CN112608735B - 一种CsPbX3@云母复合物材料的制备方法和应用 - Google Patents

一种CsPbX3@云母复合物材料的制备方法和应用 Download PDF

Info

Publication number
CN112608735B
CN112608735B CN202011602130.4A CN202011602130A CN112608735B CN 112608735 B CN112608735 B CN 112608735B CN 202011602130 A CN202011602130 A CN 202011602130A CN 112608735 B CN112608735 B CN 112608735B
Authority
CN
China
Prior art keywords
cspbx
mica
composite material
solution
cspbbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011602130.4A
Other languages
English (en)
Other versions
CN112608735A (zh
Inventor
向卫东
余艳霞
梁晓娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN202011602130.4A priority Critical patent/CN112608735B/zh
Publication of CN112608735A publication Critical patent/CN112608735A/zh
Application granted granted Critical
Publication of CN112608735B publication Critical patent/CN112608735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种CsPbX3@云母复合物材料的制备方法和应用。所述制备方法包括如下步骤:将纯净的CsPbX3量子点溶液与云母混合,使CsPbX3量子点与云母的摩尔比为0.5‑4:1,在400‑600rpm的搅拌转速下搅拌时间为10‑20分钟,然后在7000‑9000rpm下离心5‑10分钟,再将沉淀物干燥即得CsPbX3@云母复合物。本发明提供了所述的CsPbX3@云母复合物材料在白光LED或宽色域背光源显示照明中的应用。本发明的CsPbX3@云母复合物材料具有良好的光学性能和优异的热稳定性和光辐照稳定性。

Description

一种CsPbX3@云母复合物材料的制备方法和应用
技术领域
本发明涉及一种CsPbX3@云母复合物材料的制备方法和在白光LED和背光显示中的应用。
背景技术
近年来,随着技术的飞速发展,全无机卤化铅铯钙钛矿CsPbX3(X=Cl, Br和I)量子点被广泛报道。节能型固态照明和更多高清显示器的前景推动了高效,纯色发光材料的显着发展。与传统的有机材料相比,全无机卤化铅铯钙钛矿CsPbX3(X=Cl,Br和I)量子点由于其独特而优异的光电性能而被许多学者青睐,成为光电子器件很有前途的材料之一,例如窄的发射带、在整个可见光区域的可调发射、高量子产率、高载流子迁移率、可调带隙和宽的色域等优异的性质。基于上述光学和半导体特性的各种优势,CsPbX3量子点已出现在各种光电应用中,例如发光二极管,太阳能电池,光电探测器,激光器,上转换发射材料,甚至是光催化材料。但是,CsPbX3量子点的稳定性限制了其在光电领域的应用,尤其是在潮湿环境和光照条件下。CsPbX3量子点在实际应用中遇到了巨大挑战。因此,迫切需要设计高效,高稳定性的CsPbX3量子点发光材料是光电应用的主要挑战。研究人员通过TiO2,SiO2,Al2O3和天然矿物采用多种策略来改善CsPbX3量子点的热稳定性和光辐射稳定性。因此,具有优异的光学性能,宽的色域的CsPbX3(X=Cl,Br和I)@云母复合物将在发光二极管和背光显示照明领域广泛应用。
发明内容
本发明所要解决的第一个技术问题是提供一种制备工艺简单、成本低的CsPbX3@云母复合物材料,该CsPbX3@云母复合物材料具有良好的光学性能和优异的热稳定性和光辐照稳定性。
本发明要解决的第二个技术问题是提供制备得到的CsPbX3@云母复合物材料在白光LED或背光照明中的应用。
本发明为解决上述问题所采用的技术方案如下:
第一方面,本发明提供了一种CsPbX3@云母复合物材料的制备方法,其中 X代表Cl、Br和I中的一种或者两种以上的组合,所述制备方法包括如下步骤:
(1)将纯净的CsPbX3量子点溶液与云母混合,使CsPbX3量子点与云母的摩尔比为0.5-4:1,在400~600rpm的搅拌转速下搅拌时间为10~20分钟,然后在7000~9000rpm下离心5~10分钟,再将沉淀物干燥即得CsPbX3@云母复合物。
作为优选,所述的CsPbX3量子点为CsPbBr1I2、CsPbCl1.5Br1.5或CsPbBr3量子点。
作为优选,CsPbX3量子点与云母的摩尔比为1:1。
作为优选,所述CsPbX3量子点溶液的溶剂为正己烷或甲苯。
作为优选,离心时间为8分钟。
作为优选,沉淀物的干燥条件为:将沉淀物放于通风橱内静置10~13小时。
本发明所述的纯净的CsPbX3量子点溶液可通过现有技术进行制备,例如通过简单易于操作的热注入法进行制备,所述的热注入法具体按照如下步骤进行:
(a)将Cs2CO3与溶剂1-十八碳烯和油酸一起加入三颈圆底烧瓶中,在通入N2的条件下将温度升高至120-190℃,形成油酸铯溶液,将温度降至80-120℃待用;其中Cs2CO3与1-十八碳烯、油酸的投料比为0.7-0.9g:30-45mL:1-3mL;
(b)CsPbBr3 PQDs的合成
将PbX2和1-十八碳烯添加到充有氮气的三颈圆底烧瓶中,加热到 140-170℃,加入体积比为1:1的油酸和油胺,然后升高至150-180℃,随后,快速加入制得的油酸铯溶液,并在20-40s后,将溶液混合物在冰浴中冷却,然后将溶液混合物离心,所得沉淀用正己烷或甲苯分散后至少再离心一次,取最后的上清液,得到纯净的CsPbBr3量子点溶液备用;其中PbBr2与1-十八碳烯、油酸、油胺、油酸铯溶液的投料比为0.06-0.08g:7-10mL:1-3mL:1-3mL: 0.7-0.9mL。
第二方面,本发明提供了所述CsPbX3@云母复合物材料在白光LED或宽色域背光源显示照明中的应用。
与现有技术相比,本发明的优点是:
本发明以CsPbX3 QDs溶液和云母复合,制得了CsPbX3@云母复合材料,工艺简单、成本低,制得的复合材料具有良好的光学性能和优异的热稳定性和光辐照稳定性,可应用于白光LED和宽色域背光源显示照明。
下面结合说明书附图和具体实施方式对本发明做进一步介绍。
附图说明
图1为实施例1-4制备的CsPbBr3@云母复合物的样品在常光(上)和紫外光(下)的实物图,由图可知,荧光强度由强到弱的排序为:实施例2>实施例 3>实施例4>实施例1;
图2为本发明实施例2、5、6的CsPbX3@云母复合物的样品在常光(上) 和紫外光(下)的实物图,由图可知,实施例6、2、5的样品在常光下呈浅黄色、黄色和橙红色,在紫外光下呈蓝色、绿色和红色;
图3为本发明实施例2、5、6的CsPbX3@云母复合物以及云母的X射线衍射(XRD)图;
图4为本发明实施例2、5、6制备的CsPbX3@云母复合物的荧光(PL)图,从左至右三条曲线分别对应实施例6、实施例2、实施例5;
图5为本发明实施例2制备的CsPbBr3@云母复合物的热稳定性图,随温度升高,荧光强度降低;
图6为本发明实施例2制备的CsPbBr3@云母复合物的在365nm紫外灯下照射的光辐照稳定性图;
图7为本发明实施例5制备的CsPbBr1I2@云母复合物配制的发光二极管图;
图8为本发明实施例5制备的CsPbBr1I2@云母,实施例6制备的 CsPbCl1.5Br1.5@云母,实施例2制备的CsPbBr3@云母复合物在460nm GaN蓝光芯片配制的白光二极管产生的色域图。
具体实施方式
下面通过实施例对本发明进行具体的描述,只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限定,该领域的技术工程师可根据上述发明的内容对本发明作出一些非本质的改进和调整。
实施例1-4:制备CsPbBr3@云母复合物
称量0.81g CsCO3,2ml OA和40ml ODE于100ml的三颈圆底烧瓶中,在通入N2的条件下加热至120℃保温2h,再升温至150℃保温5min,再降温至100℃,即制备出前驱体Cs油酸盐待用,然后将0.07g的PbBr2和8ml ODE 置于50ml三颈圆底烧瓶中,并加热到150℃,将1.5ml油酸和1.5ml油胺在 N2的保护下注入,当形成完全熔化的卤化铅盐时将温度升至170℃,再将Cs 油酸盐溶液快速注入,30s后冰水浴即可得CsPbBr3量子点溶液。最后将CsPbBr3量子点溶液在8000转速的离心机中离心8min进行分离提纯,第一次离心取沉淀,再将沉淀用4ml正己烷分散溶解,在8000转速的离心机中进行第二次离心时间为8min,进一步分离提纯取其上清液,即得到提纯后的量子点溶液。
将提纯后的量子点溶液与云母复合,且云母与量子点的摩尔比2:1(实施例 1),1:1(实施例2),1:2(实施例3)和1:4(实施例4),在500rpm的搅拌转速下搅拌时间为15分钟,然后在8000rpm下离心8分钟,再将沉淀物放于通风橱内静置12小时即得CsPbBr3@云母复合材料。
制备得到的4种CsPbBr3@云母复合材料的实物图和荧光图如图1所示,由图可知,实施例2制备的CsPbBr3@云母复合材料的荧光发射强度最佳。
在365nm激发下,从303K到443K,每间隔20K测试实施例2制备的 CsPbBr3@云母复合材料的PL强度。结果如图5所示,由于热淬灭,PL强度随温度的升高而逐渐减小。令人欣慰的是,当温度达到443K时仍有PL发射,这表明CsPbBr3@云母复合材料具有良好的热稳定性。
将实施例2制备的CsPbBr3@云母复合物在365nm紫外灯下照射,结果如图6所示,连续照射7天后荧光强度下降了约12%。这表明CsPbBr3@云母复合材料具有良好的光辐照稳定性。
实施例5:制备CsPbBr1I2@云母复合物
称量0.81g CsCO3,2ml OA和40ml ODE于100ml的三颈圆底烧瓶中,在通入N2的条件下加热至120℃保温2h,再升温至150℃保温5min,再降温至100℃,即制备出前驱体Cs油酸盐待用,然后将0.09g的PbBr2,0.058g PbI2和8ml ODE置于50ml三颈圆底烧瓶中,并加热到150℃,将1.5ml油酸和1.5ml 油胺在N2的保护下注入,当形成完全熔化的卤化铅盐时将温度升至170℃,再将Cs油酸盐溶液快速注入,30s后冰水浴即可得CsPbBr1I2量子点溶液。最后将CsPbBr1I2量子点溶液在8000转速的离心机中离心8min进行分离提纯,第一次离心取沉淀,再将沉淀用4ml正己烷分散溶解,在8000转速的离心机中进行第二次离心时间为8min,进一步分离提纯取其上清液,即得到提纯后的量子点溶液。将提纯后的量子点溶液与云母复合,且云母与量子点的摩尔比1:1,在500 rpm的搅拌转速下搅拌时间为15分钟,然后在8000rpm下离心8分钟,再将沉淀物放于通风橱内静置12小时即得CsPbBr1I2@云母复合材料。
实施例6:制备CsPbCl1.5Br1.5@云母复合物
称量0.81g CsCO3,2ml OA和40ml ODE于100ml的三颈圆底烧瓶中,在通入N2的条件下加热至120℃保温2h,再升温至150℃保温5min,再降温至100℃,即制备出前驱体Cs油酸盐待用,然后将0.052g的PbCl2,0.07g PbBr2和8ml ODE置于50ml三颈圆底烧瓶中,并加热到150℃,将1.5ml油酸和1.5ml 油胺在N2的保护下注入,当形成完全熔化的卤化铅盐时将温度升至170℃,再将Cs油酸盐溶液快速注入,30s后冰水浴即可得CsPbCl1.5Br1.5量子点溶液。最后将CsPbCl1.5Br1.5量子点溶液在8000转速的离心机中离心8min进行分离提纯,第一次离心取沉淀,再将沉淀用4ml正己烷分散溶解,在8000转速的离心机中进行第二次离心时间为8min,进一步分离提纯取其上清液,即得到提纯后的量子点溶液。将提纯后的量子点溶液与云母复合,且云母与量子点的摩尔比1:1,在500rpm的搅拌转速下搅拌时间为15分钟,然后在8000rpm下离心8分钟,再将沉淀物放于通风橱内静置12小时即得CsPbCl1.5Br1.5@云母复合材料。
应用实施例
用实施例5中的CsPbBr1I2@云母复合物和商业粉Ce3+:YAG在GaN蓝光芯片上配制的白光二极管。所得白光二极管的指标为:光效为116.5lmW-1,色温为5949K,显色指数为75.8。
应用实施
分别用实施例5制备的CsPbBr1I2@云母复合物、实施例6制备的 CsPbCl1.5Br1.5@云母复合物、实施例2制备的CsPbBr3@云母复合物在460nm GaN蓝光芯片上配制白光二极管,分别获得所得白光二极管的色坐标(0.6919, 0.3028),(0.1518,0.0609)和(0.1831,0.7529),它们产生的色域覆盖了国家电视标准颜色空间的120%(紫色三角形)。为了便于比较,国家电视标准颜色空间用白色三角形表示。
本发明并不局限于上述实施方式,如果对本发明的各种变动或变形不脱本发明的精神和范围,倘若这些改动和变形属于本发明的权利和要求等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (6)

1.一种CsPbX3@云母复合物材料的制备方法,其中X代表Cl、Br和I中的一种或者两种以上的组合,所述制备方法包括如下步骤:
(1)将纯净的CsPbX3量子点溶液与云母混合,使CsPbX3量子点与云母的摩尔比为0.5-4:1,在400-600rpm的搅拌转速下搅拌时间为10-20分钟,然后在7000-9000rpm下离心5-10分钟,再将沉淀物干燥,沉淀物的干燥条件为:将沉淀物放于通风橱内静置10~13小时,即得CsPbX3@云母复合物。
2.如权利要求1所述的制备方法,其特征在于:CsPbX3量子点与云母的摩尔比为1:1。
3.如权利要求1或2所述的制备方法,其特征在于:所述的CsPbX3量子点为CsPbBr1I2、CsPbCl1.5Br1.5或CsPbBr3量子点。
4.如权利要求1或2所述的制备方法,其特征在于:所述CsPbX3量子点溶液的溶剂为正己烷或甲苯。
5.如权利要求1或2所述的制备方法,其特征在于:所述的纯净的CsPbX3量子点溶液通过热注入法进行制备,所述的热注入法具体按照如下步骤进行:
(a)将Cs2CO3与溶剂1-十八碳烯和油酸一起加入三颈圆底烧瓶中,在通入N2的条件下将温度升高至120-190℃,形成油酸铯溶液,将温度降至80-120℃待用;其中Cs2CO3与1-十八碳烯、油酸的投料比为0.7-0.9g:30-45mL:1-3mL;
(b)CsPbBr3 PQDs的合成
将PbX2和1-十八碳烯添加到充有氮气的三颈圆底烧瓶中,加热到140-170℃,加入体积比为1:1的油酸和油胺,然后升高至150-180℃,随后,快速加入制得的油酸铯溶液,并在20-40s后,将溶液混合物在冰浴中冷却,然后将溶液混合物离心,所得沉淀用正己烷或甲苯分散后至少再离心一次,取最后的上清液,得到纯净的CsPbBr3量子点溶液备用;其中PbBr2与1-十八碳烯、油酸、油胺、油酸铯溶液的投料比为0.06-0.08g:7-10mL:1-3mL:1-3mL:0.7-0.9mL。
6.根据权利要求1或2所述的制备方法制得的CsPbX3@云母复合物材料在白光LED或宽色域背光源显示照明中的应用。
CN202011602130.4A 2020-12-30 2020-12-30 一种CsPbX3@云母复合物材料的制备方法和应用 Active CN112608735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011602130.4A CN112608735B (zh) 2020-12-30 2020-12-30 一种CsPbX3@云母复合物材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011602130.4A CN112608735B (zh) 2020-12-30 2020-12-30 一种CsPbX3@云母复合物材料的制备方法和应用

Publications (2)

Publication Number Publication Date
CN112608735A CN112608735A (zh) 2021-04-06
CN112608735B true CN112608735B (zh) 2022-10-21

Family

ID=75249047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011602130.4A Active CN112608735B (zh) 2020-12-30 2020-12-30 一种CsPbX3@云母复合物材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN112608735B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543942A (zh) * 2016-10-18 2017-03-29 杭州新湖电子有限公司 一种白光led配粉胶及其制备方法
CN106867536B (zh) * 2017-04-06 2019-03-22 上海云谟信息技术有限公司 在闪光灯下可读取的荧光材料的制备方法及其应用

Also Published As

Publication number Publication date
CN112608735A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Zhang et al. Fluorescent nanomaterial-derived white light-emitting diodes: what's going on
CN110205124B (zh) 一种荧光磷光双发射白光碳量子点及制备方法和应用
CN108865126A (zh) 一种发光带隙可调谐双光发射锰掺杂钙钛矿纳米晶的制备方法
CN112680213B (zh) 一种正硅酸乙酯包覆的钙钛矿纳米晶的制备方法
EP3101091A1 (en) Phosphor with preferred orientation, fabricating method thereof, and light-emitting element package structure employing the same
CN112745839A (zh) 一种TS-1分子筛包覆的CsPbX3量子粉末及其制备和应用
KR20120112691A (ko) 일종 백광 엘이디 적색 인광체 및 그 제조 방법
CN104726097A (zh) 一种新型黄色荧光粉及其制备方法
CN116731710B (zh) 一种Sb/Mn共掺杂Cs3InCl6钙钛矿纳米晶的制备方法
CN112608735B (zh) 一种CsPbX3@云母复合物材料的制备方法和应用
CN107384383A (zh) 一种uv激发白光led用复合型荧光粉
TW200409810A (en) Method for producing white-light LED with high brightness by phosphor powder
Kwon et al. Design of binder-free phosphor paste for warm white LEDs
CN114214063B (zh) 一种单基质白光发射碳点荧光粉的制备方法
US7591963B2 (en) White light emitting device
CN110791282B (zh) 一种掺Mn4+碱金属氟铁酸盐红色发光材料及制备方法
CN113372915A (zh) 一种白光led用单相荧光材料及其制备方法和应用
TWI431099B (zh) 製造螢光粉之方法及該方法所製得之螢光粉
Miao et al. Luminescence Properties of Nano-Sized Sr2MgSiO5: Eu2+, Mn2+ Phosphors Prepared by the Sol–Gel Method
Le Thai et al. Utilization of BaAl 1.4 Si 0.6 O 3.4 N 0.6: Eu 2+ Green-emitting Phosphor to Improve Luminous Intensity and Color Adequacy of White Light-emitting Diodes.
CN106433637A (zh) 一种新型Mn4+激活的高色纯度氟化物红色发光材料制备方法
CN113307304B (zh) 一种CsPbX3@叶腊石复合物材料的制备方法和应用
CN116333734B (zh) 一种基于钙钛矿纳米晶的材料及其制备方法
CN116814254B (zh) 一种无稀土无铅卤化物双钙钛矿基双组分荧光粉及其制备方法和应用
CN113264674B (zh) 一种铜离子掺杂多色荧光玻璃及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant