CN112538659A - 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用 - Google Patents

一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用 Download PDF

Info

Publication number
CN112538659A
CN112538659A CN202011488718.1A CN202011488718A CN112538659A CN 112538659 A CN112538659 A CN 112538659A CN 202011488718 A CN202011488718 A CN 202011488718A CN 112538659 A CN112538659 A CN 112538659A
Authority
CN
China
Prior art keywords
hybrid fiber
nano
electrostatic spinning
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011488718.1A
Other languages
English (en)
Other versions
CN112538659B (zh
Inventor
刘薇
张望滨
童萍
卢巧梅
刘明华
张兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011488718.1A priority Critical patent/CN112538659B/zh
Publication of CN112538659A publication Critical patent/CN112538659A/zh
Application granted granted Critical
Publication of CN112538659B publication Critical patent/CN112538659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种静电纺丝纳米杂化纤维的制备及其用于环境中有机氯类农药富集方面的应用,其具体是采用静电纺丝技术制备出C3N4纳米片掺杂的聚丙烯腈‑N,N‑二甲基酰胺(PANDMF‑C3N4)静电纺丝纳米纤维,然后将其制备成固相微萃取器的萃取头,再通过将固相微萃取器与气相色谱(GC)或气质联用结合,以解吸并检测富集在PANDMF‑C3N4静电纺丝纳米纤维上的有机氯类农药,实现真正意义上的“高效萃取”和“准确测定”。利用本发明制备的静电纺丝纳米杂化纤维进行富集、检测,具有方法操作简单、重复性好、灵敏度高、环境稳定性强,检测结果可靠等优势,能应用于各种环境水样品中痕量OCPs的准确检测。

Description

一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集 方面的应用
技术领域
本发明属于环境样品痕量目标物分离分析技术领域,特别涉及一种分离分析环境水样中痕量有机氯类农药的技术,具体涉及一种静电纺丝纳米杂化纤维的制备,及通过将该静电纺丝纳米杂化纤维应用于固相微萃取技术后,与气相色谱(GC)或气质联用技术结合,以实现对环境水样及其他复杂基体中痕量有机氯类农药的萃取、富集、分离和检测。
背景技术
有机氯类农药(OCPs)是一类主要以苯和以环戊二烯为原料,含有有机氯元素的有机化合物,包括滴滴涕、六六六、氯丹、七氯以及艾氏剂等。其化学性质稳定、难于分解,而易于残留在环境水体中,且经过水的稀释作用,使OCPs多以痕量和超痕量存在,因此对其进行有效富集与准确检测是目前环境污染物检测的一种重点。
普通的膜萃取技术与检测技术的联用,是将待测物吸附在纺丝膜上,再用溶剂将其洗脱下来,浓缩后送入液相或者气相等相关仪器中进行检测。该流程操作繁琐、要求样品量大、灵敏度不高,不适于微量样品的快速、高灵敏检测。固相微萃取技术(Solid-phaseMicroextraction, SPME)是一种集采样、萃取、浓缩、进样于一体的样品前处理新技术。特别是将其与气相色谱(GC)或气质联用技术结合,可使得微量的目标物直接在进样口被热解吸,不需要进行挥干、复溶等步骤,避免了有机溶剂的使用,可在获得高灵敏检测的同时,提高了样品分析的效率。
静电纺丝技术(Electrospinning)的作用原理是基于高压静电场的激发,聚合物溶液或熔体在两电极间发生高速发散喷射,形成的电纺丝膜可达纳米级尺寸。普通的静电纺丝薄膜的应用已较广泛,但目前为止,由于存在纤维膜材料种类较少、纺丝膜性能较低,其工作条件要求较为苛刻、萃取效果差强人意等条件的限制,使静电纺丝技术在与各种检测仪器联用方面还有所欠缺。
近几十年来,碳基纳米材料由于其自身的高比表面积和高反应活性以及对环境稳定性强等优点,被全世界的科研工作者争先开发和应用。其中,C3N4材料具有耐热性好、比表面积大等优点,且其制备简单、环境稳定性好,并对多种微量有机物均有较好的富集和萃取效果。
本发明通过将碳基纳米材料与静电纺丝技术相结合,可增加纤维膜材料种类,提高纺丝膜的耐热性能和吸附性能,并克服其工作条件受限、萃取效果差强人意等不足,实现静电纺丝技术与气相色谱类相关检测仪器的联用,并可应用于有机氯类农药的富集与检测,为挥发性环境污染物的富集与检测提供了新的方向。
发明内容
本发明的目的在于扩大静电纺丝膜的种类,克服现有纺丝膜材料在工作条件和萃取效果上的不足,提供一种能够被大批量制备的、耐高温的静电纺丝纳米杂化纤维,并将其用于环境水样中痕量有机氯类农药的分离分析。
为实现上述目的,本发明采用如下技术方案:
一种耐高温的静电纺丝纳米杂化纤维的制备方法,其特征在于,包括如下步骤:
(1)C3N4纳米片的制备:将尿素和葡萄糖加入到具有紧固盖的坩埚中,然后置于管式炉中加热,获得黑色C3N4粉末;取所得C3N4粉末加入盐酸溶液中,搅拌处理后,离心除去上清液,收集沉淀物并用二次水洗涤干净,再重新分散在二次水中,并调节溶液pH,经超声处理后过滤,取黑色滤渣分别用超纯水和无水乙醇冲洗,然后置于冷冻干燥器中进行冷冻干燥,即得到C3N4纳米片;
(2)纺丝液的制备:利用微波消解仪的辅助作用,将聚丙烯腈溶解于分析纯N,N-二甲基甲酰胺中,然后加入步骤(1)所得C3N4纳米片,使其溶解、混合,即得纺丝液;
(3)静电纺丝纳米杂化纤维的制备:利用步骤(2)所得纺丝液进行静电纺丝,并进行真空干燥,即制得C3N4纳米片掺杂的聚丙烯腈-N,N-二甲基酰胺(PANDMF-C3N4)静电纺丝纳米杂化纤维。
进一步地,步骤(1)中所用尿素与葡萄糖的质量比为15:1-5:1。
进一步地,步骤(1)中所述加热是先将温度升至550℃,保持1h,然后降至200℃,保持20min,再升至800℃,保持1h,最后自然降至室温。
进一步地,步骤(1)中所用C3N4粉末与盐酸溶液的质量比为1:4-1:10,所述盐酸溶液的浓度为10 mol/L。
进一步地,步骤(1)中所述搅拌处理具体是在室温下,以200-500 rpm的转速磁力搅拌1-3 h。
进一步地,步骤(1)中所述离心的转速为5000 rpm,时间为15-60 min。
进一步地,步骤(1)中调节溶液的pH至6-8。
进一步地,步骤(1)中采用水和无水乙醇冲洗的次数为3-5次。
进一步地,步骤(1)中所述冷冻干燥的温度为-80℃~20℃,时间为6-12 h。
进一步地,步骤(2)中所用聚丙烯腈与N,N-二甲基甲酰胺的质量比为1:10-1.5:10;所用聚丙烯腈和N,N-二甲基甲酰胺的总质量与C3N4纳米片的质量比为10:7-10:1。
进一步地,步骤(2)中进行微波消解的温度为60℃-80℃,功率为300-500W,时间为6-10 h。
进一步地,步骤(3)进行静电纺丝时,环境温度为35℃-40℃,环境湿度为20%-30%,纺丝液的流速为0.015-0.030 mL/min,纺丝电压为6-14 kV,接收距离为10-30 cm,不锈钢滚轴的滚动速度为40-80 rpm/min;
进一步地,步骤(3)中所述真空干燥的温度为60℃-80℃,时间为12-48 h。
进一步地,所得静电纺丝纳米杂化纤维的直径为100-600 nm。
本发明还要求保护所得静电纺丝纳米杂化纤维的应用,其具体是将静电纺丝纳米杂化纤维用于制备固相微萃取器的萃取头,并通过进一步将固相微萃取器与气相色谱或气质联用色谱结合,以实现对环境水样中痕量有机氯类农药的富集及分离分析。
所述萃取头的制备方法为:取长20-25 cm、直径为100-160μm的石英纤维,将其前端1.50-2.00 cm部分于丙酮中浸泡5-10 min,刮去外层的聚酰亚胺涂层后洗净、晾干,再用乙醇、超纯水依次冲洗三遍,然后置于120℃-150℃烘箱中干燥1-2 h,以除去石英纤维表面的水;将静电纺丝纳米杂化纤维包裹在处理好的石英纤维上作为涂层,并用其作为固相微萃取器中微量进样器的铁丝,以制得用于富集有机氯类农药的固相微萃取器的萃取头,通过活塞的推进和推出可控制涂层的伸缩。
采用由静电纺丝纳米杂化纤维制备的固相微萃取器的萃取头对环境水样中的有机氯类农药进行富集及分离分析的具体方法,是先在水样品溶液中加入氯化钠,以增强水样品溶液的离子强度,然后将固相微萃取器的萃取头浸没在上述水样品溶液中并加以搅拌,使静电纺丝纳米杂化纤维萃取并富集水样品溶液中存在的痕量有机氯类农药,再将其连接到气相色谱或气质联用色谱仪上进行分析测定。
进一步的,所加入氯化钠与水样品溶液的质量体积比为1:5-1:10 g/mL。
进一步的,所述搅拌是在30℃-60℃条件下,以400-800 rpm的转速磁力搅拌20-60min。
本发明至少具有以下优点:
(1)本发明采用静电纺丝法制备了新型的PANDMF-C3N4静电纺丝纳米杂化纤维,其比表面积大,并含有较多含碳官能团,使其对OCPs具有更好的吸附性能。
(2)本发明通过对PANDMF聚合比例、C3N4掺杂比例、纺丝电压、接收距离、流速等的调控优化,使所得纳米杂化纤维直径更细、更均匀,随着纤维中C3N4的含量不断增加,可获得吸附性更强、吸附量更大、吸附速率更快、稳定性和重现性更好的静电纺丝纳米杂化纤维,将其用于复杂水体样品中痕量有机氯类农药的选择性萃取、富集,并结合气相色谱(GC)或气质联用(GC-MS)方法进行定性定量分析,可实现对环境水样中痕量有机氯类农药的高灵敏、痕量检测,且其操作简单、重复性好、检测结果可靠。
附图说明
图1是实施例制得的PANDMF-C3N4静电纺丝纳米杂化纤维在放大倍数为5000倍时的扫描电子显微镜图。
图2是实施例制得的PANDMF-C3N4静电纺丝纳米杂化纤维在放大倍数为50000倍时的扫描电子显微镜图。
图3是实施例制得的PANDMF-C3N4静电纺丝纳米杂化纤维与纯PANDMF电纺丝纳米纤维以及C3N4纳米片的热重比较图。
图4是利用PANDMF-C3N4静电纺丝纳米杂化纤维制备的固相微萃取器富集环境水样品溶液中OCPs的装置示意图。
图5是将实施例制得的PANDMF-C3N4静电纺丝纳米杂化纤维制成固相微萃取器,并与GC-MS联用后,对环境水样品中OCPs进行分离分析的总离子流图;其中上方线条为环境水样品的总离子流图,下方线条为20种有机氯类农药标准品混合液的总离子流图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例
(1)C3N4纳米片的合成
将10.0 g尿素和1.0 g葡萄糖加入到具有紧固盖的坩埚中,将其置于管式炉中(管式炉的腔室处于环境压力下并且不受任何惰性气体的保护),先将温度升至550℃,保持1h,然后降至200℃,保持20min,再升至800℃,保持1h,最后自然降至室温,获得黑色C3N4粉末。然后取3.0g所得C3N4粉末,加入到25.0 mL密度为1.20 g/mL的盐酸溶液中,室温下,以200rpm的转速磁力搅拌处理1 h后,以5000 rpm离心15 mi后除去上清液,收集沉淀物并用二次水洗涤干净,再将其重新分散在100 ml二次水中,并调节溶液pH至7.0,超声处理6 h后过滤,取黑色滤渣用超纯水和无水乙醇冲洗3-5次,过滤后置于冷冻干燥器中,-20℃下干燥12h,即得到C3N4纳米片。
(2)PANDMF-C3N4静电纺丝纳米杂化纤维的制备
在70℃、功率300W的微波消解仪中处理480 min,使0.6 g聚丙烯腈溶解于6.0 g的分析纯N,N-二甲基甲酰胺中;然后加入1.0 g 步骤(1)制得的C3N4纳米片,在相同条件下继续处理480 min,使其混合,即得纺丝液。用5 mL注射器吸取5 mL纺丝液,将注射器置于静电纺丝装置上固定好,用电夹夹紧针头,调节流速为0.025 mL/min,电压为10.0 kV 左右,接收距离为20 cm,在相对湿度20-30%、温度35℃-40℃的条件下进行静电纺丝,再将所得纤维于60℃真空干燥12h,即得到最终的PANDMF-C3N4静电纺丝纳米杂化纤维。
所得PANDMF-C3N静电纺丝纳米杂化纤维的表面显微结构如图1、图2所示,其与C3N4纳米片以及未掺杂C3N4纳米片的纯PANDMF电纺丝纳米纤维的热重分析比较如图3所示。
(3)固相微萃取器的制备
取长约20 cm、直径为140 μm的石英纤维,将其前端1.50 cm部分浸入丙酮中约5min,然后刮去外层的聚酰亚胺涂层后洗净、晾干,用乙醇、超纯水依次冲洗三遍,再置于150℃烘箱中干燥1 h后取出,以除去石英纤维表面的水。通过物理裹附的方法将步骤(2)制得的PANDMF-C3N4静电纺丝纳米杂化纤维慢慢包裹在石英纤维前端刮去外层的聚酰亚胺涂层部分,然后于GC 240℃的进样口处老化1 h,再用其作为固相微萃取器中微量进样器的铁丝,制得固相微萃取器。
(4)有机氯类农药的富集
富集装置如图4所示。取20 mL环境水样品溶液,置于25 mL血清瓶中,加入3.50 g分析纯氯化钠以增强样品溶液的离子强度,然后将步骤(3)制得的固相微萃取器中裹有静电纺丝纳米杂化纤维的石英纤维插入血清瓶中,通过活塞的推进和推出来控制涂层的伸缩,使得电纺丝纳米纤维完全浸没在样品溶液中,调节磁力搅拌器的转速为500 r/min,在40℃下搅拌40 min进行萃取、富集,最后采用气质联用色谱仪进行分析测定。
所用环境水样品溶液取自福州市闽侯县闽江边某处,测定前先将水样静止,以沉积大颗粒杂质,然后过0.45 μm滤膜进行分离分析。
结果表明,水中α-六六六、β-六六六、γ-六六六、δ-六六六、七氯、艾氏剂、环氧七氯、反式氯丹、硫丹Ⅰ、顺式氯丹、4,4'-滴滴伊、狄氏剂、异狄氏剂、硫丹Ⅱ、4,4'-滴滴滴、异狄氏剂醛、硫丹硫酸盐、4,4'-滴滴涕、异狄氏剂酮、甲氧滴滴涕的检出限均低于1.0 ng/mL,证明本发明所制备的PANDMF-C3N4静电纺丝纳米杂化纤维的具有良好萃取富集能力,可用于有机氯类农药的限量检测。
但以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术内容方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种静电纺丝纳米杂化纤维的制备方法,其特征在于,包括如下步骤:
(1)C3N4纳米片的制备:将尿素和葡萄糖共同置于管式炉中加热,获得黑色C3N4粉末;取所得C3N4粉末加入盐酸溶液中,搅拌处理后,离心除去上清液,收集沉淀物并用二次水洗涤干净,再重新分散在二次水中,并调节溶液pH,经超声处理后过滤,取黑色滤渣分别用超纯水和无水乙醇冲洗,然后进行冷冻干燥,即得到C3N4纳米片;
(2)纺丝液的制备:在微波消解的辅助作用下,将聚丙烯腈溶解于N,N-二甲基甲酰胺中,然后加入步骤(1)所得C3N4纳米片,使其溶解、混合,即得纺丝液;
(3)静电纺丝纳米杂化纤维的制备:利用步骤(2)所得纺丝液进行静电纺丝,并进行真空干燥,即制得PANDMF-C3N4静电纺丝纳米杂化纤维。
2.根据权利要求1所述的静电纺丝纳米杂化纤维的制备方法,其特征在于,步骤(1)中所用尿素与葡萄糖的质量比为15:1-5:1;
所述加热是先将温度升至550℃,保持1h,然后降至200℃,保持20min,再升至800℃,保持1h,最后自然降至室温;
所用C3N4粉末与盐酸溶液的质量比为1:4-1:10,所述盐酸溶液的浓度为10 mol/L;
调节溶液的pH至6-8;
所述冷冻干燥的温度为-80℃~20℃,时间为6-12 h。
3.根据权利要求1所述的静电纺丝纳米杂化纤维的制备方法,其特征在于,步骤(2)中所用聚丙烯腈与N,N-二甲基甲酰胺的质量比为1:10-1.5:10;所用聚丙烯腈和N,N-二甲基甲酰胺的总质量与C3N4纳米片的质量比为10:7-10:1;
微波消解的温度为60℃-80℃,功率为300-500W,时间为6-10 h。
4. 根据权利要求1所述的静电纺丝纳米杂化纤维的制备方法,其特征在于,步骤(3)进行静电纺丝时,环境温度为35℃-40℃,环境湿度为20%-30%,纺丝液的流速为0.015-0.030mL/min,纺丝电压为6-14 kV,接收距离为10-30 cm,不锈钢滚轴的滚动速度为40-80 rpm/min;
所述真空干燥的温度为60℃-80℃,时间为12-48 h。
5. 根据权利要求1所述的静电纺丝纳米杂化纤维的制备方法,其特征在于,所得静电纺丝纳米杂化纤维的直径为100-600 nm。
6.一种如权利要求1所述方法制备的静电纺丝纳米杂化纤维的应用,其特征在于,将所述静电纺丝纳米杂化纤维用于制备固相微萃取器的萃取头,并通过进一步将固相微萃取器与气相色谱或气质联用色谱结合,以实现对环境水样中痕量有机氯类农药的富集及分离分析。
7. 根据权利要求1所述的应用,其特征在于,所述萃取头的制备方法为:取长20-25cm、直径为100-160μm的石英纤维,将其前端1.50-2.00 cm部分于丙酮中浸泡5-10 min,刮去外层的聚酰亚胺涂层后洗净、晾干,再用乙醇、超纯水依次冲洗三遍,然后置于120℃-150℃烘箱中干燥1-2 h,以除去石英纤维表面的水;将静电纺丝纳米杂化纤维包裹在处理好的石英纤维上,用其作为固相微萃取器中微量进样器的铁丝,以制得用于富集有机氯类农药的固相微萃取器的萃取头。
8. 根据权利要求1所述的应用,其特征在于,采用由静电纺丝纳米杂化纤维制备的固相微萃取器对环境水样中的有机氯类农药进行富集时,需先在水样品溶液中加入氯化钠,以增强水样品溶液的离子强度;所加入氯化钠与水样品溶液的质量体积比为1:5-1:10 g/mL。
CN202011488718.1A 2020-12-16 2020-12-16 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用 Active CN112538659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011488718.1A CN112538659B (zh) 2020-12-16 2020-12-16 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011488718.1A CN112538659B (zh) 2020-12-16 2020-12-16 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用

Publications (2)

Publication Number Publication Date
CN112538659A true CN112538659A (zh) 2021-03-23
CN112538659B CN112538659B (zh) 2022-01-18

Family

ID=75018236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011488718.1A Active CN112538659B (zh) 2020-12-16 2020-12-16 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用

Country Status (1)

Country Link
CN (1) CN112538659B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391062A (zh) * 2014-10-31 2015-03-04 厦门大学 一种在固相微萃取头上制备g-C3N4涂层的方法
CN107158969A (zh) * 2017-06-15 2017-09-15 华南理工大学 一种功能化纳米纤维过滤材料及其制备方法和应用
CN108469483A (zh) * 2018-03-23 2018-08-31 福州大学 一种超薄二维氧化碳氮纳米片及其制备和应用
CN109507313A (zh) * 2018-10-26 2019-03-22 桂林理工大学 一种分离分析大体积环境水样中四环素类抗生素的方法
CN110538485A (zh) * 2019-08-27 2019-12-06 河南大学 纳米氮化碳/氧化铜复合材料、纳米氮化碳/氧化铜复合固相微萃取器及其制备方法和应用
CN110694661A (zh) * 2019-10-12 2020-01-17 台州学院 基于静电纺丝工艺的g-C3N4复合纳米纤维膜的制备方法及其应用
CN111017891A (zh) * 2019-12-31 2020-04-17 福州大学 一种UiO-66/HOCN材料的合成方法及其在茶叶残留农药检测中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391062A (zh) * 2014-10-31 2015-03-04 厦门大学 一种在固相微萃取头上制备g-C3N4涂层的方法
CN107158969A (zh) * 2017-06-15 2017-09-15 华南理工大学 一种功能化纳米纤维过滤材料及其制备方法和应用
CN108469483A (zh) * 2018-03-23 2018-08-31 福州大学 一种超薄二维氧化碳氮纳米片及其制备和应用
CN109507313A (zh) * 2018-10-26 2019-03-22 桂林理工大学 一种分离分析大体积环境水样中四环素类抗生素的方法
CN110538485A (zh) * 2019-08-27 2019-12-06 河南大学 纳米氮化碳/氧化铜复合材料、纳米氮化碳/氧化铜复合固相微萃取器及其制备方法和应用
CN110694661A (zh) * 2019-10-12 2020-01-17 台州学院 基于静电纺丝工艺的g-C3N4复合纳米纤维膜的制备方法及其应用
CN111017891A (zh) * 2019-12-31 2020-04-17 福州大学 一种UiO-66/HOCN材料的合成方法及其在茶叶残留农药检测中的应用

Also Published As

Publication number Publication date
CN112538659B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
Zhang et al. A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl
Djozan et al. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber
Liu et al. An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples
Yu et al. Preparation of polydimethylsiloxane/β-cyclodextrin/divinylbenzene coated “dumbbell-shaped” stir bar and its application to the analysis of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles compounds in lake water and soil by high performance liquid chromatography
Sun et al. Voltammetric sensor for chloramphenicol determination based on a dual signal enhancement strategy with ordered mesoporous carbon@ polydopamine and β-cyclodextrin
Liu et al. A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity
Li et al. Evaluation of the solid-phase microextraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples
Chen et al. High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating
Feng et al. Facile modification of multi-walled carbon nanotubes–polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange
Zhang et al. Fabrication of a three-dimensional graphene coating for solid-phase microextraction of polycyclic aromatic hydrocarbons
CN109589937A (zh) 一种自组装多层卟啉有机框架化合物的固相微萃取纤维的制备方法及其应用
CN1928527A (zh) 基于功能纳米纤维的水中污染物富集萃取方法
Ling et al. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides
Song et al. Electromembrane extraction based on carbon nanotubes reinforced hollow fiber for the determination of plant hormones
CN112229935B (zh) 一种全氟化合物的分析检测方法
Zeng et al. Determination of amphetamines in biological samples using electro enhanced solid-phase microextraction-gas chromatography
CN105268414B (zh) 一种固相微萃取纤维及其制备方法与用途
Zhang et al. Electrospun nanofibers-based online micro-solid phase extraction for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine
Matin et al. Monolithic mixed matrix membrane based on polyethersulfone/functionalized MWCNTs nanocomposite as an SPME fiber: Application to extract chlorophenols from human urine and serum samples followed by GC-ECD
Zhang et al. Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire
Liu et al. Electrochemical sensor based on molecularly imprinted polymer for determination of nonylphenol
Tian et al. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons
Chen et al. Development of octadecyl-functionalized-nanotubular TiO 2/Ti wire solid-phase microextraction fiber
Rahmani et al. Preparation and characterization of a novel nanocomposite coating based on sol-gel titania/hydroxyapatite for solid-phase microextraction
CN112538659B (zh) 一种静电纺丝纳米杂化纤维的制备及其在有机氯类农药富集方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant