CN112624089A - 一种合成螺旋碳纳米管-碳纳米管异质结的方法 - Google Patents

一种合成螺旋碳纳米管-碳纳米管异质结的方法 Download PDF

Info

Publication number
CN112624089A
CN112624089A CN202110058110.3A CN202110058110A CN112624089A CN 112624089 A CN112624089 A CN 112624089A CN 202110058110 A CN202110058110 A CN 202110058110A CN 112624089 A CN112624089 A CN 112624089A
Authority
CN
China
Prior art keywords
carbon nanotube
heterojunction
nickel
spiral
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110058110.3A
Other languages
English (en)
Other versions
CN112624089B (zh
Inventor
谭涛
陈榆洁
李伟冬
赖晓雯
林海泽
余静
崔丽丹
文剑锋
曹雪丽
唐涛
李新宇
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202110058110.3A priority Critical patent/CN112624089B/zh
Publication of CN112624089A publication Critical patent/CN112624089A/zh
Priority to NL2030428A priority patent/NL2030428B1/en
Application granted granted Critical
Publication of CN112624089B publication Critical patent/CN112624089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种合成螺旋碳纳米管‑碳纳米管异质结的方法,取纳米氧化镍颗粒放入管式炉内,在氢气氛围下加热至400℃并保持1小时获得镍纳米颗粒;镍纳米颗粒为催化剂,在管式炉中通入乙炔和氨气的混合气体,加热至450±25℃并保持4小时;关闭乙炔和氨气并通入氩气,在氩气氛围下自然冷却至室温得到螺旋碳纳米管‑碳纳米管异质结。本发明简单易行,可高效率获得螺旋碳纳米管‑碳纳米管异质结,且易于分散,为碳纳米管异质结家族增添了新的成员,在低维纯碳异质结的研究和应用方面都具有重要的价值。

Description

一种合成螺旋碳纳米管-碳纳米管异质结的方法
技术领域
本发明涉及一种合成螺旋碳纳米管-碳纳米管异质结的方法,在低维纯碳异质结的研究和应用方面都具有重要的价值。
背景技术
异质结或同质结主要作为组件应用于电子电路或光电领域,在人类社会的发展和科技的进步中起着至关重要的作用。随着集成度越来越高,新一代异质结或同质结组件必然为纳米量级。纯碳异质结由于具有诸多优越性能而广受究者们青睐。
上世纪90年代,研究者们就通过在单根碳纳米管的6元环网络中引入5元环和7元环缺陷的方法,设计并构建了纯碳纳米管的异质结模型。2001年,研究人员利用扫描隧道显微镜首次在实验上明确地观测到由不同手征指数的碳纳米管头对头连接而成的异质结(Ouyang et al.,《Science》2001年第291卷第97-100页),推开了纳米集成电路的大门。由于碳纳米管根据其直径和手征指数的不同,可表现出金属或半导体性质,因此,CNTs异质结可以是金属-金属结、金属-半导体结,以及半导体-半导体结,这些不同的异质结可以制成单根碳纳米管的二极管、整流器,以及电光器件等,在即将快速兴起的微纳时代中将占据重要地位,并发挥出极其重要的作用。
目前已报道的碳纳米管异质结均为直杆的碳纳米管相互连接,而发明人合成的则是由螺旋碳纳米管与直杆碳纳米管相互连接组成的纯碳异质结。螺旋碳纳米管是在直杆的碳纳米管的6元环网络中周期性的插入5元环和7元环而构成的一种类似弹簧状的螺旋形结构,它在形貌结构上与碳纳米管有很大的不同。显然,螺旋碳纳米管-碳纳米管异质结是一种新型的准一维纯碳异质结,其能带结构、电学及光学性能等可能都与直杆的碳纳米管异质结不同,在未来的纳米集成电路以及纳米电光器件等方面可能有着重要的应用价值。
发明内容
本发明的目的是提供一种易于操控,实用的合成螺旋碳纳米管-碳纳米管异质结的方法。
具体步骤为:
一种合成螺旋碳纳米管-碳纳米管异质结的方法,采用催化化学气相沉积法,催化剂采用镍纳米颗粒。具体步骤为:
(1)取纳米氧化镍颗粒放入管式炉内,在氢气氛围下加热至400℃并保持1小时获得镍纳米颗粒;
(2)以步骤(1)中所获得的镍纳米颗粒为催化剂,在管式炉中通入乙炔和氨气的混合气体,加热至450±25℃并保持4小时;关闭乙炔和氨气并通入氩气,在氩气氛围下自然冷却至室温得到螺旋碳纳米管-碳纳米管异质结。
其中,所述的纳米氧化镍颗粒的制备方法为:
(a)将镍盐和柠檬酸按摩尔比1:3溶于无水乙醇中;
(b)水浴60℃条件下持续搅拌6小时;
(c)搅拌后的溶液在85℃将其基本烘干,再175℃完全烘干;
(d)烘干后的产物在马弗炉中400℃煅烧4小时,此时获得纳米氧化镍颗粒。
进一步的,所述的镍盐为硝酸镍、氯化镍或醋酸镍。
上述过程中所使用原料的纯度应至少为分析纯。
本发明的过程在化学气相沉积系统中完成。反应器可采用石英管,水平管式炉升温前需先排尽反应器中的空气,以免爆炸。
400℃升温至450±25℃时的升温速率为5℃/min。
所使用的乙炔应为工业纯,氢气、氨气、氩气为高纯。乙炔和氨气同时输入,其比例可利用流量计控制。
由于镍纳米颗粒在空气中容易氧化,因此氢气还原只取少量在合成螺旋碳纳米管-碳纳米管异质结的时候完成。称取纳米氧化镍颗粒0.025g置于水平管式炉中,输入氢气,400℃还原1小时,获得镍纳米颗粒。
本发明简单易行,可高效率获得螺旋碳纳米管-碳纳米管异质结,且易于分散,为碳纳米管异质结家族增添了新的成员,在低维纯碳异质结的研究和应用方面都具有重要的价值。
附图说明
图1a为本发明实施例1获得的螺旋碳纳米管-碳纳米管异质结的场发射扫描电子显微镜照片;
图1b为本发明实施例1获得的螺旋碳纳米管-碳纳米管异质结的透射电子显微镜照片;
图2a为本发明实施例2获得的螺旋碳纳米管-碳纳米管异质结的场发射扫描电子显微镜照片;
图2b为本发明实施例2获得的螺旋碳纳米管-碳纳米管异质结的透射电子显微镜照片;
图3a为本发明实施例3获得的螺旋碳纳米管-碳纳米管异质结的场发射扫描电子显微镜照片;
图3b为本发明实施例3获得的螺旋碳纳米管-碳纳米管异质结的透射电子显微镜照片。
具体实施方式
结合实施例说明本发明的具体技术方案。
实施例1:
(1)称取0.01mol六水合硝酸镍和0.03mol一水合柠檬酸于盛有100ml无水乙醇的三角烧瓶中。水浴加热至60℃并电动搅拌,保持6小时后转入烧杯中,85℃将其烘干后,再175℃将其完全烘干。最后在马弗炉中400℃煅烧4小时,即得到镍的氧化物纳米颗粒。
(2)称取步骤(1)的产物0.025g于瓷舟中放入化学气相沉积系统的反应器(水平管式炉,管径50mm)内,输入20ml/min流量的氢气后加热至400℃并保持1小时。
(3)关闭氢气,输入乙炔和氨气(流量分别为30ml/min和5ml/min),加热至425℃并保持4小时。最后关闭乙炔和氨气,输入氩气,在氩气的保护下降至室温,得到螺旋碳纳米管-碳纳米管异质结大约1.52g左右。
上述实施例获得的产物的场发射扫描电子显微镜照片和透射电子显微镜照片如图1a和图1b。
实施例2:
将实施例1步骤(3)中炉温加热至450℃,其他条件完全同于实施例1,得到螺旋碳纳米管-碳纳米管异质结大约1.21g左右。
上述实施例获得的产物的场发射扫描电子显微镜照片和透射电子显微镜照片如图2a和图2b。
实施例3:
将实施例1步骤(3)中炉温加热至475℃,其他条件完全同于实施例1,得到螺旋碳纳米管-碳纳米管异质结大约1.89g左右。
上述实施例获得的产物的场发射扫描电子显微镜照片和透射电子显微镜照片如图3a和图3b。
虽然本发明已有技术方案和实施例陈述如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的变化、更替与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (7)

1.一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,采用催化化学气相沉积法,催化剂采用镍纳米颗粒。
2.根据权利要求1所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,具体步骤为:
(1)取纳米氧化镍颗粒放入管式炉内,在氢气氛围下加热至400℃并保持1小时获得镍纳米颗粒;
(2)以步骤(1)中所获得的镍纳米颗粒为催化剂,在管式炉中通入乙炔和氨气的混合气体,加热至450±25℃并保持4小时;关闭乙炔和氨气并通入氩气,在氩气氛围下自然冷却至室温得到螺旋碳纳米管-碳纳米管异质结。
3.根据权利要求2所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,所述的纳米氧化镍颗粒的制备方法为:
(a)将镍盐和柠檬酸按摩尔比1:3溶于无水乙醇中;
(b)水浴60℃条件下持续搅拌6小时;
(c)搅拌后的溶液在85℃将其基本烘干,再175℃完全烘干;
(d)烘干后的产物在马弗炉中400℃煅烧4小时,此时获得纳米氧化镍颗粒。
4.根据权利要求3所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,所述的镍盐为硝酸镍、氯化镍或醋酸镍。
5.根据权利要求2所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,在化学气相沉积系统中完成。
6.根据权利要求2所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,400℃升温至450±25℃时的升温速率为5℃/min。
7.根据权利要求2所述的一种合成螺旋碳纳米管-碳纳米管异质结的方法,其特征在于,所使用的乙炔应为工业纯,氢气、氨气、氩气为高纯。
CN202110058110.3A 2021-01-16 2021-01-16 一种合成螺旋碳纳米管-碳纳米管异质结的方法 Active CN112624089B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110058110.3A CN112624089B (zh) 2021-01-16 2021-01-16 一种合成螺旋碳纳米管-碳纳米管异质结的方法
NL2030428A NL2030428B1 (en) 2021-01-16 2022-01-04 Method for synthesizing helical carbon nanotube (hcnt)-cnt heterojunction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110058110.3A CN112624089B (zh) 2021-01-16 2021-01-16 一种合成螺旋碳纳米管-碳纳米管异质结的方法

Publications (2)

Publication Number Publication Date
CN112624089A true CN112624089A (zh) 2021-04-09
CN112624089B CN112624089B (zh) 2022-06-21

Family

ID=75295543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110058110.3A Active CN112624089B (zh) 2021-01-16 2021-01-16 一种合成螺旋碳纳米管-碳纳米管异质结的方法

Country Status (2)

Country Link
CN (1) CN112624089B (zh)
NL (1) NL2030428B1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948143A (zh) * 2006-11-13 2007-04-18 南京大学 对称生长螺旋碳管的方法
KR20110097431A (ko) * 2010-02-25 2011-08-31 부산대학교 산학협력단 탄소 나노 튜브의 나노 구조 및 합성 제어 방법
CN102745665A (zh) * 2012-01-06 2012-10-24 中国科学院成都有机化学有限公司 一种制备螺旋结构碳纳米管的方法
WO2013008209A2 (en) * 2011-07-14 2013-01-17 Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional Methods for the preparation of carbon nanotubes doped with different elements
CN103723703A (zh) * 2014-01-06 2014-04-16 四川理工学院 低温制备螺旋碳纳米管的方法
CN104528686A (zh) * 2014-12-28 2015-04-22 桂林理工大学 一种氟掺杂螺旋碳纳米管的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711519B (zh) * 2018-05-17 2020-01-21 桂林理工大学 光照氮掺杂三维石墨烯包覆螺旋碳管复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948143A (zh) * 2006-11-13 2007-04-18 南京大学 对称生长螺旋碳管的方法
KR20110097431A (ko) * 2010-02-25 2011-08-31 부산대학교 산학협력단 탄소 나노 튜브의 나노 구조 및 합성 제어 방법
WO2013008209A2 (en) * 2011-07-14 2013-01-17 Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional Methods for the preparation of carbon nanotubes doped with different elements
CN102745665A (zh) * 2012-01-06 2012-10-24 中国科学院成都有机化学有限公司 一种制备螺旋结构碳纳米管的方法
CN103723703A (zh) * 2014-01-06 2014-04-16 四川理工学院 低温制备螺旋碳纳米管的方法
CN104528686A (zh) * 2014-12-28 2015-04-22 桂林理工大学 一种氟掺杂螺旋碳纳米管的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEE HOWE SEE ET AL.: ""A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition"", 《INDUSTRIAL &ENGINEERING CHEMISTRY RESEARCH》 *
ZHANG YONG ET AL.: ""Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition"", 《MICRON》 *
文剑锋: ""石墨基碳材料及其氮掺杂体系的磁性研究"", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技I辑》 *

Also Published As

Publication number Publication date
NL2030428B1 (en) 2023-02-14
NL2030428A (en) 2022-05-16
CN112624089B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN109309214A (zh) 碳包覆镍纳米复合材料的制备方法
CN108689398B (zh) 一种可控的氮掺杂碳纳米管的制备方法
US20070087470A1 (en) Vapor phase synthesis of metal and metal oxide nanowires
CN105047952A (zh) 一种具有金属氧化物/碳的核鞘结构的树枝状纳米线催化剂载体及担载催化剂的制备方法
He et al. Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts
CN111939940B (zh) 钌基催化剂及其制备方法和应用
CN111013603A (zh) 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法
CN105289660A (zh) 一种铁酸镁/硫化钼异质结纳米线的合成方法和用途
CN101891184A (zh) 一种高温化学气相沉积法连续合成单壁碳纳米管的方法
CN109433208B (zh) 用于制备单壁碳纳米管的钴催化剂及其制备方法和应用
CN112624089B (zh) 一种合成螺旋碳纳米管-碳纳米管异质结的方法
Li et al. Synthesis and properties of aligned ZnO microtube arrays
CN113979427B (zh) 一种用铼做催化剂制备单壁碳纳米管的方法
KR20040079226A (ko) 전이금속산화물/탄소나노튜브 합성물 제작방법
JP3985044B2 (ja) 単結晶珪素ナノチューブとその製造方法
JP4556015B2 (ja) 硫化亜鉛・珪素コア・シェルナノワイヤーとその製造方法
CN113500202B (zh) 一种高纯度六边形Cu纳米晶的制备方法
KR20160062810A (ko) 탄소나노튜브 제조방법 및 하이브리드 탄소나노튜브 복합체
US20140199546A1 (en) Multi-branched n-doped carbon nanotubes and the process for making same
CN108516535B (zh) 一种大规模制备碳纳米管的方法
CN103663411B (zh) 一种双螺旋碳纳米管的高产合成方法
CN116281957B (zh) 一种窄直径分布半导体性单壁碳纳米管的制备方法
CN113663690B (zh) 一种制备小管径单壁碳纳米管的催化剂及制备方法和应用
CN114808009B (zh) 一种N,O共调控的Ni/N掺杂的多孔碳管的制备及其CO2电还原的应用
CN1463920A (zh) 一种树状碳纳米管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant