CN112582462A - 空气间隔物结构 - Google Patents

空气间隔物结构 Download PDF

Info

Publication number
CN112582462A
CN112582462A CN202010877419.0A CN202010877419A CN112582462A CN 112582462 A CN112582462 A CN 112582462A CN 202010877419 A CN202010877419 A CN 202010877419A CN 112582462 A CN112582462 A CN 112582462A
Authority
CN
China
Prior art keywords
liner
gate
contact
structures
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010877419.0A
Other languages
English (en)
Inventor
J·弗鲁吉尔
A·拉扎维
王海艇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lattice Core Usa Inc
Original Assignee
Lattice Core Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lattice Core Usa Inc filed Critical Lattice Core Usa Inc
Publication of CN112582462A publication Critical patent/CN112582462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • H01L29/4991Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本公开一般地涉及半导体结构,更具体地涉及空气间隔物结构及制造方法。该结构包括:多个栅极结构,其包括有源区;接触,其延伸到有源区;多个锚固结构,其位于有源区之间;以及空气间隔物结构,其与接触相邻。

Description

空气间隔物结构
技术领域
本公开一般地涉及半导体结构,更具体地,涉及空气间隔物结构及制造方法。
背景技术
随着半导体工艺不断按比例缩小(例如收缩),特征间的期望间隔(即,间距)也在变小。为此,在较小的技术节点中,由于关键尺寸(CD)按比例缩放和处理能力等原因,制造特征变得愈加困难。
在射频(RF)应用中,器件性能受栅极到源极/漏极(S/D)寄生电容的限制。这是因为RF晶体管的高频性能量度(例如,Ft和Fmax)与栅极结构到S/D接触电容(即,栅极到漏极电容(Cgd)以及栅极到源极电容(Cgs))的值成反比。栅极到S/D寄生电容可能来自:(i)栅极结构的间隔物材料;以及(ii)栅极结构的金属堆叠和S/D接触的金属填充物之间的相对低质量氧化物流动式化学气相沉积(FCVD)。
尝试解决栅极到S/D寄生电容的常规器件涉及自对准接触(SAC)集成流程。然而,SAC流程不一定是具有相对较大的接触间距(CPP,Contacted Poly Pitch)的技术节点的选择集成,因为栅极结构间的空间足够大,仅使用图案化和蚀刻工艺即可可靠地形成沟槽接触。因此,绕过了使沟槽接触与栅极结构自对准的要求。可以在RF技术中找到这种松弛的CPP器件的示例,其中相邻栅极结构之间的空间保持足够大,不需要SAC集成流程。对于RF器件,沟槽接触被直接蚀刻到低质量FCVD氧化物中。然而,大多数建议的气隙间隔物集成都是从SAC流程中派生的,不一定与松弛的CPP集成兼容。本发明提供了针对该问题的解决方案。
发明内容
在本公开的一方面,一种结构包括:多个栅极结构,其包括有源区;接触,其延伸到所述有源区;多个锚固结构,其位于所述有源区之间;以及空气间隔物结构,其与所述接触相邻。
在本公开的一方面,一种结构包括:多个栅极结构,其包括源极和漏极(S/D)区;接触,其延伸到所述S/D区;多个锚固结构,其位于所述S/D区之间;以及空气间隔物结构,其与所述接触和所述锚固结构相邻。
在本公开的一方面,一种方法包括:形成至少一个栅极结构;形成与所述至少一个栅极结构相邻的多个有源区;形成密封所述至少一个栅极结构和所述有源区的双衬里;在所述双衬里之上沉积绝缘体材料;在所述有源区之间形成多个锚固结构;形成与所述有源区电接触的多个接触;蚀刻所述双衬里中的至少一个衬里;蚀刻所述绝缘体材料的选定部分以形成至少一个气隙;以及在所述气隙内沉积第二衬里以形成空气间隔物结构。
附图说明
在下面的详细描述中,借助本公开的示例性实施例的非限制性示例,参考所提到的多个附图来描述本公开。
图1A至1C示出了根据本公开的方面的除其它特征之外的虚设栅极(dummy gate)结构及相应的制造工艺。
图2A和2B示出了根据本公开的方面的除其它特征之外的底部和顶部接触蚀刻停止衬里(CESL)及相应的制造工艺。
图3A和3B示出了根据本公开的方面的除其它特征之外的锚固结构及相应的制造工艺。
图4A和4B示出了根据本公开的方面的除其它特征之外的替换栅极结构及相应的制造工艺。
图5A和5B示出了根据本公开的方面的除其它特征之外的气隙帽盖层(cappinglayer)及相应的制造工艺。
图6A和6B示出了根据本公开的方面的除其它特征之外的源极/漏极(S/D)金属化特征及相应的制造工艺。
图7A和7B示出了根据本公开的方面的除其它特征之外的气隙及相应的制造工艺。
图8A和8B示出了根据本公开的方面的除其它特征之外的空气间隔物结构及相应的制造工艺。
图9A至10B示出了根据本公开的方面的替代结构及相应的制造工艺。
具体实施方式
本公开一般地涉及半导体结构,更具体地,涉及空气间隔物结构及制造方法。在实施例中,本文提供的方法和结构利用衬里(liner)和锚固件在栅极结构和源极/漏极(S/D)接触之间形成空气间隔物结构的气隙。有利地,通过形成空气间隔物结构,由于空气的低k性质,可以减小栅极到S/D寄生电容,从而提高射频(RF)器件性能。
本文所述的方法和结构允许以特定方式设计栅极结构和S/D接触之间的间隔物的介电常数,以将栅极到S/D寄生电容降低到RF技术所需的目标值,即,降低栅极到漏极电容(Cgd)和栅极到源极电容(Cgs)。在实施例中,形成相对大的空气间隔物结构允许实现这些RF目标值,例如,RF晶体管的Ft和Fmax,因为Ft和Fmax与栅极结构到S/D接触的电容(即,Cgd和Cgs)的值成反比。在进一步的实施例中,本文所述的方法和结构与非自对准接触(SAC)工艺兼容,并且可以应用于对于RF FinFET至关重要的任何接触间距(CPP)。以此方式,本文所述的结构和方法改善了RF器件在任何CPP下的整体性能。
一种方法包括形成双(底部衬里和顶部衬里)接触蚀刻停止衬里(CESL)以密封(encapsulate)器件的栅极结构。锚固结构形成在器件的有源区(即,S/D区)之间,而层间电介质帽盖由与锚固结构相同的材料形成在CESL衬里之上。该方法还包括选择性蚀刻,以蚀刻双CESL衬里的顶部衬里来进入层间电介质。层间电介质被选择性蚀刻,以去除栅极结构和S/D接触之间的层间电介质,从而形成气隙。通过在气隙内沉积保形的(conformal)低k衬里,由气隙形成相对较大的空气间隔物结构。
一种结构包括空气间隔物结构,该空气间隔物结构在栅极结构的间隔物和S/D接触之间具有相对较大的气隙。该结构在栅极结构的间隔物中没有气隙。此外,气隙帽盖与S/D接触和栅极结构的间隔物接触。在实施例中,该结构包括被密封在锚固结构的电介质柱、S/D区和S/D接触之间的单气隙或双气隙。此外,S/D接触由锚固结构的电介质柱锚固,其中锚固结构位于有源区之间。
本公开的结构可以使用多种不同的工具,以多种方式来制造。然而,一般地,使用方法和工具来形成具有微米和纳米级尺寸的结构。已经根据集成电路(IC)技术采用了用于制造本公开的结构的方法(即,技术)。例如,这些结构建立在晶片上,并在晶片顶部上借助光刻工艺而图案化的材料膜中实现。具体地,结构的制造使用三个基本构造块:(i)在衬底上沉积材料薄膜;(ii)通过光刻成像在膜顶部上施加图案化的掩模;以及(iii)对掩模选择性地蚀刻所述膜。
图1A至1C示出了根据本公开的方面的进入结构及相应的制造工艺。具体地,图1A示出了结构100的俯视图,图1B示出了沿X轴的结构100,图1C示出了沿Y轴的结构100。参考图1A至1C,结构100包括由合适的半导体材料105构成的鳍(fin)结构110。例如,鳍结构110可以由任何合适的半导体材料105构成,包括但不限于Si、SiGe、SiGeC、SiC、GaAs、InAs、InP等。
可以使用侧壁图像转印(SIT)技术来制造鳍结构110。在SIT技术的示例中,使用常规化学气相沉积(CVD)工艺将芯棒(mandrel)材料(例如SiO2)沉积在衬底上。抗蚀剂形成在芯棒材料上并且暴露于光下以形成图案(开口)。通过开口执行反应离子蚀刻(RIE)以形成芯棒。在实施例中,取决于鳍结构的期望尺寸,芯棒可具有不同的宽度和/或间距。间隔物形成在芯棒的侧壁上,间隔物的材料优选地不同于芯棒,并且使用本领域技术人员公知的常规沉积工艺来形成。间隔物的宽度可以例如与鳍结构的尺寸匹配。使用对芯棒材料有选择性的常规蚀刻工艺去除或剥离芯棒。然后在间隔物的间距内执行蚀刻以形成亚光刻特征,例如,鳍结构。然后可以剥离侧壁间隔物。
仍参考图1A至1C,栅极结构120形成在鳍结构110和浅沟槽隔离(STI)区115上。STI区115可以通过常规蚀刻和沉积工艺、随后的平面化工艺(例如,化学机械平面化(CMP))来形成。在实施例中,栅极结构120由虚设栅极材料125(例如,非晶Si(α-Si))和帽盖层130构成。帽盖层130可以由任何合适的硬掩模材料(例如,SiN以及其它示例)形成。
虚设栅极材料125和帽盖层130通过CVD进行沉积,然后被执行常规的图案化步骤。栅极结构120还包括侧壁间隔物135(例如,低k电介质),其可以沉积在图案化材料125、130的侧壁上。侧壁间隔物135可以通过常规化学气相沉积(CVD)工艺沉积,随后被执行图案化工艺(例如,各向异性蚀刻工艺),以从结构100的水平表面去除任何材料。
源极和漏极(S/D)区140使用例如任何常规方法形成在鳍结构110上的栅极结构120的侧面(例如,侧壁间隔物135的侧面)上。例如,S/D区140可以是通过鳍结构110的表面上材料的掺杂外延生长形成的抬升的(raised)S/D区,其位于栅极结构120之间的开口内。在另外的实施例中,S/D区140可以通过本领域技术人员公知的离子注入工艺、掺杂工艺或扩散工艺来形成,因此不需要做出进一步的解释来理解本公开。
图2A和2B示出了沉积在栅极结构120和S/D区140之上的双接触蚀刻停止衬里(CESL)145。在实施例中,双CESL衬里145可以包括底部衬里150和顶部衬里155。以此方式,蚀刻停止衬里是双蚀刻停止衬里,即,双CESL衬里145,其包括底部衬里150和顶部衬里155。底部衬里150可以由任何合适的低k材料(例如,SiBCN)构成。在另外的实施例中,底部衬里150可以由与侧壁间隔物135相同的低k材料构成。顶部衬里155也可以由低k材料(例如,SiN)构成。因此,底部衬里和顶部衬里由低k材料构成。底部衬里150和顶部衬里155可以通过ALD或CVD工艺沉积。
底部衬里150和顶部衬里155可以分别具有2nm至5nm范围内的厚度。以此方式,双CESL衬里145可以形成为具有约4nm至10nm范围内的厚度;但是本文也预期其它尺寸。层间电介质(ILD)160沉积在S/D区140和双CESL衬里145之上。ILD 160可以通过CVD工艺沉积,并且例如由氧化物构成。在沉积之后,通过CMP工艺将ILD 160平面化至帽盖层130的水平,从而去除位于帽盖层130直接上方的双CESL衬里145。
图3A和3B示出了形成在器件的有源区之间的锚固结构165。在实施例中,通过旋涂工艺施加有机平面化层(OPL)以在ILD 160的顶面和帽盖层130的顶面上毯覆式沉积OPL材料。选择性蚀刻工艺(例如,RIE)对ILD 160进行图案化以在ILD 160内形成沟槽。通过常规蚀刻工艺(例如,氧灰化工艺)蚀刻掉OPL材料。
通过使用ALD或CVD工艺在沟槽内沉积填充材料170,在有源区(即,S/D区140)之间且在双CESL衬里145之上的ILD 160的沟槽内形成锚固结构165。以此方式,该结构包括位于锚固结构165下方的蚀刻停止衬里,即,双CESL衬里145。在实施例中,填充材料170可以由SiC构成并且可以通过CMP工艺抛光,由于填充材料170和ILD 160之间的选择性,CMP工艺在ILD 160上停止。
在实施例中,锚固结构165防止结构100在随后的底部衬里150、顶部衬里155和/或ILD 160的蚀刻期间塌陷。在形成锚固结构165之后,使用常规蚀刻技术(例如,RIE工艺)蚀刻(去除)帽盖层130。以此方式,虚设栅极材料125被暴露出。在替代实施例中,可以在形成替换栅极结构之后形成锚固结构165。
图4A和4B示出了形成在鳍结构110之上的替换栅极结构175。在实施例中,虚设栅极材料125通过常规蚀刻技术(例如,RIE工艺)而被去除。以此方式,栅极结构175包括侧壁间隔物135和与侧壁间隔物135相邻的蚀刻停止衬里,即,双CESL衬里145。替换栅极结构175包括栅极堆叠180,该堆叠包括电介质材料和栅极金属。
栅极电介质材料可以是例如高k栅极电介质材料,例铪基电介质。在实施例中,高k电介质材料可以包括但不限于:Al2O3、Ta2O3、TiO2、La2O3、SrTiO3、LaAlO3、ZrO2、Y2O3、Gd2O3,以及包括多层上述材料的组合。取决于特定的应用和设计参数,栅极堆叠180的栅极金属可以包括任何金属或金属的任何组合,例如TiN、TiC、钨(W)。栅极帽盖185沉积在栅极堆叠180上方。在实施例中,栅极堆叠180和栅极帽盖185可以使用CVD工艺而被沉积在侧壁间隔物135之间,随后被执行CMP工艺。
图5A和5B示出了沉积在ILD 160和锚固结构165之上的气隙帽盖190。在实施例中,在沉积气隙帽盖190之前,通过选择性RIE工艺使ILD160凹陷,从而形成沟槽。使用材料195填充沟槽以形成气隙帽盖190,该气隙帽盖通过CVD工艺沉积,然后被执行CMP工艺。在实施例中,材料195与锚固结构165的填充材料170相同,即SiC。以此方式,帽盖(即,气隙帽盖190)由与锚固结构165相同的材料构成。
图6A和6B示出了S/D接触200及其它特征。在实施例中,使用常规光刻和蚀刻技术(例如,RIE工艺)在ILD 160中形成沟槽。在实施例中,由于所实施的材料,沟槽形成可以是无掩模工艺。该蚀刻在S/D区140上方暴露双CESL衬里145,以便随后通过选择性化学过程来蚀刻S/D区140。
在实施例中,通过使用RIE工艺选择性地蚀刻气隙帽盖190和ILD 160来形成沟槽,从而暴露双CESL衬里145。然后从S/D区140的顶面蚀刻双CESL衬里145,从而暴露出S/D区140。双CESL衬里145的去除可以是通过湿法蚀刻或干法蚀刻执行的无掩模工艺,其例如使用化学过程去除衬里150、155的材料(例如,对其余材料有选择性)。S/D接触200将形成为与S/D区140的暴露部分接触。更具体地,S/D接触200的金属材料205将直接接触S/D区140。
硅化物衬里被沉积在S/D区140上方的沟槽中,然后被执行硅化物处理。本领域技术人员应当理解,硅化物处理开始于在完全形成并图案化的半导体器件(例如,S/D区140)之上沉积薄过渡金属层(例如,镍、钴或钛)。在材料沉积之后,加热该结构,以使过渡金属与半导体器件的有源区(例如,源区、漏区、栅接触区)中的裸露硅(或本文所述的其它半导体材料)发生反应,以形成低电阻过渡金属硅化物。发生反应之后,通过化学蚀刻去除任何残留的过渡金属,留下器件有源区中的硅化物接触。本领域技术人员应当理解,当栅极结构由金属材料构成时,器件上不需要硅化物接触。
可以使用物理气相沉积(PVD)或CVD工艺沉积自对准硅化物衬里。在硅化物处理后,将金属材料205沉积在过渡金属硅化物上,从而形成S/D接触200。S/D接触200形成为与S/D区140的暴露部分接触。更具体地,S/D接触200的金属材料205直接接触S/D区140。金属材料205可以由例如钴(Co)或钨(W)或钌(Ru)构成。
在沉积金属材料205之后,对栅极帽盖185的材料执行CMP工艺。以此方式,S/D接触200的形成是非自对准接触(SAC)工艺。在实施例中,S/D接触200由锚固结构165锚定,从而在后续蚀刻工艺期间为S/D接触200提供进一步的稳定性。具体地,接触200被锚定到锚固结构165中。
图7A和7B示出了通过去除双CESL衬里145的顶部衬里155和ILD160的选定部分而形成的气隙210。在实施例中,顶部衬里155的去除是通过气相蚀刻执行的无掩模工艺,例如,该工艺使用选择性化学过程去除顶部衬里155的材料(对ILD 160的SiO2材料、锚固结构165的SiC材料以及底部衬里150的低k材料SiBCN具有选择性)。
使用对锚固结构165的SiC材料和底部衬里150的低k材料SiBCN有选择性的选择蚀刻(例如,气相蚀刻),去除ILD 160的SiO2材料。具体地,蚀刻掉位于替换栅极结构175和S/D接触200之间的ILD 160的选定部分,同时保留ILD 160的其它部分。以此方式,在替换栅极结构175和S/D接触200之间形成气隙210,而双CESL衬里145的底部衬里150保持完整。在实施例中,顶部衬里155的一部分和底部衬里150的一部分均被锚固结构165覆盖,并因此保持位于锚固结构165下方。以此方式,蚀刻停止衬里(即,双CESL衬里145)在锚固结构165下方延伸。
在实施例中,锚固结构165的电介质柱通过将S/D接触200锚定在锚固结构中来提供结构100的稳定性,从而防止器件层塌陷。因此,当去除ILD 160的选定部分时,结构100不会因S/D接触200的重量而塌陷。
图8A和8B示出了空气间隔物结构220(即,单气隙结构或双气隙结构)的形成。因此,本文所述的结构和方法包括:包含有源区(即,S/D区140)的多个栅极结构175;以及延伸到有源区的接触205。此外,该结构包括位于有源区之间的多个锚固结构165,以及与接触205相邻的空气间隔物结构220。
空气间隔物结构220通过在气隙210的侧壁上沉积低k衬里215以形成空气间隔物结构220,然后执行各向同性回蚀工艺来形成。以此方式,空气间隔物结构220包括衬里(即,低k衬里215)和气隙210。例如,低k衬里215可以由通过CVD沉积的任何合适的低k材料(例如,SiBCN)构成。在实施例中,低k衬里215的沉积密封气隙210,以形成空气间隔物结构220。因此,空气间隔物结构220包括位于栅极结构175和接触200之间的气隙210。在实施例中,低k衬里215对锚固结构165加衬(line),并且气隙帽盖190位于空气间隔物结构220上方。
空气间隔物结构220中包含的空气的低k性质允许减小栅极到S/D寄生电容,从而改善RF器件性能。此外,空气间隔物结构220上方的气隙帽盖190允许使得空气间隔物结构220更加完整。以此方式,结构包括包含源极和漏极(S/D)区140的多个栅极结构175,其中接触200延伸到S/D区140。此外,多个锚固结构165位于S/D区140之间,其中空气间隔物结构220与接触205及锚固结构165相邻。
本文所述的方法和结构允许设计位于替换栅极结构175和S/D接触200之间的间隔物结构的介电常数,以将栅极到S/D寄生电容降低到RF技术所需的目标值,即,降低栅极到漏极电容(Cgd)和栅极到源极电容(Cgs)。在实施例中,形成相对大的空气间隔物结构220允许实现这些RF目标值(例如,RF晶体管的Ft和Fmax),这是因为Ft和Fmax与栅极结构到S/D接触的电容Cgd和Cgs的值成反比。进一步地,本文所述的方法和结构与非自对准接触(SAC)流程兼容,并且可以应用于对于例如RF FinFET至关重要的任何接触间距(CPP)。以此方式,本文所述的结构和方法改善了RF器件在任何CPP下的整体性能。
本文所述的结构和方法通常与记录集成流程和相对大的CPP的工艺兼容。此外,本文所述的结构和方法解决了由替换栅极结构175的栅极堆叠180和栅极帽盖185与S/D接触200的金属材料205之间的相对低质量氧化物的流动式化学气相沉积(FCVD)引起的栅极到S/D寄生电容。通过去除这些具有松弛的CPP的RF器件的低质量FCVD氧化物并代之以形成气隙,可以显著减小寄生电容,并改善整体RF性能。另外,本文所述的结构和方法不限于仅在替换栅极结构175的侧壁间隔物135内形成小气隙;而是,本文所述的结构和方法允许与替换栅极结构175的侧壁间隔物135相邻的相对较大的空气间隔物结构220。
图9A至10B示出了根据本公开的方面的替代结构。与图1A至8B中描述的工艺类似,图9A和9B示出了除了去除图7A和7B所示的顶部衬里155之外,还去除底部衬里150和替换栅极结构175的侧壁间隔物135。因此,气隙210a大于图7A和7B的气隙210。以此方式,由于通过去除底部衬里150和侧壁间隔物135而产生的气隙210的增加的尺寸,因此与图8A和8B的空气间隔物结构220相比,图10A和图10B所示的空气间隔物结构220a相对较大。以此方式,本文所述的方法包括形成至少一个栅极结构175以及形成与至少一个栅极结构175相邻的多个有源区(即,S/D区140)。此外,该方法包括形成密封至少一个栅极结构和有源区的双衬里(即,双CESL衬里145),以及在双衬里上方沉积绝缘体材料(即,ILD 160)。
另外,该方法包括在有源区之间形成多个锚固结构165以及形成与有源区电接触的多个接触200。在实施例中,该方法结束于蚀刻双衬里中的至少一个衬里(即,底部衬里150或顶部衬里155),蚀刻绝缘体材料的选定部分以形成至少一个气隙210,以及在气隙210内沉积第二衬里(即,低k衬里215)以形成空气间隔物结构。在另外的实施例中,蚀刻至少一个衬里是双衬里的顶部衬里155。
上述方法用于集成电路芯片的制造。所得到的集成电路芯片可以由制造商以原始晶片形式(即,作为具有多个未封装芯片的单个晶片),作为裸芯或以封装形式分发。在后一种情况下,芯片以单芯片封装(例如塑料载体,其引线固定到主板或其它更高级别的载体)或多芯片封装(例如陶瓷载体,其具有表面互连和/或掩埋互连)的形式被安装。在任何情况下,芯片然后与其它芯片、分立电路元件和/或其它信号处理器件集成,作为(a)中间产品(例如主板)或(b)最终产品的一部分。最终产品可以是包括集成电路芯片的任何产品,从玩具和其它低端应用到具有显示器、键盘或其它输入设备以及中央处理器的高级计算机产品。
本公开的各种实施例的描述已经出于说明的目的给出,但并非旨在是穷举的或限于所公开的实施例。在不脱离所描述的实施例的范围和精神的情况下,许多修改和变化对于本领域普通技术人员将是显而易见的。本文中所用术语的选择旨在最好地解释各实施例的原理、实际应用或对市场中发现的技术的技术改进,或者使本技术领域的其他普通技术人员能够理解本文公开的实施例。

Claims (20)

1.一种结构,包括:
多个栅极结构,其包括有源区;
接触,其延伸到所述有源区;
多个锚固结构,其位于所述有源区之间;以及
空气间隔物结构,其与所述接触相邻。
2.根据权利要求1所述的结构,其中所述空气间隔物结构包括衬里和气隙。
3.根据权利要求2所述的结构,其中所述衬里是低k衬里。
4.根据权利要求1所述的结构,其中所述低k衬里对所述锚固结构加衬。
5.根据权利要求1所述的结构,还包括位于所述锚固结构下方的蚀刻停止衬里。
6.根据权利要求5所述的结构,其中所述蚀刻停止衬里是包括底部衬里和顶部衬里的双蚀刻停止衬里。
7.根据权利要求6所述的结构,其中所述底部衬里和所述顶部衬里由低k材料构成。
8.根据权利要求1所述的结构,还包括位于所述空气间隔物结构上方的帽盖。
9.根据权利要求8所述的结构,其中所述帽盖由与所述锚固结构相同的材料构成。
10.根据权利要求1所述的结构,其中所述接触由所述锚固结构锚定。
11.一种结构,包括:
多个栅极结构,其包括源极和漏极(S/D)区;
接触,其延伸到所述S/D区;
多个锚固结构,其位于所述S/D区之间;以及
空气间隔物结构,其与所述接触和所述锚固结构相邻。
12.根据权利要求11所述的结构,其中所述接触被锚定到所述锚固结构中。
13.根据权利要求11所述的结构,其中所述空气间隔物结构包括位于所述栅极结构和所述接触之间的气隙。
14.根据权利要求13所述的结构,其中所述空气间隔物结构包括衬里。
15.根据权利要求14所述的结构,其中所述衬里是低k衬里。
16.根据权利要求13所述的结构,其中所述栅极结构包括侧壁间隔物和与所述侧壁间隔物相邻的蚀刻停止衬里。
17.根据权利要求16所述的结构,其中所述蚀刻停止衬里在所述锚固结构下方延伸。
18.根据权利要求17所述的结构,其中所述蚀刻停止衬里是包括底部衬里和顶部衬里的双蚀刻停止衬里。
19.一种方法,包括:
形成至少一个栅极结构;
形成与所述至少一个栅极结构相邻的多个有源区;
形成密封所述至少一个栅极结构和所述有源区的双衬里;
在所述双衬里之上沉积绝缘体材料;
在所述有源区之间形成多个锚固结构;
形成与所述有源区电接触的多个接触;
蚀刻所述双衬里中的至少一个衬里;
蚀刻所述绝缘体材料的选定部分以形成至少一个气隙;以及
在所述气隙内沉积第二衬里以形成空气间隔物结构。
20.根据权利要求19所述的方法,其中蚀刻所述至少一个衬里是所述双衬里的顶部衬里。
CN202010877419.0A 2019-09-27 2020-08-27 空气间隔物结构 Pending CN112582462A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/585,671 US11094794B2 (en) 2019-09-27 2019-09-27 Air spacer structures
US16/585671 2019-09-27

Publications (1)

Publication Number Publication Date
CN112582462A true CN112582462A (zh) 2021-03-30

Family

ID=74873022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010877419.0A Pending CN112582462A (zh) 2019-09-27 2020-08-27 空气间隔物结构

Country Status (4)

Country Link
US (1) US11094794B2 (zh)
CN (1) CN112582462A (zh)
DE (1) DE102020122500A1 (zh)
TW (1) TWI753545B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817491B2 (en) * 2020-07-21 2023-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having an air gap along a gate spacer
US11876117B2 (en) * 2021-10-18 2024-01-16 International Business Machines Corporation Field effect transistor with reduced parasitic capacitance and resistance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000925A (zh) * 2006-01-09 2007-07-18 国际商业机器公司 场效应晶体管及其形成方法
CN105719998A (zh) * 2014-12-18 2016-06-29 爱思开海力士有限公司 具有空气间隙的半导体器件及其制造方法
US20180047615A1 (en) * 2016-08-09 2018-02-15 International Business Machines Corporation Air gap spacer formation for nano-scale semiconductor devices
US20180076225A1 (en) * 2016-09-12 2018-03-15 International Business Machines Corporation Sub-Fin Removal for SOI Like Isolation with Uniform Active Fin Height
CN109244033A (zh) * 2017-07-10 2019-01-18 格芯公司 具有气隙结构的射频开关
CN110176453A (zh) * 2018-02-17 2019-08-27 格芯公司 中段制程结构
CN110246804A (zh) * 2018-03-07 2019-09-17 格芯公司 接触结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869379A (en) 1997-12-08 1999-02-09 Advanced Micro Devices, Inc. Method of forming air gap spacer for high performance MOSFETS'
US7741663B2 (en) 2008-10-24 2010-06-22 Globalfoundries Inc. Air gap spacer formation
US9305835B2 (en) 2014-02-26 2016-04-05 International Business Machines Corporation Formation of air-gap spacer in transistor
US9735246B1 (en) 2016-05-11 2017-08-15 International Business Machines Corporation Air-gap top spacer and self-aligned metal gate for vertical fets
US9831346B1 (en) * 2016-07-27 2017-11-28 GlobalFoundries, Inc. FinFETs with air-gap spacers and methods for forming the same
US10008577B2 (en) 2016-08-01 2018-06-26 Globalfoundries Inc. Methods of forming an air-gap spacer on a semiconductor device and the resulting device
US10128334B1 (en) * 2017-08-09 2018-11-13 Globalfoundries Inc. Field effect transistor having an air-gap gate sidewall spacer and method
US10395988B1 (en) * 2018-04-10 2019-08-27 International Business Machines Corporation Vertical FET transistor with reduced source/drain contact resistance
US10833165B2 (en) * 2018-04-30 2020-11-10 International Business Machines Corporation Asymmetric air spacer gate-controlled device with reduced parasitic capacitance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000925A (zh) * 2006-01-09 2007-07-18 国际商业机器公司 场效应晶体管及其形成方法
CN105719998A (zh) * 2014-12-18 2016-06-29 爱思开海力士有限公司 具有空气间隙的半导体器件及其制造方法
US20180047615A1 (en) * 2016-08-09 2018-02-15 International Business Machines Corporation Air gap spacer formation for nano-scale semiconductor devices
US20180076225A1 (en) * 2016-09-12 2018-03-15 International Business Machines Corporation Sub-Fin Removal for SOI Like Isolation with Uniform Active Fin Height
CN109244033A (zh) * 2017-07-10 2019-01-18 格芯公司 具有气隙结构的射频开关
CN110176453A (zh) * 2018-02-17 2019-08-27 格芯公司 中段制程结构
CN110246804A (zh) * 2018-03-07 2019-09-17 格芯公司 接触结构

Also Published As

Publication number Publication date
TW202127584A (zh) 2021-07-16
US20210098591A1 (en) 2021-04-01
TWI753545B (zh) 2022-01-21
US11094794B2 (en) 2021-08-17
DE102020122500A1 (de) 2021-04-01

Similar Documents

Publication Publication Date Title
US10692989B2 (en) Replacement metal gate structures
US10847513B2 (en) Buried interconnect conductor
CN110176453B (zh) 中段制程结构
US10636890B2 (en) Chamfered replacement gate structures
US10790376B2 (en) Contact structures
US11810812B2 (en) Single diffusion cut for gate structures
TWI753545B (zh) 空氣間隔結構
US12107154B2 (en) Single fin structures
CN110071091B (zh) 接触结构
US10685840B2 (en) Gate structures
CN110098174B (zh) 帽结构
US11908917B2 (en) Gate structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination