CN112554096B - 负刚度型自适应储能抗冲击柱 - Google Patents

负刚度型自适应储能抗冲击柱 Download PDF

Info

Publication number
CN112554096B
CN112554096B CN202011435030.7A CN202011435030A CN112554096B CN 112554096 B CN112554096 B CN 112554096B CN 202011435030 A CN202011435030 A CN 202011435030A CN 112554096 B CN112554096 B CN 112554096B
Authority
CN
China
Prior art keywords
impact
inner cylinder
energy storage
energy
adaptive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011435030.7A
Other languages
English (en)
Other versions
CN112554096A (zh
Inventor
王沿朝
赵志鹏
陈清军
刘彬
王鑫峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Force University of Engineering of PLA
Original Assignee
Rocket Force University of Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Force University of Engineering of PLA filed Critical Rocket Force University of Engineering of PLA
Priority to CN202011435030.7A priority Critical patent/CN112554096B/zh
Publication of CN112554096A publication Critical patent/CN112554096A/zh
Application granted granted Critical
Publication of CN112554096B publication Critical patent/CN112554096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/003Individual devices arranged in spaced relationship, e.g. buffer bollards

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

一种用于建筑工程与防护工程领域的负刚度型自适应储能抗冲击柱,包括防冲击外筒、负刚度自适应单元、储能‑耗能内筒单元以及安装单元。本发明建立了双重抗冲击机制,以防冲击外筒为第一道抗冲击防线,利用负刚度自适应单元放大外筒受冲击后引起的内筒变形,利用储能‑耗能内筒吸收并增强耗散冲击能。通过综合利用内筒与外筒之间设置的负刚度自适应单元以及内筒的复合储能‑耗能芯材,有效地实现了在很短冲击作用下产生放大的恢复力和阻尼力,缩短了抗冲击柱的在冲击作用下的反应时间,显著地提高了抗冲击柱的抗冲击效率。本发明装置设置方便灵活,能够有效吸收并耗散冲击能量,具有多重储能‑耗能高效和鲁棒性强等特点,有较好的推广应用价值。

Description

负刚度型自适应储能抗冲击柱
技术领域
本发明属于建筑工程与防护工程领域技术领域。
背景技术
近年来,随着安全环境的复杂化,全国各地的学校、政府通道、企事业单位、银行、大使馆、机场等地都安装了大量的钢管防撞柱以保证行人及设施的安全,防止在突发事件(如:汽车炸弹袭击,车辆失控冲撞等)中车辆对行人及设施造成意外伤害。然而,在实践过程中,由于抗冲击柱的抗冲击能力及储能与耗能能力有限,在受到车辆撞击后,这类钢管防撞柱往往会产生严重的变形,甚至无法满足预计的抗冲击性能需求。对于高安全等级要求的防护工程,抗冲击柱在短冲程和冲击作用前期的抗冲击能力的高低对于结构安全冗余度至关重要。为了提高防撞柱的抗冲击及储能耗能能力,提高耗能效率,防止防撞柱因冲击、锈蚀导致使用寿命短的事件发生,必须对防撞柱的结构、材质进行重新设计。
目前已有的抗冲击柱,应用于普通建筑物和基础设施的防撞及外围防护,其设计结构通常包含钢管防撞柱、保护外套筒装置等,这类钢管防撞柱仅有单一防撞体系,冲击后发生严重的永久变形,甚至无法满足预计的抗冲击性能需求。
发明内容
本发明目的在于,克服现有防撞柱抗冲击耗能能力不足且易锈蚀、使用寿命短的缺点,利用复合储能-耗能芯材储存及耗散能量并附加设计一套储能-耗能内筒单元,同时采用负刚度自适应单元放大变形的机理,联合设计了一种新型的负刚度型自适应储能抗冲击柱。
本发明需要保护的技术方案概括为:
一种负刚度型自适应储能抗冲击柱,包括防冲击外筒、储能-耗能内筒单元、负刚度自适应单元、连接加强层和安装单元;
所述防冲击外筒与储能-耗能内筒单元通过连接加强层与安装单元一体成型,且通过连接加强层加强;
负刚度自适应单元分布设置于防冲击外筒和储能-耗能内筒单元之间用于自适应地协调防冲击外筒和储能-耗能内筒单元之间的协同变形,并基于负刚度和内筒之间的异步变形增加相对变形,从而增强在冲击作用下的储能和耗能效率。
本发明与现有技术相比,具有以下优点与有益效果:
1.本发明建立了双重抗冲击机制,以防冲击外筒为第一道抗冲击防线,利用负刚度自适应单元放大外筒受冲击后引起的内筒变形,利用储能-耗能内筒吸收并增强耗散冲击能,提高了抗冲击柱整体的耗能能力。
2.本发明综合地利用内筒与外筒之间设置的负刚度自适应单元以及内筒的复合储能-耗能芯材,有效地实现了在很短冲击作用下产生放大的恢复力和阻尼力,缩短了抗冲击柱的在冲击作用下的反应时间,显著地提高了抗冲击柱全冲击时程尤其是作用前期的抗冲击效率。
3.本发明安装单元与防冲击内筒及外筒一体成型,避免了由于焊接而导致的结构抗冲击部位的缺陷及焊接部位的强度降低,亦避免了后期由于焊接部位氧化生锈或腐蚀而导致的抗冲击结构破坏。
4.本发明装置设置方便灵活,能够有效吸收并耗散冲击能量,具有多重储能-耗能高效和鲁棒性强等特点,有较好的推广应用价值。
附图说明
图1及图2为本发明实施例1提供的负刚度型自适应储能抗冲击柱的示意图及剖面图。
图3为实施例2负刚度型自适应储能抗冲击柱中内筒与外筒位移响应图。基于负刚度自适应单元与内筒的耦合相互作用,内筒位移响应由于异步相位差的存在而大于外筒位移。
图4为实施例2负刚度型自适应储能抗冲击柱在设计试验性能测试下有及无耗能内筒情况下外筒位移响应图。
图中标号:
1-安装底座、2-安装螺栓、3-外筒连接加强层、4-内筒连接加强层、5-防冲击外筒、6-纵向加劲肋、7-环向加劲肋、8-预压弹簧组、9-防冲击内筒、10-铅芯储能-耗能材料、11-非牛顿流体剪切增强材料。
具体实施方式
概括的,一种负刚度型自适应储能抗冲击柱,包括防冲击外筒、储能-耗能内筒单元、负刚度自适应单元、连接加强层和安装单元;所述防冲击外筒与储能-耗能内筒单元通过连接加强层与安装单元一体成型,且通过连接加强层加强;负刚度自适应单元分布设置于防冲击外筒和储能-耗能内筒单元之间用于自适应地协调防冲击外筒和储能-耗能内筒单元之间的协同变形,并基于负刚度和内筒之间的异步变形增加相对变形,从而增强在冲击作用下的储能和耗能效率。
具体的:
所述负刚度自适应单元包括若干组十字型对称的预压弹簧组(8),弹簧组(8)绕着防冲击内筒(9)外壁对称设置于防冲击外筒(5)内壁;
同时,所述预压弹簧组(8)通过设置预压力而处于压缩状态,预压力设置值与防冲击内筒(9)的水平剪切刚度相关;十字型对称设计的预压弹簧组(8)在防冲击内筒(9)发生水平变形时将产生支持该变形的作用力,进一步放大了防冲击内筒(9)的水平幅值,提高了抗冲击效率。
所述储能-耗能内筒单元包括防冲击内筒(9)、铅芯储耗能材料(10)和非牛顿流体剪切增强材料(11);
所述非牛顿流体剪切增强材料(11)置于环形底面的铅芯储耗能材料(10)圆柱体内部;所述铅芯储耗能材料(10)圆柱体内置于防冲击内筒(9);防冲击内筒(9)发生水平剪切变形时,引发铅芯储耗能材料(10)发生协同变形,进一步诱发非牛顿流体剪切增强材料(11)的高速率变形和阻尼抗力;所述非牛顿流体剪切增强材料(11)为膨胀性流体材料,具有内部粘性随受剪速率增大而增强的流变特性。
所述防冲击外筒(5)包括圆柱形筒体、十字型对称的纵向加劲肋(6)及若干道环向加劲肋(7);
所述纵向加劲肋(6)及环向加劲肋(7)均安装在圆柱形筒体的内壁上,其中纵向加劲肋(6)呈十字型对称布置,并与所述的预压弹簧组(8)交错布置,环向加劲肋(7)沿筒高方向设置数道,加劲肋的设置进一步增强了外筒的抗冲击能力。
所述安装单元包括安装底座(1)、安装螺栓(2);
所述连接加强层包括外筒连接加强层(3)及内筒连接加强层(4);
所述安装底座(1)通过若干安装螺栓(2)与基础固定,防冲击外筒(5)、防冲击内筒(9)与安装底座(1)一体成型并分别通过外筒连接加强层(3)及内筒连接加强层(4)加强连接,整个安装单元连接牢固可靠。
下面结合附图和实施例作进一步说明,但不作为对本发明的限定。
实施例1
如图1及图2所示,一种负刚度型自适应储能抗冲击柱,包括防冲击外筒、负刚度自适应单元、储能-耗能内筒单元以及安装单元。
安装单元包括一体成型的安装底座1、安装螺栓2、外筒连接加强层3和内筒连接加强层4,外筒连接加强层3及内筒连接加强层4分别用于加强安装底座1与防冲击外筒5及防冲击内筒9的连接,且底座与防冲击外筒及内筒一体成型,无需焊接;安装底座通过高强度安装螺栓与基础固接,保证连接牢靠。
防冲击外筒5内设十字型布置的纵向加劲肋6及若干道环向加劲肋7,以进一步增强防冲击外筒的抗冲击能力。
负刚度自适应单元包括若干组轴对称的预压弹簧组8,弹簧组8绕着防冲击内筒9外壁对称设置于防冲击外筒5内壁;预压弹簧组8通过设置预压力而处于压缩状态,在抗冲击柱受到冲击时将产生支持变形的作用力,以放大防冲击内筒9的水平幅值。
储能-耗能内筒单元包括防冲击内筒9、铅芯储耗能材料10和非牛顿流体剪切增强材料11;非牛顿流体剪切增强材料11置于环形底面的铅芯储耗能材料10圆柱体内部,铅芯储耗能材料10圆柱体内置于防冲击内筒9;防冲击内筒9受到冲击荷载时,引发铅芯储耗能材料10发生协同变形,进一步诱发非牛顿流体剪切增强材料11的高速率变形和阻尼抗力。
在强冲击荷载下,本发明产品可以表现出优异的储能、耗能及抗冲击能力。
首先,防冲击外筒为第一道抗冲击防线,抵抗外部冲击荷载,接着,负刚度自适应单元随即参与工作,并基于负刚度和内筒之间的异步变形增加内外筒之间的相对变形(如图3所示),提高在冲击作用下储能-耗能内筒单元的储能与耗能效率。
同时,短时冲击会诱发非牛顿流体的剪切增强材料的高速率变形和阻尼抗力,有效地实现了在很短冲击作用下产生放大的恢复力和阻尼力,缩短了抗冲击柱的在冲击作用下的反应时间,显著地提高了抗冲击柱的抗冲击效率,显著降低了抗冲击柱的冲击后响应(如图4所示)。
实施例2
假设1:去除实施例1即图1中负刚度自适应单元8,完成与图3、图4一样的测试。
假设2:去除实施例1即图1中负刚度自适应单元8并将之替换为传统减震阻尼器,完成与图3、图4一样的测试。
假设3:把实施例1即图1中防冲击内筒9内非牛顿流体剪切增强材料替换为实心钢材,完成与图3、图4一样的测试。
假设4:去除实施例1即图1中负刚度自适应单元8,同时把防冲击内筒9内非牛顿流体剪切增强材料替换为实心钢材,完成与图3、图4一样的测试。
假设5:去除实施例1即图1中负刚度自适应单元8并将之替换为传统减震阻尼器,同时把防冲击内筒9内非牛顿流体剪切增强材料替换为实心钢材,完成与图3、图4一样的测试。
综上测试对比可知:
抗冲击柱设置实心钢材或者将负刚度自适应单元替换为传统减震阻尼器外套筒8,其产品的抗冲击能力仅为两层钢筒抗冲击能力的直接叠加,如此抗冲击柱套筒的变形小于实施例1外筒的变形,缺乏负刚度自适应单元所提供的变形放大机制,其抗冲击效果及可修复能力也远低于实施例1产品。
本申请内筒所设置的非牛顿流体剪切增强材料作为耗能第二道防线,若采用传统抗冲击柱进行设计,存在变形严重不足无法有效利用非牛顿流体剪切增强材料在大变形高速率情况下的高阻尼力。
因此,本发明技术方案不是对现有技术已有部件进行简单“叠加组合”,技术方案整体设计具有耦合性,是有针对性地进行了基于负刚度自适应单元的一体化设计以实现抗冲击作用下的协同变形,利用变形放大机制放大内筒非牛顿流体剪切增强材料的变形幅值和变形速率,才能是实现抗冲击柱抗冲击性能的两阶段提升。实施例1远超出实施例2众多单一改良所能带来的效果,这种效果优势超出普通技术人员在做对比试验前所能预料到的。
上述描述仅是对本发明较佳实施例的描述,并非是对本发明范围的任何限定。任何熟悉该领域的普通技术人员根据上述揭示的技术内容做出的任何变更或修饰均应当视为等同的有效实施例,均属于本发明技术方案保护的范围。

Claims (5)

1.一种负刚度型自适应储能抗冲击柱,包括防冲击外筒、储能-耗能内筒单元、负刚度自适应单元、连接加强层和安装单元;
所述防冲击外筒与储能-耗能内筒单元通过连接加强层与安装单元一体成型,且通过连接加强层加强;
负刚度自适应单元分布设置于防冲击外筒和储能-耗能内筒单元之间用于自适应地协调防冲击外筒和储能-耗能内筒单元之间的协同变形,并基于负刚度和内筒之间的异步变形增加内筒变形,从而增强在冲击作用下的储能和耗能效率。
2.根据权利要求1所述的负刚度型自适应储能抗冲击柱,其特征在于:所述负刚度自适应单元包括若干组十字型对称的预压弹簧组(8),弹簧组(8)绕着防冲击内筒(9)外壁对称设置于防冲击外筒(5)内壁;
同时,所述预压弹簧组(8)通过设置预压力而处于压缩状态,预压力设置值与防冲击内筒(9)的水平剪切刚度相关;十字型对称设计的预压弹簧组(8)在防冲击内筒(9)发生水平变形时将产生支持该变形的作用力,进一步放大了防冲击内筒(9)的水平幅值,提高了抗冲击效率。
3.根据权利要求1所述的负刚度型自适应储能抗冲击柱,其特征在于:所述储能-耗能内筒单元包括防冲击内筒(9)、铅芯储耗能材料(10)和非牛顿流体剪切增强材料(11);
所述非牛顿流体剪切增强材料(11)置于环形底面的铅芯储耗能材料(10)圆柱体内部;所述铅芯储耗能材料(10)圆柱体内置于防冲击内筒(9);防冲击内筒(9)发生水平剪切变形时,引发铅芯储耗能材料(10)发生协同变形,进一步诱发非牛顿流体剪切增强材料(11)的高速率变形和阻尼抗力;所述非牛顿流体剪切增强材料(11)为膨胀性流体材料,具有内部粘性随受剪速率增大而增强的流变特性。
4.根据权利要求2所述的负刚度型自适应储能抗冲击柱,其特征在于:所述防冲击外筒(5)包括圆柱形筒体、十字型对称的纵向加劲肋(6)及若干道环向加劲肋(7);
所述纵向加劲肋(6)及环向加劲肋(7)均安装在圆柱形筒体的内壁上,其中纵向加劲肋(6)呈十字型对称布置,并与所述的预压弹簧组(8)交错布置,环向加劲肋(7)沿筒高方向设置数道,加劲肋的设置进一步增强了外筒的抗冲击能力。
5.根据权利要求1所述的负刚度型自适应储能抗冲击柱,其特征在于:所述安装单元包括安装底座(1)、安装螺栓(2);
所述连接加强层包括外筒连接加强层(3)及内筒连接加强层(4);
所述安装底座(1)通过若干安装螺栓(2)与基础固定,防冲击外筒(5)、防冲击内筒(9)与安装底座(1)一体成型并分别通过外筒连接加强层(3)及内筒连接加强层(4)加强连接,整个安装单元连接牢固可靠。
CN202011435030.7A 2020-12-10 2020-12-10 负刚度型自适应储能抗冲击柱 Active CN112554096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011435030.7A CN112554096B (zh) 2020-12-10 2020-12-10 负刚度型自适应储能抗冲击柱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011435030.7A CN112554096B (zh) 2020-12-10 2020-12-10 负刚度型自适应储能抗冲击柱

Publications (2)

Publication Number Publication Date
CN112554096A CN112554096A (zh) 2021-03-26
CN112554096B true CN112554096B (zh) 2022-05-06

Family

ID=75060455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011435030.7A Active CN112554096B (zh) 2020-12-10 2020-12-10 负刚度型自适应储能抗冲击柱

Country Status (1)

Country Link
CN (1) CN112554096B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672520A (zh) * 2016-03-25 2016-06-15 大连理工大学 一种自复位形状记忆合金-剪切型铅复合耗能阻尼器
CN108700152A (zh) * 2016-01-05 2018-10-23 香港科技大学 用于承受拉力的钢索的双线性能量耗散和冲击缓冲装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035197B2 (ja) * 1997-03-07 2008-01-16 美和ロック株式会社 管体に対する端部キャップの取付構造
DE29719833U1 (de) * 1997-11-07 1998-01-02 Junker, Wilhelm, 71522 Backnang Als Leiteinrichtung verwendbare Bake, insbesondere für den Straßenverkehr
JP2001317525A (ja) * 2000-02-29 2001-11-16 Sekisui Jushi Co Ltd アンカーボルトのキャップ
CN203066005U (zh) * 2012-12-06 2013-07-17 长安大学 一种可导向防撞圆墩
JP5527737B1 (ja) * 2013-07-08 2014-06-25 池上 賢 表示コーン
CN207143726U (zh) * 2017-05-08 2018-03-27 张锡祥 Frp柔性防撞墙式桥梁护栏
CN207376525U (zh) * 2017-09-24 2018-05-18 浙江新宏建设有限公司 一种防碰撞的人行道路障
CN207314576U (zh) * 2017-09-26 2018-05-04 苏州科技大学 低频形状记忆合金智能非线性调谐质量阻尼器
CN208251454U (zh) * 2018-03-27 2018-12-18 福建省友联建设工程有限公司 一种集成型钢结构立柱
CN108457397B (zh) * 2018-05-29 2023-11-28 沈阳建筑大学 一种位移相关的变刚度装置
CN109371878B (zh) * 2018-10-29 2021-08-03 浙江工业大学上虞研究院有限公司 一种基于非牛顿流体的防碰撞型道路路障
CN110566617A (zh) * 2019-09-17 2019-12-13 天津理工大学 一种磁-刚度基非光滑吸振器
CN211368378U (zh) * 2019-10-23 2020-08-28 牛丽娜 一种路桥防撞护栏
CN111042370B (zh) * 2019-12-27 2021-03-12 山东大学 一种半主动负刚度多维减振装置
CN212080029U (zh) * 2020-02-06 2020-12-04 同济大学 导轨-三向弹簧式三维自适应刚度隔振支座

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700152A (zh) * 2016-01-05 2018-10-23 香港科技大学 用于承受拉力的钢索的双线性能量耗散和冲击缓冲装置
CN105672520A (zh) * 2016-03-25 2016-06-15 大连理工大学 一种自复位形状记忆合金-剪切型铅复合耗能阻尼器

Also Published As

Publication number Publication date
CN112554096A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN112943834B (zh) 一种正负泊松比循环杂交抗冲吸能结构及其应用
CN109532730B (zh) 一种内部填充的汽车吸能盒装置
JP2013511005A (ja) 衝撃エネルギーアブソーバー
CN104372758A (zh) 一种轻质高效复合型缓冲减撞装置
CN111705943A (zh) 一种装配式自复位组合碟簧u型金属耗能阻尼器
CN112554096B (zh) 负刚度型自适应储能抗冲击柱
CN103557016B (zh) 一种多级防冲支柱
KR20100077866A (ko) 가드레일의 충격감쇄 구조
CN211597165U (zh) 改进弧形构件、水平波纹钢板组合耗能的拉压型阻尼器
CN107574944B (zh) 一种应用于装配式梁柱节点区域的防屈曲扇形金属阻尼器
CN115182284B (zh) 一种车辆防撞护栏
CN105000029A (zh) 一种蜂窝芯内置的金属管-蜂窝芯复合式防爬器
EP4190668A1 (en) Deformable tube, coupler cushioning energy-absorption device for rail transit vehicle, and rail vehicle
CN206049579U (zh) 一种新型吸能盒
CA2282535A1 (en) Kinetic energy absorbing element
CN205400217U (zh) 一种高强大变形c状薄壳自复位结构
CN207419236U (zh) 一种桥墩防撞系统
CN208559509U (zh) 一种汽车门槛梁总成结构
CN221218559U (zh) 一种可防撞的声屏障护栏结构
CN217761838U (zh) 一种复合材料与铝蜂窝结合的缓冲防撞装置
CN219115325U (zh) 一种便于防护的车厢
CN110847404B (zh) 一种可更换的x型软钢复合耗能阻尼器
CN206537117U (zh) 一种具有多层复合结构的车门防撞杆
CN111305041A (zh) 一种多级抗冲耗能桥梁限位器
KR100257718B1 (ko) 방현재

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant