CN112608845A - Bionic stimulation device for mechanical pressure of stem cells - Google Patents

Bionic stimulation device for mechanical pressure of stem cells Download PDF

Info

Publication number
CN112608845A
CN112608845A CN202110030334.3A CN202110030334A CN112608845A CN 112608845 A CN112608845 A CN 112608845A CN 202110030334 A CN202110030334 A CN 202110030334A CN 112608845 A CN112608845 A CN 112608845A
Authority
CN
China
Prior art keywords
bionic
stem cells
mechanical pressure
stimulation device
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110030334.3A
Other languages
Chinese (zh)
Other versions
CN112608845B (en
Inventor
李广杰
王记增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
First Hospital of Lanzhou University
Original Assignee
Lanzhou University
First Hospital of Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University, First Hospital of Lanzhou University filed Critical Lanzhou University
Priority to CN202110030334.3A priority Critical patent/CN112608845B/en
Publication of CN112608845A publication Critical patent/CN112608845A/en
Application granted granted Critical
Publication of CN112608845B publication Critical patent/CN112608845B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to the field of stem cell pressure stimulation methods, in particular to a mechanical pressure stress bionic stimulation device for stem cells. The problem of current mechanical stimulation direction unicity and stimulation inefficiency is solved. The method comprises the following steps: whole device uses the box as the installation main part, box internally mounted has the one-level centrifuge, and the one-level centrifuge drives a plurality of second grade centrifuges synchronous revolution of installation above that, and the extrusion group rotation of installation above that is driven to the second grade centrifuge, and the extrusion is organized the interior liquid bag and is passed through centrifugal force extrusion cell dish. The device adopts two centrifugal devices, makes the liquid bag carry out multi-direction extrusion to the cell dish through centrifugal force, realizes the omnidirectionality of mechanical stimulation, improves the accuracy of research, can once only realize simultaneously that cell stimulation in batches.

Description

Bionic stimulation device for mechanical pressure of stem cells
Technical Field
The invention relates to the field of stem cell pressure stimulation methods, in particular to a mechanical pressure stress bionic stimulation device for stem cells.
Background
Cells in a living body are in an environment full of various mechanical stimuli, the cells are stretched, contracted, twisted and the like by skeletal motion during motion, the digestive tract wriggles during eating, the shearing force caused by body fluid flow and the like, and even a simple finger-operated motion can bring the mechanical stimuli to the cells in the living body. As is known to all, exercise is beneficial to health, in vivo, normal biomechanical stimulation is also necessary for normal physiological processes such as bone tissue balance, embryonic development and the like, and research shows that different mechanical stimulation can have great influence on life activities such as growth, proliferation, differentiation and the like of cells, and abnormal biomechanical stimulation can also generate diseases such as osteoporosis and the like.
Tension and compression are the most common mechanical stimuli in vivo, and numerous researchers have been added to in vitro simulation studies of mechanical stimuli in cells in vivo for many years. The current research on the action of cells under tensile and compressive mechanical stimulation mainly includes two aspects: one is mechanical stimulation under two-dimensional culture conditions, which comprises two-point mechanical stretching, four-point mechanical stretching, pneumatic mechanical action and the like on an elastic membrane, and the mechanical stimulation is generated on cells cultured on the elastic membrane through the elastic action of the membrane, and the greatest defect of the loading mode is that the deformation of each part on the elastic membrane is not uniform; one is mechanical stimulation under three-dimensional culture conditions, including mechanical stimulation under fixed deformation, namely, research on the influence of fixed stress or strain conditions on cell culture, and the research belongs to cell culture research under static mechanical stimulation. The cell culture research under dynamic mechanical stimulation is mechanical stimulation realized by using a piezoelectric ceramic piece, a lead screw, a connecting rod mechanism and the like, but each device cannot realize mechanical stimulation in all directions, so that the inaccuracy of research data is easily caused. Meanwhile, the existing mechanical stimulation device has small one-time stimulation cell amount and low stimulation efficiency.
Disclosure of Invention
The invention provides a mechanical compressive stress bionic stimulation device for stem cells, which effectively solves the problems of single direction and low stimulation efficiency of the existing mechanical stimulation.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
a bionic stimulation device for mechanical pressure stress of stem cells takes a box body 1 as an installation main body, and is characterized in that a primary centrifuge 2 is installed inside the box body 1, the primary centrifuge 2 drives a plurality of secondary centrifuges 3 installed on the primary centrifuge to rotate, the secondary centrifuges 3 drive an extrusion group 4 installed on the secondary centrifuges to rotate, and a liquid bag 22 in the extrusion group 4 extrudes a cell plate 23 through centrifugal force.
The primary centrifuge 2 drives the fluted disc 8 to rotate through the primary motor 5 and the rotating rod 6.
Fluted disc 8 is movably installed on box 1 through one-level main shaft 7, is provided with spliced pole 9 and carousel 10 simultaneously on fluted disc 8.
The second-stage centrifuge 3 is mounted on the turntable 10.
The secondary centrifuge 3 takes a secondary box body 11 as an installation main body, a matching rotating device of a worm wheel 13 and a worm 14 is installed in the secondary box body 11, and the worm 14 is driven by a secondary motor 15; the worm wheel 13 is arranged on the secondary main shaft 12, one end of the secondary main shaft 12 is movably arranged on the secondary box body 11, the other end is provided with a main gear 16, the main gear 16 is mutually meshed with a driven gear 19 arranged on a driven shaft 18,
the driven shaft 18 is provided with the extrusion group 4.
The secondary main shaft 12 is stabilized by the aid of a mounting frame 17.
A plurality of squeezing boxes 20 are arranged in the squeezing group 4, and a liquid bag 22 and a cell tray 23 are arranged in each squeezing box 20.
The squeeze box 20 is provided with a bulkhead 21 between a fluid bag 22 and a cell tray 23.
The primary motor 5 and the secondary motor 1 are controlled by a controller 24.
The invention has the beneficial effects that: 1) this device is through the cooperation that adopts one-level centrifuge and second grade centrifuge, on the rotatory basis of one-level centrifuge, drives the rotation of second grade centrifuge for extrusion group on the second grade centrifuge is linear extrusion cell dish.
2) This device is through the cooperation of two centrifuges for the extrusion cell dish that the liquid bag can be multidirectional realizes multidirectional mechanics stimulation.
3) The extrusion group of the device is provided with a plurality of extrusion groups, and each extrusion group is internally provided with a plurality of extrusion discs, so that mechanical stimulation can be performed on a large number of stem cells at one time.
Drawings
FIG. 1 is a schematic view of the outer structure of the present invention;
FIG. 2 is a schematic view of the internal structure of the present invention;
FIG. 3 is a schematic view of a one-stage centrifuge mounting arrangement;
FIG. 4 is a schematic view of a two-stage centrifuge mounting arrangement;
FIG. 5 is a schematic view of a worm gear mounting arrangement;
FIG. 6 is a schematic view of a press set configuration;
FIG. 7 is a schematic view of a crush box construction;
shown in the figure: the device comprises a box body 1, a primary centrifuge 2, a secondary centrifuge 3, an extrusion group 4, a primary motor 5, a rotating rod 6, a primary main shaft 7, a fluted disc 8, a connecting column 9, a rotary disc 10, a secondary box body 11, a secondary main shaft 12, a worm wheel 13, a worm 14, a secondary motor 15, a main gear 16, an installation frame 17, a driven shaft 18, a driven gear 19, an extrusion box 20, a partition frame 21, a liquid bag 22, a cell disc 23 and a controller 24.
Detailed Description
The technical scheme of the invention is further explained by specific embodiments in the following with the accompanying drawings:
example one
Referring to the attached drawings 1-7, the invention aims to provide a mechanical compressive stress bionic stimulation device for stem cells, which realizes the functions of multidirectional force and linear pressurization. The multidirectional force and the linear pressurization are realized by the cooperation of double centrifugal devices, and the specific structure is as follows.
Whole device uses box 1 as installation main part 1, has one-level centrifuge 2 and second grade centrifuge 3 at box 1 internally mounted, and through the double-rotation cooperation of one-level centrifuge 2 and second grade centrifuge 3, the extrusion group 4 work of installation on the drive second grade centrifuge 3 realizes the multidirectional linear mechanics mechanical extrusion to cell dish 23.
As shown in fig. 3, the mounting structure of the primary centrifuge 2 is such that the primary centrifuge 2 adopts the cooperative rotation of the rotating rod 6 and the toothed disc 8. The rotary rod 6 is driven to rotate by a primary motor 5, and the primary motor 5 is mounted on the box body 1. Meanwhile, a rotatable primary main shaft 7 is installed on the box body 1, and a fluted disc 8 is installed through the primary main shaft 7. The teeth of the fluted disc 8 are horizontal teeth, and a connecting column 9 is fixedly arranged on the fluted disc 8. A rotary disc 10 is fixedly arranged on the connecting column 9, and a secondary centrifuge 3 is arranged on the rotary disc 10.
During the rotation of the rotating disk 10, the secondary centrifuge 3 is synchronously driven to rotate.
The structure of the secondary centrifuge 3 is shown in fig. 4, on which a secondary box 11 is mounted, and a matching rotating structure of a worm wheel 13 and a worm 14 is mounted in the secondary box 11. The worm 14 is driven to rotate by a secondary motor 15, and the worm wheel 13 is mounted in the secondary housing 11 via a secondary spindle 12. While a main gear 16 is mounted on the upper end of the secondary main shaft 12. A plurality of movable driven shafts 18 are arranged on the rotary table 10 outside the secondary box body 11. In order to ensure the stability of the driven shaft 18, the device is provided with a mounting frame 17 on the turntable 10 to assist in stabilizing the driven shaft 18.
A driven gear 19 on the driven shaft 18 is meshed with the main gear 16 to realize the rotation of the driven shaft 18. The driven shaft 18 is provided with a pressing group 4.
The structure of the extrusion group 4 is shown in fig. 6, and four groups of extrusion boxes are arranged inside the extrusion group. The squeeze box 20 is constructed as shown in FIG. 7, and the squeeze box 20 is divided into two spaces by a partition 21, in one of which a fluid bag 22 is placed and in the other of which a cell dish 23 is placed. The fluid bag 22 is made of soft material, and its shape can be changed during the centrifugation process. The liquid bag 22 generates multi-directional uneven and linear mechanical stimulation to the cell plate 23 through the action of centrifugal force.
Meanwhile, a controller 24 is arranged on the box body 1, and the rotation rates of the primary motor 5 and the secondary motor 15 are controlled through the controller 24, so that the centrifugal force is controlled.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. Any reference sign in a claim should not be construed as limiting the claim concerned.
Furthermore, it should be understood that although the present description refers to embodiments, not every embodiment may contain only a single embodiment, and such description is for clarity only, and those skilled in the art should integrate the description, and the embodiments may be combined as appropriate to form other embodiments understood by those skilled in the art.

Claims (10)

1. A bionic stimulation device for mechanical pressure stress of stem cells takes a box body as an installation main body, and is characterized in that a primary centrifuge is installed in the box body and drives a plurality of secondary centrifuges installed on the primary centrifuge to synchronously rotate, the secondary centrifuges drive an extrusion group installed on the secondary centrifuges to rotate, and a liquid bag in the extrusion group extrudes a cell tray through centrifugal force.
2. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 1, characterized in that: the first-stage centrifuge drives the fluted disc to rotate through the first-stage motor and the rotating rod.
3. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 2, characterized in that: the fluted disc is movably installed on the box body through the primary main shaft, and a connecting column and a turntable are arranged on the fluted disc.
4. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 3, characterized in that: and a secondary centrifuge is arranged on the rotary disc.
5. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 1, characterized in that: the secondary centrifuge takes a secondary box body as an installation main body, a worm wheel and worm matched rotating device is installed in the secondary box body, and the worm is driven by a secondary motor; the worm wheel is installed on the second grade main shaft, and second grade main shaft one end is mobilizable to be installed on the second grade box, and the master gear is installed to the other end, master gear and the driven gear intermeshing who installs on the driven shaft.
6. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 5, characterized in that: and the driven shaft is provided with an extrusion group.
7. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 5, characterized in that: the secondary main shaft is assisted and stabilized through a mounting frame.
8. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 1, characterized in that: a plurality of extrusion boxes are arranged in the extrusion group, and liquid bags and cell trays are arranged in the extrusion boxes.
9. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 8, characterized in that: the extrusion box is provided with a separation frame between the liquid bag and the cell tray.
10. The bionic stimulation device for mechanical pressure stress of stem cells according to claim 1, characterized in that: and the box body is provided with a controller for controlling the primary motor and the secondary motor.
CN202110030334.3A 2021-01-11 2021-01-11 Stem cell mechanical pressure bionic stimulation device Active CN112608845B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110030334.3A CN112608845B (en) 2021-01-11 2021-01-11 Stem cell mechanical pressure bionic stimulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110030334.3A CN112608845B (en) 2021-01-11 2021-01-11 Stem cell mechanical pressure bionic stimulation device

Publications (2)

Publication Number Publication Date
CN112608845A true CN112608845A (en) 2021-04-06
CN112608845B CN112608845B (en) 2023-07-25

Family

ID=75253867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110030334.3A Active CN112608845B (en) 2021-01-11 2021-01-11 Stem cell mechanical pressure bionic stimulation device

Country Status (1)

Country Link
CN (1) CN112608845B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635108A (en) * 2004-11-25 2005-07-06 西安交通大学 Rotary pouring type bioreactor system
CN2736772Y (en) * 2004-07-23 2005-10-26 西安交通大学 Extracorporal individual cell centrifugal force mechanical traction apparatus
JP2006212017A (en) * 2005-02-03 2006-08-17 Otake:Kk Apparatus for carrying out rotational culture under loading and pressure
US20080026465A1 (en) * 2004-06-17 2008-01-31 Ken Nakata Cell Culturing Method Using Biomechanical Stimulation Loading And System Therefor
CN101298592A (en) * 2008-06-16 2008-11-05 重庆大学 Cell three-dimensional mechanical loading unit
TW201022436A (en) * 2008-12-11 2010-06-16 Univ Chang Gung System and method for providing external force stimulation on cell specimen
WO2012150787A2 (en) * 2011-04-30 2012-11-08 인제대학교 산학협력단 Combined stimulation bioreactor and method for cultivating cells while applying stimulation using same
CN103525700A (en) * 2013-09-12 2014-01-22 北京航空航天大学 Rotational shear force stimulation and electric stimulation combined cell culture device
CN103555561A (en) * 2013-10-29 2014-02-05 王卫明 Biomechanical generator
CN105462835A (en) * 2014-09-03 2016-04-06 孙晓雷 Double-layer assembly type cytomechanics loading carrier device
CN105482996A (en) * 2016-01-06 2016-04-13 西北工业大学 Mechanical stimulation loading device for three-dimensional cell culture support
CN105543092A (en) * 2016-01-06 2016-05-04 西北工业大学 Dynamic non-contact cell mechanical stimulation loading device
CN107904171A (en) * 2017-12-26 2018-04-13 中国人民解放军第四军医大学 The cell culture apparatus and method of stress combined stimulation are pressed to for simulated microgravity
CN110551854A (en) * 2019-09-16 2019-12-10 常州市第一人民医院 method for testing and regulating in-vitro function of myocardial cells by adopting force stimulation mode
CN111154648A (en) * 2019-12-27 2020-05-15 新乡医学院三全学院 Stem cell source exosome culture device
CN112143650A (en) * 2020-10-12 2020-12-29 重庆大学 Compressive stress loading device for tumor stem cell culture and application method thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080026465A1 (en) * 2004-06-17 2008-01-31 Ken Nakata Cell Culturing Method Using Biomechanical Stimulation Loading And System Therefor
CN2736772Y (en) * 2004-07-23 2005-10-26 西安交通大学 Extracorporal individual cell centrifugal force mechanical traction apparatus
CN1635108A (en) * 2004-11-25 2005-07-06 西安交通大学 Rotary pouring type bioreactor system
JP2006212017A (en) * 2005-02-03 2006-08-17 Otake:Kk Apparatus for carrying out rotational culture under loading and pressure
CN101298592A (en) * 2008-06-16 2008-11-05 重庆大学 Cell three-dimensional mechanical loading unit
TW201022436A (en) * 2008-12-11 2010-06-16 Univ Chang Gung System and method for providing external force stimulation on cell specimen
WO2012150787A2 (en) * 2011-04-30 2012-11-08 인제대학교 산학협력단 Combined stimulation bioreactor and method for cultivating cells while applying stimulation using same
CN103525700A (en) * 2013-09-12 2014-01-22 北京航空航天大学 Rotational shear force stimulation and electric stimulation combined cell culture device
CN103555561A (en) * 2013-10-29 2014-02-05 王卫明 Biomechanical generator
CN105462835A (en) * 2014-09-03 2016-04-06 孙晓雷 Double-layer assembly type cytomechanics loading carrier device
CN105482996A (en) * 2016-01-06 2016-04-13 西北工业大学 Mechanical stimulation loading device for three-dimensional cell culture support
CN105543092A (en) * 2016-01-06 2016-05-04 西北工业大学 Dynamic non-contact cell mechanical stimulation loading device
CN107904171A (en) * 2017-12-26 2018-04-13 中国人民解放军第四军医大学 The cell culture apparatus and method of stress combined stimulation are pressed to for simulated microgravity
CN110551854A (en) * 2019-09-16 2019-12-10 常州市第一人民医院 method for testing and regulating in-vitro function of myocardial cells by adopting force stimulation mode
CN111154648A (en) * 2019-12-27 2020-05-15 新乡医学院三全学院 Stem cell source exosome culture device
CN112143650A (en) * 2020-10-12 2020-12-29 重庆大学 Compressive stress loading device for tumor stem cell culture and application method thereof

Also Published As

Publication number Publication date
CN112608845B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US7968335B2 (en) Cell culturing method using biomechanical stimulation loading and system therefor
CN110551854B (en) Method for testing and regulating in-vitro function of myocardial cells by adopting force stimulation mode
CN104342370B (en) The biomechanical system cultivated for cell three-dimensional perfusion Compression and Expansion
WO2021051808A1 (en) Force stimulation loading device and working method thereof
CN101649291B (en) Extension and compression device of multi-unit cells
CN105482996B (en) Three-dimensional cell culture support mechanical stimulation loading device
CN106867888A (en) The at the uniform velocity single axis of symmetry tensile cell mechanics device that can be observed in place in real time
CN101021517A (en) Double-shaft driving frame type gyroscope
CN103555561B (en) Biomechanical generator
CN112608845A (en) Bionic stimulation device for mechanical pressure of stem cells
CN100570363C (en) Cell mechanical period loading system
CN113351378B (en) Intracardiac branch of academic or vocational study medicine molecule extraction and separation device
CN101381677B (en) Tissue engineering reactor with torsion and tension-compression functions
CN211079122U (en) Force stimulation loading device
CN111040944A (en) Bioengineering cell culture is with shaking mixing device
CN211678117U (en) Tablet milling equipment is used in pharmacy research
CN206618632U (en) Stretching extruding test system and the test fixture for extension test
CN206599574U (en) The at the uniform velocity single axis of symmetry tensile cell mechanics device that can be observed in place in real time
CN210012859U (en) Multi-channel differential traction device for research on in-vitro axon stress mechanical response mechanism
CN209199438U (en) A kind of chemical bond rupture for quantum chemistry and formation apparatus for demonstrating
CN112275213A (en) Stem cell gel particle generation instrument
CN215517429U (en) Cell force application device
CN104789469A (en) Bioreactor for in-vitro cell culture/animal centrifugal high-acceleration loading
CN203869974U (en) Dynamic mechanics experimental device of tissue engineering scaffold
CN216799944U (en) Auxiliary device for biological pharmacology experiments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant