CN113528407A - 一株变形假单胞菌tonB基因沉默菌株及其应用 - Google Patents

一株变形假单胞菌tonB基因沉默菌株及其应用 Download PDF

Info

Publication number
CN113528407A
CN113528407A CN202110603157.3A CN202110603157A CN113528407A CN 113528407 A CN113528407 A CN 113528407A CN 202110603157 A CN202110603157 A CN 202110603157A CN 113528407 A CN113528407 A CN 113528407A
Authority
CN
China
Prior art keywords
strain
tonb
pseudomonas
gene
proteus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110603157.3A
Other languages
English (en)
Other versions
CN113528407B (zh
Inventor
赵玲敏
胡伶飞
鄢庆枇
黄力行
覃映雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN202110603157.3A priority Critical patent/CN113528407B/zh
Publication of CN113528407A publication Critical patent/CN113528407A/zh
Application granted granted Critical
Publication of CN113528407B publication Critical patent/CN113528407B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一株变形假单胞菌tonB基因沉默菌株及其应用。所述菌株为Pseudomonas plecoglossicidatonB‑RNAi,已于2020年12月18日于中国典型培养物保藏中心保藏,保藏号为CCTCC NO:M 2020919。本发明的变形假单胞菌tonB基因沉默菌株与野生菌株相比,对斜带石斑鱼的致病力极显著下降,而且能够引起斜带石斑鱼脾脏转录组发生显著变化,因此该菌株能用于研究变形假单胞菌的致病机理,特别是从感染斜带石斑鱼以及物质运输角度研究变形假单胞菌的致病机理有着独特的优势。

Description

一株变形假单胞菌tonB基因沉默菌株及其应用
技术领域
本发明属于微生物技术领域,更具体涉及一株变形假单胞菌tonB基因沉默菌株及其应用。
背景技术
变形假单胞菌(Pseudomonas plecoglossicida)是大黄鱼、斜带石斑鱼等海水养殖鱼类“内脏白点病”的病原菌,每年造成的直接经济损失超亿元。
tonB基因编码TonB系统(TonB-ExbB -ExbD)中的TonB蛋白。早期研究表明,tonB基因在革兰氏阴性菌中广泛存在。TonB系统由固定在细胞膜上的ExbB-ExbD和周质蛋白TonB组成,它为依赖 TonB的外膜受体 (TBDTs)提供能量,并支持重要营养物质的积极运输,包括铁、血红蛋白、维生素B12和碳水化合物。铁在细菌致病性和宿主防御机制中发挥着重要作用,但这一作用往往被低估。在细菌-宿主相互作用中,对铁的争夺对感染结果至关重要。已有相关报道证实了TonB系统与菌株的毒力相关,但关于tonB基因的报道较少。因此, 探明变形假单胞菌tonB基因在感染斜带石斑鱼中的功能能够揭示其对变形假单胞菌致病性的意义。
本发明通过基因沉默技术构建了一株变形假单胞菌tonB基因稳定沉默菌株,然后通过人工感染实验确定tonB基因稳定沉默菌株对斜带石斑鱼的致病性,并利用RNA-seq技术对野生毒株和tonB基因稳定沉默菌株感染后的斜带石斑鱼脾脏的转录进行分析,从转录组层面探讨tonB基因在变形假单胞菌感染斜带石斑鱼过程中的功能,进而揭示了tonB基因对变形假单胞菌毒力的影响,尤其是从物质运输角度对变形假单胞菌毒力的影响。本发明所构建的变形假单胞菌tonB基因稳定沉默菌株对斜带石斑鱼的致病力极显著下降,而且能够引起斜带石斑鱼脾脏转录组发生显著变化,因此该菌株可用于研究变形假单胞菌的致病机理,特别是从感染斜带石斑鱼以及物质运输角度研究变形假单胞菌的致病机理有着独特的优势。
发明内容
本发明的主要目的是提供一株变形假单胞菌tonB基因稳定沉默菌株,揭示tonB基因在转录组层面对变形假单胞菌毒力的影响,明确了该菌株的应用范围。
为实现上述目的,本发明采用如下技术方案:
一株变形假单胞菌tonB基因稳定沉默菌株,所述菌株为Pseudomonas plecoglossicidatonB-RNAi,已于2020年 12月18日于中国典型培养物保藏中心保藏,保藏号为CCTCC NO: M 2020919,地址为中国.武汉.武汉大学。
一株变形假单胞菌tonB基因沉默菌株的构建技术路线,包括以下步骤:
步骤一:通过比较转录组学分析发现,tonB基因在变形假单胞菌感染的斜带石斑鱼脾脏内高表达;所述 tonB基因序列如SEQ ID NO.1所示;
步骤二:合成shRNA,退火后连入pCM130/tac构建重组载体,通过电转技术将重组载体导入变形假单胞菌感受态细胞,构建变形假单胞菌tonB基因沉默菌株;利用qRT-PCR技术验证菌株的沉默效果。
用5
Figure 306027DEST_PATH_IMAGE001
104 cfu/尾剂量的变形假单胞菌野生株和tonB基因沉默株和PBS(NaCl 0.8g、KCl 0.02g、Na2HPO4 0.36g、 KH2PO4 0.024g、H2O 1L,pH 7.0)分别感染斜带石斑鱼,明 确tonB基因对变形假单胞菌毒力的影响。
利用dual RNA-seq技术对tonB基因沉默株和变形假单胞菌野生株感染后的斜带石斑鱼的脾脏进行转录组测序,比较分析tonB基因的沉默对变形假单胞菌和斜带石斑鱼基因表达的影响。
通过基因测序和比对,本发明提供的菌株为一株变形假单胞菌tonB基因沉默菌株,揭示了tonB基因对变形假单胞菌毒力的影响及在感染斜带石斑鱼中的功能。
上述一株变形假单胞菌tonB基因沉默菌株在制备预防和治疗鱼类内脏白点病制剂中的应用。
上述一株变形假单胞菌 tonB基因沉默菌株在变形假单胞菌致病机理研究中的应用。
本发明的优点在于:
变形假单胞菌tonB基因稳定沉默菌株感染的斜带石斑鱼的死亡率为80%,而变形假单胞菌野生株感染后斜带石斑鱼的死亡率为100%,说明tonB基因是变形假单胞菌重要的毒力基因。
RNA-seq分析结果表明,tonB基因的稳定沉默能够显著影响斜带石斑鱼的转录组表达,这说明变形假单胞菌tonB基因稳定沉默菌株能用于斜带石斑鱼感染以及从物质运输角度研究变形假单胞菌的致病机理。
附图说明:
图1:tonB-RNAi沉默株mRNA水平与生长曲线。 (A):4株tonB-RNAi沉默株的tonBmRNA水平。(B)野生型菌株和tonB-RNAi菌株的生长曲线。
图2:野生型菌株和tonB-RNAi菌株的毒力研究。 (A):不同感染组在10dpi时的斜带石斑鱼存活率;(B):变形假单胞菌感染斜带石斑鱼脾脏的症状;(C):与野生型变形假单胞菌感染组相比,tonB-RNAi菌株感染组的脾脏菌株丰度;(D)tonB基因mRNA在斜带石斑鱼脾脏中的表达水平。
图3:感染第3天脾脏中斜带石斑鱼基于DESeq2分析tonB基因稳定高效沉默菌株和野生型菌株感染斜带石斑鱼的脾RNA池的火山图。
图4:感染第3天脾脏中斜带石斑鱼 DEMs的KEGG通路富集分析。
图5: 感染第5天脾脏中斜带石斑鱼基于DESeq2分析tonB基因稳定高效沉默菌株和野生型菌株感染斜带石斑鱼脾RNA池的火山图。
图6感染第5天脾脏中斜带石斑鱼DEMs的GO富集分析。
图7 感染第5天脾脏中斜带石斑鱼DEMs的KEGG通路富集分析。
图8:感染第3天KEGG富集通路分析。(A) 抗原呈递与加工通路分析(3d);(B)部分补体与凝血级联通路分析(5d);红色代表上调,蓝色代表下调,紫色代表无显著变化。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
一株变形假单胞菌tonB基因稳定沉默菌株的构建方法,包括以下步骤:
步骤一:用比较转录组学技术分析变形假单胞菌在斜带石斑鱼脾脏内的基因表达情况,发现tonB基因特异性高表达,就将目标锁定tonB基因;tonB基因序列如SEQ ID NO.1所示;
步骤二:针对tonB基因序列利用Thermo-fisher Scientific 公司在线shRNA设计 工具
Figure DEST_PATH_IMAGE003
, 利用在线shRNA设计工具设计并合成了4对shRNA引物,分别连入pCM130/tac构建重组载体, 然后将各重组载体分别电转导入变形假单胞菌感受态细胞,成功构建变形假单胞菌tonB基 因稳定沉默菌株;利用qRT-PCR技术,引物为(F: 5'-GTGGACACGCCGCCAAGCAA-3';R: 5'- GCCAGGTGACGCAGCAAATCG-3')对沉默效果进行检验。图1A显示了4株tonB -RNAi菌株的沉默 效果。其中,tonB-RNAi-663的沉默效果最好,达到94.0%,即为变形假单胞菌tonB基因稳定 高效沉默株。
4对shRNA引物序列如下:
引物1:
F:5'-TGCATCGCTTCGAACAGCAAAGTTCAAGAGACTTTGCTGTTCGAAGCGATGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCATCGCTTCGAACAGCAAAGTCTCTTGAACTTTGCTGTTCGAAGCGATGCATGCA-3';
引物2:
F:5'-TGCTTCGAACAGCAAAGCCTTGTTCAAGAGACAAGGCTTTGCTGTTCGAAGCTTTTTTT-3';
R:5'-GTACAAAAAAAGCTTCGAACAGCAAAGCCTTGTCTCTTGAACAAGGCTTTGCTGTTCGAAGCATGCA-3';
引物3:
F:5’-TGCCACCTGAGTTGCTGAACAATTCAAGAGATTGTTCAGCAACTCAGGTGGCTTTTTTT-3’;
R:5’-GTACAAAAAAAGCCACCTGAGTTGCTGAACAATCTCTTGAATTGTTCAGCAACTCAGGTGGCATGCA-3';
引物4:
F:5’-TGCTGAACAATGGCACGATCGATTCAAGAGATCGATCGTGCCATTGTTCAGCTTTTTTT-3’;
R:5’-GTACAAAAAAAGCTGAACAATGGCACGATCGATCTCTTGAATCGATCGTGCCATTGTTCAGCATGCA-3’。
所述变形假单胞菌菌株为Pseudomonas plecoglossicidatonB-RNAi,已于2020年12月18日于中国典型培养物保藏中心保藏,保藏号为CCTCC NO:M 2020919,地址为中国.武汉.武汉大学。
实施例2
利用人工感染实验,对变形假单胞菌野生株和tonB基因稳定高效沉默株的毒力进行对比。
tonB基因稳定高效沉默株、变形假单胞菌野生株来源于本课题组,由胡娇等于 2014年分离鉴定,并保存于实验室-80℃超低温冰箱中(胡娇, 张飞, 徐晓津, 等. 大黄鱼 (Pseudosciaena crocea)内脏白点病病原分离鉴定及致病性研究[J]. 海洋与湖沼, 2014, 45(02): 409-417.)和PBS(NaCl 0.8g、KCl 0.02g、Na2HPO4 0.36g、 KH2PO4 0.024g、 H2O 1L,PH 7.0)分别对三组斜带石斑鱼进行胸腔注射感染,菌株感染浓度为5
Figure 878959DEST_PATH_IMAGE001
104 cfu/尾, 每条鱼注射0.2 mL,每组20尾鱼,然后继续正常暂养(在无致病性的实验室条件下,水温18 ±2℃),并记录每天各组鱼的存活状况。
在注射后10 d,分别对野生型菌株组、tonB基因稳定高效沉默株组和PBS组的生存率进行评估。注射野生型菌株后3dpi时鱼的存活率为70%,7.5dpi时存活率为0%。PBS组斜带石斑鱼在整个实验期间均存活。变形假单胞菌野生菌株的生长速率和菌浓度在培养的48小时(LB培养基,温度18℃)略高于tonB基因稳定高效沉默株(图1B)。与野生型菌株相比,用tonB基因沉默株注射的斜带石斑鱼在死亡时间上表现出明显的延迟和明显的减少(图2A)。注射野生型菌株的斜带石斑鱼的脾脏表现出典型的症状(脾脏表面有许多白点覆盖),但注射tonB基因沉默株的脾脏表面有轻微的白点(图2B)。野生型毒株与tonB-RNAi毒株感染斜带石斑鱼脾脏内的菌株丰度随时间变化差异较大。总体上,6个时间点细菌丰度比值均小于100%,其中4dpi上两组菌株丰度最接近(图2C),同时,tonB 基因在tonB-RNAi毒株感染斜带石斑鱼脾脏内的表达量始终低于野生型菌株(图 2D)。
实施例3
利用RNA-seq技术对tonB基因沉默株和野生株变形假单胞菌感染后的斜带石斑鱼的脾脏进行转录组测序,比较分析tonB基因的沉默对变形假单胞菌和斜带石斑鱼基因表达的影响。
RNA-seq分析结果显示,在mRNA水平上,根据统计标准 (|log2 fold change| ≥1, padj ≤0.05),在感染第3天,斜带石斑鱼共鉴定出375个差异表达基因。在这些差异表达基因,与感染野生型菌株相比,感染tonB-RNAi菌株组的有84个显著下调,291个显著上调(图3)。GO分类和KEGG通路分析确定宿主斜带石斑鱼差异表达基因的生物学功能。KEGG富集分析结果也显示DEMs(Differential Expression mRNAs)在感染过程中与免疫高度相关,包括抗原呈递与加工,B细胞受体信号通路、Toll-Imd 信号通路等(图4)。其中,在抗原呈递与加工信号通路富集到的的基因数最多。
在感染第5天,斜带石斑鱼共鉴定出218个差异表达基因。在这些差异表达基因,与感染野生型菌株相比,感染tonB-RNAi菌株组的有175个显著下调,43个显著上调(图5)。图6显示了GO显著富集的29个结果,其中在BP中富集到1/2与免疫相关通路(图6)。KEGG富集分析结果(图7)也显示DEMs在感染过程中与免疫高度相关,包括T细胞受体信号通路、趋化因子信号通路,补体与凝血级联等。其中,在补体与凝血级联通路富集的基因数最多。
利用比较转录组的结果进行GO和KEGG富集分析,确定DEMs的生物学功能,分析病原菌在感染过程中转录组的变化。图8A为显著富集的在感染第3天显著富集的KEGG通路(抗原呈递与加工),该通路中由17个DEMs,其中MHCI、HSP70、TAPBP、TCR、CTSS/L/B、AEP显著上调,MHCII、TAP1/2显著下调(图8A)。图8B为显著富集的在感染第5天显著富集的KEGG通路(补体与凝血级联),该通路中由21个DEMs,其中F1、C3、C5、C6、C7、C8、C9显著下调(图8B)。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 集美大学
<120> 一株变形假单胞菌tonB基因沉默菌株及其应用
<130> 11
<160> 11
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
gtggacacgc cgccaagcaa 20
<210> 2
<211> 21
<212> DNA
<213> 人工序列
<400> 2
gccaggtgac gcagcaaatc g 21
<210> 3
<211> 59
<212> DNA
<213> 人工序列
<400> 3
tgcatcgctt cgaacagcaa agttcaagag actttgctgt tcgaagcgat gcttttttt 59
<210> 4
<211> 67
<212> DNA
<213> 人工序列
<400> 4
gtacaaaaaa agcatcgctt cgaacagcaa agtctcttga actttgctgt tcgaagcgat 60
gcatgca 67
<210> 5
<211> 59
<212> DNA
<213> 人工序列
<400> 5
tgcttcgaac agcaaagcct tgttcaagag acaaggcttt gctgttcgaa gcttttttt 59
<210> 6
<211> 67
<212> DNA
<213> 人工序列
<400> 6
gtacaaaaaa agcttcgaac agcaaagcct tgtctcttga acaaggcttt gctgttcgaa 60
gcatgca 67
<210> 7
<211> 59
<212> DNA
<213> 人工序列
<400> 7
tgccacctga gttgctgaac aattcaagag attgttcagc aactcaggtg gcttttttt 59
<210> 8
<211> 67
<212> DNA
<213> 人工序列
<400> 8
gtacaaaaaa agccacctga gttgctgaac aatctcttga attgttcagc aactcaggtg 60
gcatgca 67
<210> 9
<211> 59
<212> DNA
<213> 人工序列
<400> 9
tgctgaacaa tggcacgatc gattcaagag atcgatcgtg ccattgttca gcttttttt 59
<210> 10
<211> 67
<212> DNA
<213> 人工序列
<400> 10
gtacaaaaaa agctgaacaa tggcacgatc gatctcttga atcgatcgtg ccattgttca 60
gcatgca 67
<210> 11
<211> 735
<212> DNA
<213> 人工序列
<400> 11
atgacgaaac cgcgctcaaa cgtggcgcgc tacggtggca gcctggcgat cgtgctgggc 60
gtgcacgtgg tcgctgtgct gctgacgctc aactggtcgg tgccccaggc catcgagctg 120
ccctcggcag ccatgatggt cgagctggcg ccgctgcccg agcctgcacc gccgccgcca 180
ccgaaggccg ccccacagcc accggcaccg gtcgaggaac cgccgctgcc caagctggtg 240
gaagcgccga aaccgaagat cgccatcgcc aagccaccca agccgaagcc caagccacag 300
ccgcccaagc ctgagaaaaa gcctgagccg cccaaggacg agccaccggc caaggaagaa 360
gtggtggaca cgccgccaag caacacgcca ccgcagaagt cggcggcacc ggctccgagc 420
atcgcttcga acagcaaagc cttgccgacc tggcagagcg atttgctgcg tcacctggcg 480
aagtacaagc gctacccgga agacgcgcgc cgtcgtggcc tacagggcat caaccgcctg 540
cgcttcgtgg tcgacgccga aggcaaggtg gtgtcgtact cgatggccgg aggctccggc 600
agcgcggcgc tggaccgggc gaccctggag atgatccgtc gggcaggcac ggtaccgaag 660
ccgccacctg agttgctgaa caatggcacg atcgaggtcg tggctccgtt cgtctactcg 720
ctggaccgcc gctga 735

Claims (4)

1.一株变形假单胞菌tonB 基因沉默菌株,其特征在于:所述菌株为Pseudomonas plecoglossicida tonB-RNAi,已于2020年 12月18日于中国典型培养物保藏中心保藏,保藏号为CCTCC NO:M 2020919。
2.如权利要求1所述一株变形假单胞菌tonB基因沉默菌株的构建方法,其特征在于:包括以下步骤:
步骤一:通过比较转录组学分析发现,tonB基因在变形假单胞菌感染的斜带石斑鱼脾脏内高表达;
步骤二:合成shRNA,退火后连入pCM130/tac构建重组载体,通过电转技术将重组载体导入变形假单胞菌感受态细胞,构建变形假单胞菌tonB基因沉默菌株;利用qRT-PCR技术验证菌株的沉默效果。
3.根据权利要求2所述的一株变形假单胞菌tonB基因沉默菌株的构建方法,其特征在于:所述 tonB基因序列如SEQ ID NO.1所示。
4.如权利要求1所述的一株变形假单胞菌 tonB基因沉默菌株在研究变形假单胞菌致病机制中的应用。
CN202110603157.3A 2021-05-31 2021-05-31 一株变形假单胞菌tonB基因沉默菌株及其应用 Expired - Fee Related CN113528407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110603157.3A CN113528407B (zh) 2021-05-31 2021-05-31 一株变形假单胞菌tonB基因沉默菌株及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110603157.3A CN113528407B (zh) 2021-05-31 2021-05-31 一株变形假单胞菌tonB基因沉默菌株及其应用

Publications (2)

Publication Number Publication Date
CN113528407A true CN113528407A (zh) 2021-10-22
CN113528407B CN113528407B (zh) 2023-01-10

Family

ID=78124488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110603157.3A Expired - Fee Related CN113528407B (zh) 2021-05-31 2021-05-31 一株变形假单胞菌tonB基因沉默菌株及其应用

Country Status (1)

Country Link
CN (1) CN113528407B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703115A (zh) * 2022-04-22 2022-07-05 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299380A (ja) * 2000-04-19 2001-10-30 Dai Ichi Seiyaku Co Ltd 緑膿菌鉄獲得系阻害物質のスクリーニング法
US20030158397A1 (en) * 2001-10-01 2003-08-21 Ramos Juan Luis Methods for production of p-hydroxybenzoate in bacteria
CN109694840A (zh) * 2019-01-07 2019-04-30 集美大学 一株变形假单胞菌abc转运蛋白基因沉默菌株
CN109706105A (zh) * 2019-01-07 2019-05-03 集美大学 一株变形假单胞菌fliA基因沉默菌株
CN110055200A (zh) * 2019-01-07 2019-07-26 集美大学 一株变形假单胞菌clpV基因沉默菌株
CN112625996A (zh) * 2021-02-04 2021-04-09 集美大学 一株变形假单胞菌znuA基因稳定沉默菌株及应用
CN112662608A (zh) * 2021-02-04 2021-04-16 集美大学 一株变形假单胞菌exbB基因稳定沉默菌株及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001299380A (ja) * 2000-04-19 2001-10-30 Dai Ichi Seiyaku Co Ltd 緑膿菌鉄獲得系阻害物質のスクリーニング法
US20030158397A1 (en) * 2001-10-01 2003-08-21 Ramos Juan Luis Methods for production of p-hydroxybenzoate in bacteria
CN109694840A (zh) * 2019-01-07 2019-04-30 集美大学 一株变形假单胞菌abc转运蛋白基因沉默菌株
CN109706105A (zh) * 2019-01-07 2019-05-03 集美大学 一株变形假单胞菌fliA基因沉默菌株
CN110055200A (zh) * 2019-01-07 2019-07-26 集美大学 一株变形假单胞菌clpV基因沉默菌株
CN112625996A (zh) * 2021-02-04 2021-04-09 集美大学 一株变形假单胞菌znuA基因稳定沉默菌株及应用
CN112662608A (zh) * 2021-02-04 2021-04-16 集美大学 一株变形假单胞菌exbB基因稳定沉默菌株及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703115A (zh) * 2022-04-22 2022-07-05 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途
CN114703115B (zh) * 2022-04-22 2023-09-29 集美大学 一种变形假单胞菌fliS基因沉默菌株和用途

Also Published As

Publication number Publication date
CN113528407B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
CN110055200B (zh) 一株变形假单胞菌clpV基因沉默菌株
CN112625996B (zh) 一株变形假单胞菌znuA基因稳定沉默菌株及应用
Modak et al. Histone H3K14 and H4K8 hyperacetylation is associated with Escherichia coli-induced mastitis in mice
Hung et al. Association of a D-alanyl-D-alanine carboxypeptidase gene with the formation of aberrantly shaped cells during the induction of viable but nonculturable Vibrio parahaemolyticus
Xu et al. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress
CN109694840B (zh) 一株变形假单胞菌abc转运蛋白基因沉默菌株
CN112662608B (zh) 一株变形假单胞菌exbB基因稳定沉默菌株及应用
Divon et al. Nitrogen‐responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection
Jia et al. Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia sp. MS455 against Aspergillus flavus
CN113528407B (zh) 一株变形假单胞菌tonB基因沉默菌株及其应用
Amalina et al. Recent update on the prevalence of Vibrio species among cultured grouper in Peninsular Malaysia
CN106967744B (zh) 一种利用自杀载体消除沙门菌中多拷贝质粒的方法
Chun et al. Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Song et al. Identification of seven novel virulence genes from Xanthomonas citri subsp. citri by Tn5-based random mutagenesis
Hu et al. Exploring mechanism of resistance to isoprothiolane in Magnaporthe oryzae, the causal agent of rice blast.
CN113151134B (zh) 一株变形假单胞菌fliG基因沉默菌株及其应用
Yang et al. Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157: H7 NCTC 12900 and Staphylococcus aureus ATCC 6538
Kelani et al. Disruption of the Aspergillus fumigatus RNA interference machinery alters the conidial transcriptome
Wang et al. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance
CN115287243B (zh) 一株变形假单胞菌flgK基因沉默菌株及其构建方法
Lakhal et al. DjlA, a membrane-anchored DnaJ-like protein, is required for cytotoxicity of clam pathogen Vibrio tapetis to hemocytes
Han et al. Extracellular perception of multiple novel core effectors from the broad host-range pear anthracnose pathogen Colletotrichum fructicola in the nonhost Nicotiana benthamiana
Xiang et al. Transcriptomic analysis reveals competitive growth advantage of non-pigmented Serratia marcescens mutants
CN114703115B (zh) 一种变形假单胞菌fliS基因沉默菌株和用途
Satterlee et al. Transcriptomic response of Fusarium verticillioides to variably inhibitory environmental isolates of Streptomyces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230110

CF01 Termination of patent right due to non-payment of annual fee