CN112625408B - 一种韧性的pet闭孔发泡材料及其制备方法 - Google Patents

一种韧性的pet闭孔发泡材料及其制备方法 Download PDF

Info

Publication number
CN112625408B
CN112625408B CN202011502831.0A CN202011502831A CN112625408B CN 112625408 B CN112625408 B CN 112625408B CN 202011502831 A CN202011502831 A CN 202011502831A CN 112625408 B CN112625408 B CN 112625408B
Authority
CN
China
Prior art keywords
pet
foam material
closed
cell foam
tough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011502831.0A
Other languages
English (en)
Other versions
CN112625408A (zh
Inventor
罗祎玮
付晓美
梁静静
傅华康
蒋晓璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Juhua Research Institute Of New Materials Co ltd
Original Assignee
Zhejiang Juhua Research Institute Of New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Juhua Research Institute Of New Materials Co ltd filed Critical Zhejiang Juhua Research Institute Of New Materials Co ltd
Priority to CN202011502831.0A priority Critical patent/CN112625408B/zh
Publication of CN112625408A publication Critical patent/CN112625408A/zh
Application granted granted Critical
Publication of CN112625408B publication Critical patent/CN112625408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种韧性PET闭孔发泡材料及其制备方法,包括:PET树脂、PVDF树脂、PMMA树脂、微球发泡剂、抗氧剂。其制备方法是先将PVDF树脂、PMMA树脂和微球发泡剂高速混合均匀作为增韧剂和发泡剂,将PET树脂和抗氧剂高速混合后加入混合好的增韧剂和发泡剂,挤出制得PET闭孔微发泡材料。在挤出机上冷却段加入的PVDF、PMMA和微球发泡剂,由于它们与PET不相容,但其自身相互间的相容性高,因此PMMA和微球发泡剂能迅速选择性地分散于PVDF的分散相中,PVDF和PMMA的共混物的增韧体系对PET起到很好的增韧效果,微球发泡剂的膨胀过程被限制在较高黏度的PVDF/PMMA共混分散相中。该方法制备的PET泡沫材料具有高韧性、低密度、高闭孔的特性,易与PVDF等高耐候保护膜实现热合粘结。

Description

一种韧性的PET闭孔发泡材料及其制备方法
技术领域
本发明属于泡沫塑料领域,具体涉及一种韧性的PET闭孔发泡材料及其制备方法。
背景技术
聚对苯二甲酸乙二醇酯(PET)泡沫由于其良好的耐热性、出色的力学性能及抗疲劳性、良好的FST(阻燃、低烟、无毒)性能,加之其可回收利用的环保性能,已经广泛应用于建筑、车辆、屋顶隔热材料、运动器材、风能等行业。近年来,PET泡沫材料开始大量进入风电行业,PET泡沫的风电叶片相比传统PVC泡沫叶片的加工温度范围更宽、压缩强度更高、可回收性更强。使用PET泡沫材料可生产出设计自由的三明治夹心材料,质轻高强、易于组装、抗疲劳、热绝缘,因而在国外建筑中开始取代传统钢筋混凝土的建筑材料而被大量应用。
然而,由于线性结构的PET分子链上缺乏支链结构,分子链缠结容易打开,熔融状态下的熔体强度低,造成发泡时气体无法被包裹,因而制备低密度PET泡沫十分困难。通过对PET扩链改性增粘的方式可以提高其熔体强度,从而避免发泡时泡孔塌陷,然而其扩链程度和速率控制非常难,目前只有少数几家国外公司和国内科研院所掌握,因而PET泡沫连续化生产的技术国产化率很低,进口PET泡沫价格昂贵,这也一定程度限制了PET泡沫的应用领域。
另外,PET泡沫虽然具有很高的压缩强度,但其剪切强度和弯曲强度等韧性较差,因而在建筑家装、车厢保温等对韧性要求较高的领域中仍无法大量取代PVC泡沫。在很多集成板组装中重点考察的握钉力指标,PET泡沫也无法满足要求,这也是PET泡沫韧性差的表现。
近年来,PVDF膜等众多高耐候薄膜在户外建筑领域得到了大量应用,如果PET泡沫材料与PVDF膜可以实现良好粘结,那么众多屋顶、墙面等户外工程中也就可以大量使用PET泡沫材料。
因此,改进PET泡沫的发泡方式,同时改善PET泡沫的韧性,对于快速推进PET泡沫的国产化及拓宽应用领域具有很大的现实意义。
发明内容
本发明的目的在于提供一种韧性的PET闭孔发泡材料及其制备方法,制备过程简单易于实现工业化,制得的PET泡沫材料韧性高、密度低、闭孔率高,可实现与PVDF薄膜的热合粘结。
为了解决上述技术问题,本发明采用如下技术方案:
一种韧性的PET闭孔发泡材料,其特征在于,由以下按重量份计的组分混合而成:PET树脂53-87.4份,PVDF树脂10-30份,PMMA树脂2-10份,微球发泡剂0.5-5份,相容剂1-5份,抗氧剂0.1-2份。
在本技术方案中,本发明中的PET树脂是瓶级或纤维级切片料,广泛用于纤维和瓶片的生产,在本方案中作为廉价的泡沫材料的生产原料;聚偏氟乙烯(PVDF)树脂是最容易热熔融加工、最强韧性的氟塑料,耐候性也非常好;聚甲基丙烯酸甲酯(PMMA)与PVDF完全相容的极性高分子材料,具有良好的耐候性,与PVDF共混后可作为PET体系的增韧剂;微球发泡剂是可膨胀核壳结构微小球状颗粒,外壳为热塑性丙烯酸聚合物,内核为烷烃类气体,外壳具有良好的弹性并可承受较大压力,加热后内核中的气体膨胀而发泡剂自身并不破裂,具有高回弹性,与PMMA相容性好,也可起到增韧剂的效果;相容剂主要起到连接PET和PVDF/PMMA分散相界面的作用,使得界面处发生力学传递时不会产生宏观相分离;抗氧剂主要用于抑制PET树脂加工时的水解和热氧降解。
作为优选,PET树脂为瓶级或纤维级切片料,数均分子量Mn为15000-30000g/mol。
作为优选,PVDF树脂是数均分子量Mn为50000-200000g/mol,粒径为0.5-10μm。
作为优选,PMMA树脂是数均分子量Mn为100000-500000g/mol的粉料,粒径为10-100μm。
作为优选,微球发泡剂是可膨胀核壳结构微小球状颗粒,外壳为热塑性丙烯酸聚合物,内核为烷烃类气体,起始发泡温度为160-180℃,最大发泡温度215-235℃,粒径范围为28-38μm。
作为优选,相容剂是丁二烯-丙烯酸丁酯-甲基丙烯酸甲酯三元共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯嵌段共聚物、丙烯酸接枝丙烯腈-丁二烯-苯乙烯共聚物中的一种或几种的组合。
作为优选,抗氧剂由主抗氧剂和辅助抗氧剂组成,主抗氧剂主要是受阻酚类抗氧剂,辅助抗氧剂主要是亚磷酸酯类抗氧剂。
一种韧性的PET闭孔发泡材料的制备方法,该方法包括以下步骤:
(1)将PVDF粉料、PMMA粉料、微球发泡剂和相容剂加入高速混合机混合,先低速混合2-5min,混合机转速为500-1000r/min,然后高速混合5-10min,混合机转速为1000-3000r/min。将PVDF粉料、PMMA粉料、微球发泡剂和相容剂先低速混合后高速混合,起到充分混合的效果。
(2)将PET树脂和抗氧剂高速混合后加入双螺杆挤出机主喂料口,在挤出机螺杆元件剪切下,PET树脂被迅速熔融,在PET塑化完成后从均化段开始挤出机温控区逐步降温至200-220℃,螺杆转速为100-200r/min。
(3)在200-220℃温控区的起始段,采用侧喂料方式将步骤(1)中高速混合后的混合物加入挤出机中,经过螺杆的高效混合作用,增韧剂、发泡剂和相容剂被迅速分散在PET基体树脂中,同时由于相容性差异,微球发泡剂选择性地分散在PVDF/PMMA分散相中。
(4)最后熔体经双螺杆挤出机混合、末端熔体泵输送建压、机头挤出成为PET泡沫材料。
由于采用上述技术方案,本发明具有以下有益效果:
1.本发明采用的微球发泡剂,可在一定加工温度下的普通低粘度PET中膨胀发泡,无需将PET扩链改性,并且微球发泡剂选择性分散在PVDF/PMMA分散相,其膨胀后不容易发生破裂,因而制得的PET泡沫闭孔率非常高。
2.本发明采用PVDF/PMMA共混物作为增韧剂,可以显著提升PET材料的韧性,并且由于分散在PVDF/PMMA微相中的微球发泡剂本身具有高弹特性,因此最终PET发泡材料的韧性得到进一步提升。
3.本发明制备的PET发泡材料是基于PET/PVDF/PMMA的合金体系,因此该发泡材料与PVDF膜可以实现热合粘结,作为户外建材使用。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。
本发明中,若非特指,所有的份、百分比均为重量单位,所采用的原料均为市售产品。
实施例1-5和对比例1-4
韧性PET闭孔发泡材料的配方参见表1,各实施例中采用的原料如下:
1、PET树脂:牌号BG80,仪征化纤股份有限公司,数均分子量Mn=26300g/mol。
2、PVDF树脂:牌号DS206,山东华夏神舟新材料科技有限公司,熔融指数为20g/10min(测试条件:230℃,5kg)。
3、PMMA树脂:牌号GF1000,日本可乐丽株式会社,熔融指数为15g/min(230℃,5kg)。
4、微球发泡剂:牌号980DUX120,阿克苏诺贝尔公司,粒径25-40μm。
5、相容剂:甲基丙烯酸甲酯-丁二烯-苯乙烯嵌段共聚物MBS,牌号EM500A,韩国LG化学。
6、抗氧剂:复配抗氧剂1010/168,供应商为巴斯夫(中国)有限公司。
表1:实施例1-5和对比例1-4的具体成分,按重量份数计。
Figure BDA0002844113320000041
Figure BDA0002844113320000051
按表1中的配方和下述步骤制备韧性的PET闭孔发泡材料:
(1)将PVDF粉料、PMMA粉料、微球发泡剂和相容剂加入高速混合机混合,先低速混合5min,混合机转速为1000r/min,然后高速混合10min,混合机转速为3000r/min;
(2)将PET树脂和抗氧剂高速混合后加入双螺杆挤出机主喂料口,在挤出机螺杆元件剪切下,PET树脂被迅速熔融,在PET塑化完成后从均化段开始挤出机温控区逐步降温至200℃,螺杆转速为100r/min;
(3)在200℃温控区的起始段,采用侧喂料方式将步骤(1)中高速混合后的混合物加入挤出机中,经过螺杆的高效混合作用,增韧剂、发泡剂和相容剂被迅速分散在PET基体树脂中,同时由于相容性差异,微球发泡剂选择性地分散在PVDF/PMMA微相中;
(4)最后熔体经双螺杆挤出机混合、末端熔体泵输送建压、机头挤出成为PET泡沫材料;
性能测试
将PET泡沫板和PVDF膜热压粘结,按标准GB/T 2791-1995规定方法制样,用于剥离强度测试。按照测试标准GB/T 8813-2008、GB/T 14018-2009和GB/T2791-1995对实施例1-5及对比例1-4的PET泡沫分别进行弯曲强度、弯曲模量、握钉力和玻璃强度测试,结果见表2;按照GB/T 6343-2009和GB/T 10799-2008对实施例1-5及对比例1-4的PET泡沫进行表观密度和闭孔率测试,结果见表3。
表2:力学性能对比测试结果
测试材料 弯曲强度/MPa 弯曲模量/MPa 握钉力/N·mm<sup>-1</sup> 剥离强度/N·25mm<sup>-1</sup>
实施例1 124 3320 912 38
实施例2 130 3780 1056 68
实施例3 138 4010 1145 86
实施例4 149 4570 1354 192
实施例5 156 4890 1474 251
对比例1 85 2310 476 0.2
对比例2 93 2640 557 16
对比例3 95 2650 563 24
对比例4 105 2870 688 32
表3:泡沫表观密度和闭孔率对比测试结果
测试材料 表观密度/kg·m<sup>3</sup> 闭孔率/%
实施例1 640 92
实施例2 480 93
实施例3 380 94
实施例4 270 96
实施例5 200 98
对比例1 1050 85
对比例2 830 86
对比例3 750 86
对比例4 720 88
从上述实施例1-5和对比例1-4的性能测试结果中可以分析得到:
(1)由弯曲强度和弯曲模量测试结果可知,实施例1-5相比对比例1-4的弯曲强度、弯曲模量和握钉力有了明显提高,说明由PVDF/PMMA和微球发泡剂的增韧体系制备的PET泡沫材料韧性可以显著提高。
(2)由剥离强度测试结果可知,实施例1-5添加了PVDF/PMMA的共混体系,可以显著提高PET和PVDF的粘结力,实现该PET泡沫材料与PVDF膜的热合粘结。
(3)由表观密度和开孔率测试结果可知,实施例1-5的表观密度可以显著降低,实现更低密度泡沫的制备;同时还能将闭孔率维持在很高的水平,保证了材料的韧性。
以上仅为本发明的具体实施例,但本发明的技术特征并不局限于此。任何以本发明为基础,为解决基本相同的技术问题,实现基本相同的技术效果,所作出地简单变化、等同替换或者修饰等,皆涵盖于本发明的保护范围之中。

Claims (8)

1.一种韧性PET闭孔发泡材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将PVDF粉料、PMMA粉料、微球发泡剂和相容剂加入高速混合机混合,先低速混合2-5min,混合机转速为500-1000r/min,然后高速混合5-10min,混合机转速为1000-3000r/min;
(2)将PET树脂和抗氧剂高速混合后加入双螺杆挤出机主喂料口,在挤出机螺杆元件剪切下,PET树脂被迅速熔融,在PET塑化完成后从均化段开始挤出机温控区逐步降温至200-220℃,螺杆转速为100-200r/min;
(3)在200-220℃温控区的起始段,采用侧喂料方式将步骤(1)中高速混合后的混合物加入挤出机中,经过螺杆的高效混合作用,增韧剂、发泡剂和相容剂被迅速分散在PET基体树脂中,同时由于相容性差异,微球发泡剂选择性地分散在PVDF/PMMA微相中;
(4)最后熔体经双螺杆挤出机混合、末端熔体泵输送建压、机头挤出成为PET泡沫材料;
其中,韧性PET闭孔发泡材料由以下按重量份计的组分混合而成:
Figure FDA0003531887840000011
微球发泡剂是可膨胀核壳结构微小球状颗粒,外壳为热塑性丙烯酸聚合物,内核为烷烃类气体,具有高回弹性。
2.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述PET树脂为瓶级或纤维级切片料,数均分子量Mn为15000-30000g/mol。
3.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述PVDF树脂是数均分子量Mn为50000-200000g/mol,粒径为0.5-10μm的微粉。
4.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述PMMA树脂是数均分子量Mn为50000-300000g/mol的粉料,粒径为10-100μm。
5.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述微球发泡剂起始发泡温度为160-200℃,最大发泡温度210-250℃,其粒径范围为20-50μm。
6.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述相容剂是丁二烯-丙烯酸丁酯-甲基丙烯酸甲酯三元共聚物、甲基丙烯酸甲酯-丁二烯-苯乙烯嵌段共聚物、丙烯酸接枝丙烯腈-丁二烯-苯乙烯共聚物中的一种或几种的组合。
7.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述抗氧剂由主抗氧剂和辅助抗氧剂组成,主抗氧剂主要是受阻酚类抗氧剂,辅助抗氧剂主要是亚磷酸酯类抗氧剂。
8.根据权利要求1所述一种韧性PET闭孔发泡材料的制备方法,其特征在于:所述的PET闭孔发泡材料表观密度为200~800kg/m3,闭孔率为85~100%。
CN202011502831.0A 2020-12-18 2020-12-18 一种韧性的pet闭孔发泡材料及其制备方法 Active CN112625408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011502831.0A CN112625408B (zh) 2020-12-18 2020-12-18 一种韧性的pet闭孔发泡材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011502831.0A CN112625408B (zh) 2020-12-18 2020-12-18 一种韧性的pet闭孔发泡材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112625408A CN112625408A (zh) 2021-04-09
CN112625408B true CN112625408B (zh) 2022-05-17

Family

ID=75316949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011502831.0A Active CN112625408B (zh) 2020-12-18 2020-12-18 一种韧性的pet闭孔发泡材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112625408B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715446A (zh) * 2021-07-27 2021-11-30 帝高力装饰材料(江苏)有限公司 一种微发泡石塑地板及其制备方法
CN113683923A (zh) * 2021-08-03 2021-11-23 万辉(广州)高新材料有限公司 一种液型发泡涂料及其制备方法和使用方法
CN113717464B (zh) * 2021-08-09 2023-03-17 华合新材料科技股份有限公司 一种超低密度、隔热、隔音的微发泡pmma复合材料及其制备方法
CN113787794A (zh) * 2021-10-22 2021-12-14 苏州度辰新材料有限公司 一种光伏背板用pvdf多层共挤膜及其制备方法
CN115109302B (zh) * 2022-07-25 2024-04-09 江苏永成汽车零部件股份有限公司 一种汽车塑料件内部注塑用微发泡材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598227A1 (en) * 1992-10-19 1994-05-25 Takeda Chemical Industries, Ltd. Low-pressure and low-temperature moldable composition and shaped article therefrom
US5895614A (en) * 1995-08-22 1999-04-20 Tenneco Protective Packaging Inc. Method of forming a microcellular foam plank
CN103059413B (zh) * 2013-01-16 2017-02-08 合肥杰事杰新材料股份有限公司 一种塑料基增强发泡复合材料、制备及应用
CN104419137A (zh) * 2013-09-05 2015-03-18 青岛欣展塑胶有限公司 一种pet/abs共混合金及其制备方法
CN104530671A (zh) * 2014-12-24 2015-04-22 杭州师范大学 一种超韧压电聚乳酸/聚偏氟乙烯合金材料及其制备方法
MX2018011380A (es) * 2016-03-25 2019-07-04 Arkema France Formulacion termoplastica mejorada de resistencia a la fundicion.
US20190218357A1 (en) * 2016-12-14 2019-07-18 Seiko Pmc Corporation Composition for molded foam and method for producing same, molded foam and method for producing same, and modified cellulose-containing resin composition for molded foam
CN109233217A (zh) * 2018-07-27 2019-01-18 会通新材料股份有限公司 一种注塑级玻纤增强pet微发泡复合材料及其制备方法

Also Published As

Publication number Publication date
CN112625408A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN112625408B (zh) 一种韧性的pet闭孔发泡材料及其制备方法
CN103254653B (zh) 玄武岩纤维增强木塑复合材料及其制备方法
CN103102583B (zh) 一种聚丙烯微孔发泡材料及其制备方法
CN102250476A (zh) 一种竹纤维基微发泡木塑复合材料及其制备方法
CN103665631B (zh) 一种聚氯乙烯木塑复合材料
CN102229790B (zh) 一种铝塑复合粘接用材料的制备方法
CN103030875A (zh) 一种改性pp发泡材料及其成型方法
CN104031326A (zh) 一种改性硬质交联聚氯乙烯阻燃泡沫及其制备方法
CN103012899A (zh) 一种高抗冲的木塑复合材料及其制备方法和应用
CN103059391A (zh) 一种增韧发泡母粒及其制备方法和用途
CN106633385A (zh) 一种微孔发泡木塑复合材料及其制备方法
CN109651783A (zh) 一种微发泡天然纤维增强聚乳酸复合材料及其制备方法
CN110283399B (zh) 一种竹木纤维墙板及其制备方法
CN103642147A (zh) 一种木塑复合材料
CN110229372A (zh) 一种低成型能耗聚丙烯发泡粒子及其制备方法
CN108822569B (zh) 一种木塑发泡材料及其制备方法
CN103665633B (zh) 一种发泡型环保木塑复合材料
CN111621096A (zh) 一种改性聚丙烯发泡珠粒(epp)碳纤维复合材料的制备方法
CN110437521A (zh) 一种发泡型核壳结构木塑复合材料及制备方法
CN112759857B (zh) 一种asa树脂共挤pvc基木塑复合材料及其制备方法和应用
CN106280185A (zh) 一种轻质木塑复合纤维板及其制备方法
CN103182818B (zh) 一种聚碳酸酯挤出发泡复合板材及其制备方法
CN103963400A (zh) 一种超临界气体pp物理发泡板材及其生产工艺
CN106009353A (zh) 绝热用石墨挤塑板及其制备工艺
CN109096784B (zh) 马来酸酐与马来酸接枝聚乙烯蜡改性竹粉的方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant