCATCGCCCAGGTCAACAACATCGCCCGCGAACTGGGCAAGCTCGACCCGGACAACGCCAAGTTCTACACGCAGAACGCCCGGGCCTATGCCAAGCGCCTGCGCGCCCTGCGCGCCGAGGCCCTGGCCAAGGTCAGCGAAGCACCCGATGCCACCTTCCGCGTGGCCACCATCCACGCCGCCTACGACTACCTGGTGCGCGACTTCGGCCTGGAAGTGACCGCGGTGGTCGAGCCGGCCCACGGTATCGAGCCGAGCCCGGCACAACTGAAGAAGACCATCGACCAGCTCAAGGCGCTGGACGTCAAGGTGATCTTCTCGGAGATGGATTTCCCCTCGGCCTATGTCGAGACCATCCAGCGCGAATCCGGCGTACGCCTGTACCCGCTGACGCACATTTCCTATGGCGAATACACCCAGGACAAGTACGAAGTGGAGATGAAGCGCAACCTCGACACCGTGGTCCGCGCCATCCAGGAGAACCGCGCATGA。
本发明的优点在于:
变形假单胞菌znuA基因稳定高效沉默菌株感染的斜带石斑鱼的死亡率为0,而变形假单胞菌野生株感染后斜带石斑鱼的死亡率为100%,说明znuA基因是变形假单胞菌重要的毒力基因。
Dual RNA-seq分析结果表明,znuA基因的稳定沉默不仅能够显著影响变形假单胞菌的转录组表达,而且也能显著影响斜带石斑鱼的转录组表达,这说明变形假单胞菌znuA基因稳定高效沉默菌株可用于研究病原-宿主互作以及变形假单胞菌的致病机理。
附图说明
图1:变形假单胞菌znuA-RNAi菌株的构建及生长曲线。(A):5个突变株znuA基因的表达水平。(B):野生型菌株与znuA稳定高效沉默菌株的生长曲线。***p<0.001。
图2:变形假单胞菌对斜带石斑鱼的感染。(A):不同菌株感染的斜带石斑鱼动态存活率。(B):不同菌株感染的斜带石斑鱼的脾症状。(C): znuA基因在野生型菌株和znuA稳定高效沉默菌株中的表达水平。(D): znuA稳定高效沉默菌株与野生型菌株感染斜带石斑鱼的脾内相对病原菌载量的比较。
图3:不同菌株感染的斜带石斑鱼脾转录组数据(A):基于edgeR分析斜带石斑鱼的脾RNA池火山图。(B):感染斜带石斑鱼的脾差异表达基因热图分析。
图4:斜带石斑鱼转录组差异表达基因富集分析。(A): 斜带石斑鱼转录组GO富集分析。(B): 斜带石斑鱼转录组KEGG通路富集分析。
图5:显著富集的KEGG通路。(A)局部粘连通路反应示意图。(B)趋化因子信号通路响应示意图。
具体实施方式
本发明实施例提供的变形假单胞菌znuA基因稳定高效沉默菌株的构建及其功能研究的方法包括以下步骤:
S101:用比较转录组学技术分析变形假单胞菌在斜带石斑鱼脾脏内的基因表达情况,发现znuA基因特异性高表达,就将目标锁定znuA基因;
S102:针对znuA基因序列利用Thermo-fisher Scientific 公司在线shRNA设计工具(http://rnaidesigner.thermofisher.com/rnaiexpress/),利用在线shRNA设计工具设计并合成了5对shRNA引物,分别连入pCM130/tac构建重组载体,然后将各重组载体分别电转导入变形假单胞菌感受态细胞,成功构建变形假单胞菌znuA基因稳定沉默菌株;利用qRT-PCR技术,引物为F:5'-AGGTGATCTTCTCGGAGATGGA-3',R:5'-CACTTCGTACTTGTCCTGGGTG-3',对沉默效果进行检验;图1A显示了5株znuA -RNAi菌株的沉默效果。其中,znuA -shRNA-469的沉默效果最好,达到89.2%。znuA -RNAi菌株的生长速率与野生型菌株一致(图1B);
5对shRNA引物序列分别为:
引物1:
F:5’-TGGACAAGTACGAAGTGGAGATTTCAAGAGAATCTCCACTTCGTACTTGTCCTTTTTTT-3’;
R:5'-GTACAAAAAAAGGACAAGTACGAAGTGGAGATTCTCTTGAAATCTCCACTTCGTACTTGTCCATGCA-3';
引物2:
F:5'-TGCGAATACACCCAGGACAAGTTTCAAGAGAACTTGTCCTGGGTGTATTCGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCGAATACACCCAGGACAAGTTCTCTTGAAACTTGTCCTGGGTGTATTCGCATGCA-3';
引物3:
F:5'-TGCACCCTTACTACAGCTACGTTTCAAGAGAACGTAGCTGTAGTAAGGGTGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCACCCTTACTACAGCTACGTTCTCTTGAAACGTAGCTGTAGTAAGGGTGCATGCA-3';
引物4:
F:5'-TGCACAACTGAAGAAGACCATCTTCAAGAGAGATGGTCTTCTTCAGTTGTGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCACAACTGAAGAAGACCATCTCTCTTGAAGATGGTCTTCTTCAGTTGTGCATGCA-3';
引物5:
F:5'-TGCCAAGTTCTACACGCAGAACTTCAAGAGAGTTCTGCGTGTAGAACTTGGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCCAAGTTCTACACGCAGAACTCTCTTGAAGTTCTGCGTGTAGAACTTGGCATGCA-3'。
S103:利用人工感染实验,对变形假单胞菌野生株和znuA基因沉默株的毒力进行对比。
znuA基因高效稳定沉默株、变形假单胞菌野生株和PBS(NaCl 0.8g、KCl 0.02g、Na2HPO4 0.36g、 KH2PO4 0.024g、H2O 1L,PH 7.0)分别对三组斜带石斑鱼进行胸腔注射感染,菌株感染浓度为103cfu/g,每条鱼注射0.2 mL,每组20尾鱼,然后继续正常暂养(在无致病性的实验室条件下,水温18±2℃),,并记录每天各组鱼的存活状况。
在注射后8 d,分别对野生型菌株组、znuA基因稳定高效沉默株组和PBS组的生存率进行评估。注射野生型菌株后2dpi时鱼的存活率为77%,5.5dpi时存活率为0%(图2A)。PBS组和用znuA基因稳定高效沉默株注射的斜带石斑鱼在整个实验期间均存活。注射野生型菌株的斜带石斑鱼的脾脏表现出典型的症状(脾脏表面有许多白点覆盖),注射znuA基因稳定高效沉默株的脾脏表面没有明显的白点(图2B)。与变形假单胞菌野生菌株18℃体外培养相比,在整个体内感染过程中,znuA基因在znuA稳定高效沉默菌株和野生型菌株中均有高表达, 但znuA 稳定高效沉默菌株体内表达水平低于野生型株(图2C)。与野生型菌株相比,znuA稳定高效沉默菌株在感染过程中脾脏的致病菌载量低于野生型菌株。znuA稳定高效沉默菌株的病原菌载量在48 hpi时达到峰值(83.9%),在96 hpi时迅速下降至最低(图2D)。
S104:利用dual RNA-seq技术对znuA基因稳定高效沉默株和野生株变形假单胞菌感染后的斜带石斑鱼的脾脏进行转录组测序,比较分析znuA基因的沉默对变形假单胞菌和斜带石斑鱼基因表达的影响。
Dual RNA-seq分析结果显示,在mRNA水平上,根据统计标准 (|log2 fold change| ≥1, padj ≤0.05),感染的znuA稳定高效菌株后在斜带石斑鱼中脾脏检测到38768个差异表达基因。与用变形假单胞菌野生型菌株感染斜带石斑鱼,znuA稳定高效菌株感染的脾脏转录组数据显示,有8,587个mRNA上调,14,978个mRNA下调(图3A)。其中,DN42965_c0_g6(log2FC=7.79)的上调幅度最大,DN50592_c0_g5 (log2FC=-8.33)下调最显著。
GO富集分析斜带石斑鱼差异表达基因。斜带石斑鱼共获得138个富集项,其中显著富集项40个:细胞成分(9)、生物过程(5)、分子功能(26)(图4A)。排名前10位的富集有:转译、多肽生物合成、多肽代谢、细胞酰胺代谢、酰胺生物合成、有机氮化合物生物合成、细胞氮化合物生物合成、细胞氮化合物代谢、氮化合物代谢、大分子生物合成。与感染野生型菌株斜带石斑鱼脾进行比较,通过KEGG富集分析得到313条富集的KEGG通路,其中包括23条免疫系统通路(图4B)。结果表明,病灶粘附通路显著富集,并表现出最大的差异表达基因。虽然趋化因子信号通路(KO ID: ko04062)没有显著富集,但其富集的差异表达基因显著下降。根据映射的趋化因子信号通路,znuA-RNAi菌株菌株感染的脾脏中许多基因均显著下调,其中JAK2、IRF9和BAD基因均显著上调(图5A)。根据绘制的局灶粘附通路,与野生型菌株感染的斜带石斑鱼的脾脏相比,GF、PTK、FAK和p130Cas显著上调(图5B)。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 集美大学
<120> 一株变形假单胞菌znuA基因稳定沉默菌株及应用
<130> 13
<160> 13
<170> PatentIn version 3.3
<210> 1
<211> 903
<212> DNA
<213> 人工序列
<400> 1
atgttccgtt ccgccctcgc cctgctgctg gcctgcgcct tccccgtgct ggccctggcc 60
gataccggca aacccctgcg catcggtatc accctgcacc cttactacag ctacgtgagc 120
aacatcgtcg gcgacaaggc cgaagtggta ccgctgatcc cggcgggctt caacccgcac 180
gcctacgagc cacgggccga ggacatcaag cgcatcggca ccctggacgt ggtggtgctc 240
aacggcgtcg gccatgacga cttcgccgac cgcatgatcg ccgccagcga aaagcccgac 300
atcaagacca tcgaggccaa ccagaacgtg ccactgctgg cggccaccgg catcgccgcc 360
cgcggcgccg gcaaggtggt caacccgcac accttcctgt cgatcagcac caccatcgcc 420
caggtcaaca acatcgcccg cgaactgggc aagctcgacc cggacaacgc caagttctac 480
acgcagaacg cccgggccta tgccaagcgc ctgcgcgccc tgcgcgccga ggccctggcc 540
aaggtcagcg aagcacccga tgccaccttc cgcgtggcca ccatccacgc cgcctacgac 600
tacctggtgc gcgacttcgg cctggaagtg accgcggtgg tcgagccggc ccacggtatc 660
gagccgagcc cggcacaact gaagaagacc atcgaccagc tcaaggcgct ggacgtcaag 720
gtgatcttct cggagatgga tttcccctcg gcctatgtcg agaccatcca gcgcgaatcc 780
ggcgtacgcc tgtacccgct gacgcacatt tcctatggcg aatacaccca ggacaagtac 840
gaagtggaga tgaagcgcaa cctcgacacc gtggtccgcg ccatccagga gaaccgcgca 900
tga 903
<210> 2
<211> 22
<212> DNA
<213> 人工序列
<400> 2
aggtgatctt ctcggagatg ga 22
<210> 3
<211> 22
<212> DNA
<213> 人工序列
<400> 3
cacttcgtac ttgtcctggg tg 22
<210> 4
<211> 59
<212> DNA
<213> 人工序列
<400> 4
tggacaagta cgaagtggag atttcaagag aatctccact tcgtacttgt ccttttttt 59
<210> 5
<211> 67
<212> DNA
<213> 人工序列
<400> 5
gtacaaaaaa aggacaagta cgaagtggag attctcttga aatctccact tcgtacttgt 60
ccatgca 67
<210> 6
<211> 59
<212> DNA
<213> 人工序列
<400> 6
tgcgaataca cccaggacaa gtttcaagag aacttgtcct gggtgtattc gcttttttt 59
<210> 7
<211> 67
<212> DNA
<213> 人工序列
<400> 7
gtacaaaaaa agcgaataca cccaggacaa gttctcttga aacttgtcct gggtgtattc 60
gcatgca 67
<210> 8
<211> 59
<212> DNA
<213> 人工序列
<400> 8
tgcaccctta ctacagctac gtttcaagag aacgtagctg tagtaagggt gcttttttt 59
<210> 9
<211> 67
<212> DNA
<213> 人工序列
<400> 9
gtacaaaaaa agcaccctta ctacagctac gttctcttga aacgtagctg tagtaagggt 60
gcatgca 67
<210> 10
<211> 59
<212> DNA
<213> 人工序列
<400> 10
tgcacaactg aagaagacca tcttcaagag agatggtctt cttcagttgt gcttttttt 59
<210> 11
<211> 67
<212> DNA
<213> 人工序列
<400> 11
gtacaaaaaa agcacaactg aagaagacca tctctcttga agatggtctt cttcagttgt 60
gcatgca 67
<210> 12
<211> 59
<212> DNA
<213> 人工序列
<400> 12
tgccaagttc tacacgcaga acttcaagag agttctgcgt gtagaacttg gcttttttt 59
<210> 13
<211> 67
<212> DNA
<213> 人工序列
<400> 13
gtacaaaaaa agccaagttc tacacgcaga actctcttga agttctgcgt gtagaacttg 60
gcatgca 67

Claims (4)

1.一株变形假单胞菌znuA基因稳定高效沉默菌株,其特征在于,所述菌株命名为Pseudomonas plecoglossicida znuA-RNAi,该菌株已于2019年9月6日保藏于中国典型培养物保藏中心,保藏编号为:CCTCC NO:M 2019693。
2.一种如权利要求1所菌株的构建方法,其特征在于,包括以下步骤:
(1)通过比较转录组学分析,筛选得到感染过程中脾脏内表达量显著提高的znuA基因;
(2)针对znuA基因序列设计合成shRNA引物,退火后连入pCM130/tac载体,通过电转技术导入变形假单胞菌感受态细胞,构建变形假单胞菌znuA基因稳定沉默菌株;利用qRT-PCR技术验证各菌株的沉默效果;得到变形假单胞菌znuA基因稳定高效沉默菌株。
3.根据权利要求2所述的构建方法,其特征在于,所述znuA基因序列如SEQ ID NO.1所示。
4.如权利要求1所述菌株在研究变形假单胞菌的致病机理中的应用。
CN202110152616.0A 2021-02-04 2021-02-04 一株变形假单胞菌znuA基因稳定沉默菌株及应用 Expired - Fee Related CN112625996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110152616.0A CN112625996B (zh) 2021-02-04 2021-02-04 一株变形假单胞菌znuA基因稳定沉默菌株及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110152616.0A CN112625996B (zh) 2021-02-04 2021-02-04 一株变形假单胞菌znuA基因稳定沉默菌株及应用

Publications (2)

Publication Number Publication Date
CN112625996A true CN112625996A (zh) 2021-04-09
CN112625996B CN112625996B (zh) 2022-06-10

Family

ID=75295411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110152616.0A Expired - Fee Related CN112625996B (zh) 2021-02-04 2021-02-04 一株变形假单胞菌znuA基因稳定沉默菌株及应用

Country Status (1)

Country Link
CN (1) CN112625996B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151134A (zh) * 2021-05-12 2021-07-23 集美大学 一株变形假单胞菌fliG基因沉默菌株及其应用
CN113528407A (zh) * 2021-05-31 2021-10-22 集美大学 一株变形假单胞菌tonB基因沉默菌株及其应用
CN114703115A (zh) * 2022-04-22 2022-07-05 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694840A (zh) * 2019-01-07 2019-04-30 集美大学 一株变形假单胞菌abc转运蛋白基因沉默菌株
CN109706105A (zh) * 2019-01-07 2019-05-03 集美大学 一株变形假单胞菌fliA基因沉默菌株
CN110055200A (zh) * 2019-01-07 2019-07-26 集美大学 一株变形假单胞菌clpV基因沉默菌株
CN110055187A (zh) * 2019-02-28 2019-07-26 中国农业科学院农业环境与可持续发展研究所 一种变形假单胞菌及其应用
WO2020037998A1 (zh) * 2018-08-20 2020-02-27 上海凌凯医药科技有限公司 一种生产l-木糖的重组变形假单胞菌及其应用
CN110964686A (zh) * 2019-12-26 2020-04-07 江西省德兴市百勤异Vc钠有限公司 一种重组变形假单胞菌及其构建方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020037998A1 (zh) * 2018-08-20 2020-02-27 上海凌凯医药科技有限公司 一种生产l-木糖的重组变形假单胞菌及其应用
CN109694840A (zh) * 2019-01-07 2019-04-30 集美大学 一株变形假单胞菌abc转运蛋白基因沉默菌株
CN109706105A (zh) * 2019-01-07 2019-05-03 集美大学 一株变形假单胞菌fliA基因沉默菌株
CN110055200A (zh) * 2019-01-07 2019-07-26 集美大学 一株变形假单胞菌clpV基因沉默菌株
CN110055187A (zh) * 2019-02-28 2019-07-26 中国农业科学院农业环境与可持续发展研究所 一种变形假单胞菌及其应用
CN110964686A (zh) * 2019-12-26 2020-04-07 江西省德兴市百勤异Vc钠有限公司 一种重组变形假单胞菌及其构建方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIXING HUANG等: "Integration of Transcriptomic and Proteomic Approaches Reveals the Temperature-Dependent Virulence of Pseudomonas plecoglossicida", 《FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY》 *
XINGHONG YANG等: "Deletion of znuA Virulence Factor Attenuates Brucella abortus and Confers Protection against Wild-Type Challenge", 《INFECTION AND IMMUNITY》 *
胡娇等: "大黄鱼(Pseudosciaena crocea)内脏白点病病原分离鉴定及致病性研究", 《海洋与湖沼》 *
霍建强等: "变形假单胞菌灭活疫苗研究", 《集美大学学报(自然科学版)》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151134A (zh) * 2021-05-12 2021-07-23 集美大学 一株变形假单胞菌fliG基因沉默菌株及其应用
CN113151134B (zh) * 2021-05-12 2023-09-12 集美大学 一株变形假单胞菌fliG基因沉默菌株及其应用
CN113528407A (zh) * 2021-05-31 2021-10-22 集美大学 一株变形假单胞菌tonB基因沉默菌株及其应用
CN113528407B (zh) * 2021-05-31 2023-01-10 集美大学 一株变形假单胞菌tonB基因沉默菌株及其应用
CN114703115A (zh) * 2022-04-22 2022-07-05 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途
CN114703115B (zh) * 2022-04-22 2023-09-29 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途

Also Published As

Publication number Publication date
CN112625996B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN112625996B (zh) 一株变形假单胞菌znuA基因稳定沉默菌株及应用
Hockett et al. Independent co-option of a tailed bacteriophage into a killing complex in Pseudomonas
Rosewich et al. Role of horizontal gene transfer in the evolution of fungi
CN110055200B (zh) 一株变形假单胞菌clpV基因沉默菌株
Pfeilmeier et al. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen‐fixing rhizobial symbiosis
Dragoš et al. Phages carry interbacterial weapons encoded by biosynthetic gene clusters
Mohr et al. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues
CN109694840B (zh) 一株变形假单胞菌abc转运蛋白基因沉默菌株
He et al. Integration of RNA‐seq and RNAi reveals the contribution of znuA gene to the pathogenicity of Pseudomonas plecoglossicida and to the immune response of Epinephelus coioides
Zhao et al. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens
CN112662608B (zh) 一株变形假单胞菌exbB基因稳定沉默菌株及应用
Alabid et al. Endofungal bacteria increase fitness of their host fungi and impact their association with crop plants
Sun et al. The mitogen-activated protein kinase gene Crmapk is involved in Clonostachys chloroleuca mycoparasitism
CN106967744B (zh) 一种利用自杀载体消除沙门菌中多拷贝质粒的方法
Liu et al. Identification of the genes involved in growth characters of medicinal fungus Ophiocordyceps sinensis based on Agrobacterium tumefaciens–mediated transformation
Chun et al. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Song et al. Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis
CN113151134B (zh) 一株变形假单胞菌fliG基因沉默菌株及其应用
Yoo et al. Insights into saline adaptation strategies through a novel halophilic bacterium isolated from solar saltern of Yellow sea
Wein et al. Bacterial secretion systems contribute to rapid tissue decay in button mushroom soft rot disease
CN115287243B (zh) 一株变形假单胞菌flgK基因沉默菌株及其构建方法
CN113528407B (zh) 一株变形假单胞菌tonB基因沉默菌株及其应用
CN105441469B (zh) 重组昆虫蜕皮激素失活基因Bbsp::egt及其杀虫真菌剂
Lyu et al. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis
Xiang et al. Transcriptomic analysis reveals competitive growth advantage of non-pigmented Serratia marcescens mutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220610

CF01 Termination of patent right due to non-payment of annual fee