CN112502798A - 一种原动机和做功方法 - Google Patents

一种原动机和做功方法 Download PDF

Info

Publication number
CN112502798A
CN112502798A CN202011352924.XA CN202011352924A CN112502798A CN 112502798 A CN112502798 A CN 112502798A CN 202011352924 A CN202011352924 A CN 202011352924A CN 112502798 A CN112502798 A CN 112502798A
Authority
CN
China
Prior art keywords
energy
energy body
stroke
water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011352924.XA
Other languages
English (en)
Inventor
钟学斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911204973.6A external-priority patent/CN111058915A/zh
Priority claimed from CN201911207014.XA external-priority patent/CN110905612A/zh
Priority claimed from CN201911204772.6A external-priority patent/CN110905621A/zh
Application filed by Individual filed Critical Individual
Priority to PCT/CN2021/072572 priority Critical patent/WO2021104540A1/zh
Priority to EP21728140.1A priority patent/EP4067631A4/en
Priority to US17/781,230 priority patent/US20220412229A1/en
Priority to JP2022532585A priority patent/JP7301232B2/ja
Publication of CN112502798A publication Critical patent/CN112502798A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

本发明属于一种原动机,具体是涉及到一种原动机和做功方法,一种原动机包括蒸发器、机体和能量体,所述能量体滑动设置在机体内,能量体底部和机体内壁之间形成密闭的型腔,蒸发器与型腔连通,蒸发器持续吸热蒸发液态工质,工质汽化体积膨胀推动能量体上移做功直至上极限行程,在环境温度低于蒸发温度时,能量体因自重下移压缩气态工质完成液化,本发明通过蒸发器蒸发液态工质,体积膨胀推动能量体上移做功,输出机械能,环境温度满足液化行程设定值时,通过能量体自重压缩气态工质进行液化行程,整个做功行程和液化行程无需其它辅助设备,避免了不必要的能量损耗,整体结构简单,成本低,性能稳定,效率高,具有积极的经济价值。

Description

一种原动机和做功方法
技术领域
本发明属于一种原动机,具体是涉及到一种原动机和做功方法。
背景技术
原动机泛指利用能源产生原动力的一切机械。是现代生产、生活领域中所需动力的主要 来源。
目前利用空气热能转换为机械能的设备中,一般利用蒸发温度低的工质,吸热膨胀做功, 但是这种利用液体蒸发成气态,需要专用机械设备来完成,而气态工质变回液态,同样也需 要用其它设备压缩气态工质或提高排气压力来完成,该方式会减少工作压差,减少做功,例 如通过压缩机械将气态工质压缩成液态,上述两个步骤,增加了设备的制造成本,同时需要 消耗大量的动能或者电能,导致成本高,能量损耗大等问题。
目前对于低于80°的热能,基本上很难利用,属于废热,很多情况下还需要冷却设备进 行冷却,造成双重能源的消耗,虽然已有通过螺杆膨胀机进行低温热能回收的,但是机器设 备昂贵,效率和性能不佳,不具备经济效益,虽然发展了很长时间,但是依然停留在实验室。
申请号为CN201510375201.4,名称为“一种利用低温介质获取冷气、电能的方法及其装 置”的中国发明专利记载有一种利用低温介质获取冷气、电能的装置,其说明书第[0029]段 记载有“制冷剂在第一冷凝器13中冷凝并向换热介质释放冷凝热,由换热介质吸收冷凝热, 制冷剂冷凝后成为液体通过第一膨胀机构15减压后在第一蒸发器16中蒸发;……制冷剂蒸 发时吸收换热介质的热量发生膨胀对旋片式动力机17做功,而使旋片式动力机17运转产生 机械能,做功后的制冷剂以气态工质状态经发电气态工质压缩机12压缩入第一冷凝器13实 现循环,源源不断地为旋片式动力机17提供膨胀动能”。该发明中,需要通过膨胀机构15 减压在经过第一蒸发器16蒸发,蒸发发生膨胀对旋片式动力机17做功后,再经过发电气态 工质压缩机12压缩回到第一冷凝器13实现循环,其做功的循环路径中,制冷剂的蒸发和液 化分别需要膨胀机构和发电气态工质压缩机12,增加了成本,需要消耗大量的动能或者电能, 导致能量的浪费,无法产生经济效益,同时,该种循环管路的设计,制冷剂流动途径较长, 途中会损耗部分能量,同样会造成能量损失。
发明内容
本发明要解决的技术问题是提供一种原动机和做功方法,原动机利用太阳能集热、大中 型中央空调、工业废烟气水、大型发动机等产生的热量,输出为机械能,整个做功过程和液 化行程无需其它辅助设备,避免了不必要的能量损耗,整体结构简单,成本低,性能稳定, 效率高,具有积极的经济价值。
本发明提供一种原动机,包括蒸发器、机体和能量体,所述能量体滑动设置在机体内, 能量体底部和机体内壁之间形成密闭的型腔,蒸发器与型腔连通,蒸发器持续吸热蒸发液态 工质推动能量体上移做功直至上极限行程,在环境温度满足液化温度时,能量体因自重下移 压缩气态工质完成液化。
更进一步地,还包括散热器,散热器用于排放液化行程产生的热量。
更进一步地,还包括控制器,以及设置在能量体上的上限位开关和下限位开关,控制器 和上限位开关、下限位开关、蒸发器以及散热器电连接。
更进一步地,还包括用于锁止能量体的锁止器,控制器和锁止器电连接。
更进一步地,所述蒸发器内设置有温度传感器,温度传感器用于检测蒸发器温度是否达 到做功设定值,控制器与温度传感器电连接。
更进一步地,还包括环境温度传感器和/或压力传感器,压力传感器用于监测型腔内的压 力值,环境温度传感器和/或压力传感器与控制器电连接。
更进一步地,所述蒸发器通过管道Ⅰ连通有储液器,管道Ⅰ上设置有电磁阀Ⅰ,控制器 与电磁阀Ⅰ电连接。
更进一步地,所述储液器内设置有上液位传感器和下液位传感器,控制器与上液位传感 器和下液位传感器电连接。
更进一步地,还包括至少一组滚珠丝杠副,所述机体顶部设置有端盖,滚珠丝杆副的螺 母组件转动设置在端盖上,所述滚珠丝杆副的螺杆一端与能量体固定,另一端贯穿端盖设置。
更进一步地,所述端盖上还设置有发电机,发电机上设置有与螺母组件配合的传动轮, 螺母组件带动传动轮驱动发电机发电。
更进一步地,所述滚珠丝杆副呈环形阵列设置有三组,所述发电机的传动轮同时与三组 螺母组件啮合。
更进一步地,还包括一根或多根与螺杆平行设置的导向支撑柱,多根导向支撑柱呈环形 阵列设置,所述导向支撑柱一端与能量体固定连接,另一端贯穿端盖设置。
更进一步地,多根所述导向支撑柱贯穿端盖一侧固定连接有固定盘。
更进一步地,所述机体背离蒸发器一侧设置有密封的端盖,所述机体内壁、端盖和能量 体之间密封形成装有能量液的容纳空间,端盖上设置有与容纳空间连通的管道Ⅲ,管道Ⅲ另 一端连接有水轮机,所述水轮机出水端处设置有水池,水池通过管道Ⅳ连接管道Ⅲ或容纳空 间,管道Ⅳ上设置有阀门,所述水池高于容纳空间。
更进一步地,还包括设置在能量体背离型腔一侧的水轮机组,水轮机组包括开口朝向能 量体的水囊机体、设置在水囊机体内的水囊,所述水囊连接有管道Ⅲ,管道Ⅲ另一端连接有 水轮机,所述水轮机出水端处设置有水池,水池通过管道Ⅳ连接管道Ⅲ或水囊,管道Ⅳ上设 置有阀门,所述水池高于水囊。
更进一步地,所述水囊机体与机体固定连接。
本发明还提供一种做功方法,包括原动机,包括如下步骤:
蒸发器内液态工质吸热蒸发,形成气态工质通至型腔内推动能量体向上移动并对外做功, 直至上极限行程;在环境温度满足液化温度时,能量体因自重下移压缩气态工质完成液化。
包括如下步骤:
步骤1:能量体处于底部,温度传感器检测蒸发器内温度达到做功设定时,控制器控制 电磁阀Ⅰ开启,储液器内液态工质流到蒸发器内,蒸发并形成气态工质通至型腔内推动能量 体向上移动并对外做功;
步骤2:在能量体上移至上极限行程后,触发上限位开关,控制器接收上限位开关的信 号,控制电磁阀Ⅰ关闭,并控制锁止器锁止能量体位置;
步骤3:在环境温度传感器检测环境温度达到液化行设定时,控制器控制散热器工作, 型腔内气态工质压力下降,在压力传感器检测压力满足设定值时,控制器控制锁止器解除锁 定,同时控制电磁阀Ⅰ开启,能量体向下移动,液化气态工质流回至储液器内;
步骤4:在能量体下移至下极限行程后,触发下限位开关,控制器接收下限位开关的信 号后,控制电磁阀Ⅰ关闭,散热器停止工作;
步骤5:重新进行步骤1,以此往复做功行程和液化行程。
更进一步地,还包括端盖、滚珠丝杆副和发电机,所述能量体在做功移动过程中,能量 体推动滚珠丝杆副的螺杆上移,螺杆驱动滚珠丝杆副的螺母组件旋转,螺母组件带动发电机 的传动轮旋转进行发电。
更进一步地,还包括端盖、水轮机和水池,机体内壁、端盖和能量体之间密封形成装有 能量液的容纳空间,所述能量体在做功移动过程中,推动能量液沿管道Ⅲ进入水轮机进行发 电,能量液从水轮机出水端流入水池,在液化行程时,经阀门与管道Ⅳ,能量液因重力流回 容纳空间,并推动能量体移动,压缩气态工质完成液化。
更进一步地,包括水囊机体、水囊、水轮机和水池,所述能量体在做功移动过程中,推 动水囊内能量液沿管道Ⅳ进入水轮机进行发电,能量液从水轮机出水端流入水池,在液化行 程时,经阀门与管道Ⅳ,能量液因重力流回水囊,并推动能量体移动,压缩气态工质完成液 化。
本发明的有益效果是,本发明通过蒸发器蒸发液态工质,体积膨胀推动能量体上移做功, 输出机械能,环境温度满足液化行程设定值时,通过能量体自重压缩气态工质进行液化行程, 整个做功行程和液化行程无需其它辅助设备,避免了不必要的能量损耗,整体结构简单,成 本低,性能稳定,效率高,具有积极的经济价值;
设置散热器,排放液化行程过程中压缩气态工质产生的热量,进一步降低型腔内的压力, 使能量体的重力势能大于型腔内气态工质液化需要的能量,能量体在液化行程过程中,同样 能对外做功。
本发明设置储液器,增加蒸发器的输出总量和能量体的做功行程,提高工作效率;设置 锁止器,防止能量体因外部温度变化改变位置和状态。
本发明设置滚珠丝杆副进行能量输出,滚珠丝杆副效率高、速比大、直接将直线运动转 变为旋转运动,可以很好的适用原动机工作行程距离短、输出力大、单向直线运动的特点, 解决了用齿轮齿条传动发电时效率低,传动力受限,需要配备超大的增速器,导致设备制造 难度大和成本高等问题。
本发明还提供一种通过水池、水轮机进行发电的方案,通过能量液和水轮机进行发电, 无需变速系统、没有机械损耗,同时,原动机做功行程后,能量液储存在水池内,可以存储 能量,为液化行程提供能量。
附图说明
图1为本发明的结构示意图。
图2为图1中A-A处剖视图。
图3为本发明采用水轮机组发电的第一角度结构示意图。
图4为本发明采用水轮机组发电的第二角度结构示意图。
图5为本发明采用水轮机组发电的俯视图。
图6为图5中B-B向剖视图。
图7为图6中D处的局部放大图。
图8为图5中C-C向剖视图(隐藏能量体)。
图9为本发明采用能量液和水轮机的另一实施例的正剖视图。
图10为本发明采用滚珠丝杆副发电的结构示意图。
图11为图10的爆炸示意图。
图12为本发明采用滚珠丝杆副发电另一实施例的结构示意图。
图13为图12的爆炸示意图。
在图中,1储液器、2蒸发器、3机体、301隔板、4能量体、401限位杆、402限位齿、 5散热器、501换热管、6型腔、7电磁阀Ⅰ、8温度传感器、9压力传感器、10上液位传感 器、11下液位传感器、12上限位开关、13下限位开关、14锁止器、15管道Ⅰ、16管道Ⅱ、 17控制器、18环境温度传感器、22水囊机体、23水囊、24管道Ⅲ、25水轮机、26水池、 27管道Ⅳ、28电磁阀Ⅳ、33端盖、34螺母组件、35螺杆、36固定盘、37导向支撑柱、38 发电机、39传动轮。
具体实施方式
下述详细描述将阐述本发明的一般原理,其示例被附加地图示在附图中。在附图中,同 样的附图标记示出相同的或功能上相似的元件。如本文所使用的,术语能量液可包括任何液 体。
如图1-2所示,本发明包括蒸发器2、机体3和能量体4,所述能量体4滑动设置在机体 3内,能量体4底部和机体3内壁之间形成密闭的型腔6,蒸发器2与型腔6底部连通,蒸发器2持续吸热蒸发液态工质推动能量体4上移做功直至上极限行程,在环境温度满足液化温度时,能量体4因自重下移压缩气态工质完成液化。
具体地,蒸发器2与型腔6底部通过管道Ⅱ16连接,管道Ⅱ16呈L形设置,一端与型腔 6底部连通,另一端与蒸发器2顶部连通,利于气态工质在液化后,液态工质受重力流回蒸 发器2内;能量体4呈铅垂设置,提高做功行程和液化行程过程的稳定性;能量体4通过密封件与机体3内腔滑动密封,密封件优选为活塞环,提高型腔6的密封效果和能量体4移动的平稳性,本实施例中,为了便于管道Ⅱ16的设置,机体3内部下方设置有隔板301,隔板301作为机体3底部与机体3内壁和能量体4底部围合形成型腔6,隔板301背离型腔6一侧 为管道Ⅱ16提供安装空间,简化安装难度。
本发明还包括散热器5,散热器5用于排放液化行程产生的热量。
散热器5设置在能量体4上与能量体4一同上下移动,散热器5的换热管501贯穿机体 3置于型腔6内,具体地,将能量体4的底板为导热性高的材质,换热管501一端与散热器5连通,另一端置于能量体4的底板内,用于将型腔6内压缩气态工质产生的热量从散热器5排放至外界。
具体地在环境温度满足液化行程,可以开启散热器5,将压缩气态工质产生的热量通过 散热器5排放至外界,以此降低型腔6内气态工质液化需要的能量,在能量体4的重力势能 大于型腔6内气态工质液化需要的能量时,能量体4液化行程的同时对外做功,另外,在环 境温度相对较低时,能量体4的重力势能大于型腔6内气态工质液化需要的能量,能量体4 液化行程的同时同样对外做功。
本发明还包括控制器17,以及设置在能量体4上的上限位开关12和下限位开关13,控 制器17和上限位开关12、下限位开关13、蒸发器2以及散热器5电连接。
控制器17用于控制做功行程和液化行程的开始和停止,上限位开关12和下限位开关13 对应能量体4的上极限行程和下极限行程,在能量体4上移做功至上极限行程后,触发上限 位开关12,环境温度满足液化行程设定值时,液化行程开始,控制器17控制散热器5开始 工作,排出液化行程产生的热量,降低型腔6内气态工质液化需要的能量,使能量体4液化 行程的同时对外做功;在能量体4下移至下极限行程后,触发下限位开关13,控制器17控制液化行程结束,开始做功行程。
本发明还包括用于锁止能量体4的锁止器14,控制器17和锁止器14电连接,锁止器14 用于在做功行程或者液化行程结束后,对能量体4进行锁止,避免受外界环境温度变化改变 能量体4的位置,同时还能用于在做功行程过程中蒸发器2温度低于做功行程设定值或液化 行程过程中外界环境温度高于液化行程设定值时,停止做功行程或液化行程,控制器17控制 锁止器14锁止能量体4,具体地,在能量体4上移至上极限行程,触发上限位开关12,上限 位开关12反馈信号给控制器17,控制锁止器14将能量体4锁止,在做功行程过程中,若温 度传感器8检测到蒸发器2温度低于设定值后,做功行程提前结束,锁止器14将能量体4锁 止,避免受外界温度变换改变能量体4的位置;在能量体4下移至下极限行程,触发下限位 开关13,下限位开关13反馈信号给控制器17,控制锁止器14将能量体4锁止,在液化行程 过程中,若环境温度传感器18检测到环境温度高于设定值后,液化行程提前结束,锁止器 14将能量体4锁止,避免受外界温度变换改变能量体4的位置。
具体地,锁止器14可以为具有可控制收缩卡块的结构,能量体4底部通过活塞环与机体 3密封,能量体4侧边位于活塞环上端部位设置有与锁止器14配合的齿槽,此种结构,锁止 器14设置在机体3顶部,可控制锁止器14伸出卡块卡合至机体3上的齿槽,完全能量体4 的锁定。
为了提高能量体4在机体3内滑动的流程性,所述能量体4端部固定有位于机体3外侧 的限位杆401或限位筒,锁止器14通过锁定限位杆401或限位筒,完成能量体4的锁定,限位杆401的结构可以为方形板或者弧形板,优选为方形板,限位杆401上设置有限位齿402,锁止器14通过伸出卡块,卡合至限位齿402上,完成能量体4的锁定,另外,限位齿或齿槽 的长度不短于能量体4的行程长度。
齿槽结构或限位杆401或限位筒与锁止器14沿机体3轴线呈圆周对称分布,防止锁止器 14推动能量体4偏离行程方向,本实施例中,优选为对称设置有两组。
所述蒸发器2内设置有温度传感器8,温度传感器8用于检测蒸发器2内温度是否达到 做功设定值,控制器17与温度传感器8电连接,控制器17检测到蒸发器2内温度达到做功行程设定值后,开始做功行程,在做功行程过程中,在温度传感器8检测到蒸发器2内温度低于做功行程设定值时,做功行程提前结束,锁止器14将能量体4锁止。
本发明还包括环境温度传感器18和/或压力传感器9,压力传感器9用于监测型腔6内 的压力值,环境温度传感器18和/或压力传感器9与控制器17电连接,由于型腔6直接与蒸 发器2连通,压力传感器9可以置于蒸发器2内,在能量体4位于上极限行程位置时,环境温度传感器18实时检测环境温度,在环境温度低于蒸发温度或者低于液化行程设定值时,型 腔6内气态工质随温度下降而压力降低,控制器17控制锁止器14解除锁定,能量体4因重力下移,对型腔6内气态工质进行压缩,体积缩小,能量体4持续下移,同时将气态工质压缩液化,完成液化行程,压力传感器9实时检测型腔6内压力,在液化行程过程中,在环境温 度高于液化行程设定值和/或型腔6内压力高于能量体4的重力势能时,液化行程提前结束,锁止器14将能量体4锁止。
所述蒸发器2通过管道Ⅰ15连通有储液器1,管道Ⅰ15上设置有电磁阀Ⅰ7,控制器17与电磁阀Ⅰ7电连接,储液器1用于给蒸发器2提供足量的液态工质,以保证液态工质蒸发 量足够能量体4完成做功行程,电磁阀Ⅰ7用于控制储液器1内液态工质的流通。
蒸发器2内温度高于做功行程设定值时,控制器17控制电磁阀Ⅰ7开启,储液器1内液 态工质持续流入蒸发器2内进行蒸发,直至做功行程结束后,电磁阀Ⅰ7关闭;在环境温度低于液化行程设定值时,控制器17控制电磁阀Ⅰ7开启,能量体4下移压缩气态工质对气态工质进行液化,液态工质重新流入到储液器1内,电磁阀Ⅰ7关闭,直至下一个做功行程开始,
在做功行程过程中,在蒸发器2内温度低于做功行程设定值时,控制器17控制电磁阀Ⅰ 7关闭,蒸发器2因失去液态工质而停止蒸发,体积停止膨胀,能量体4停止上移,控制锁止器14对能量体4进行锁止,做功行程提前结束;在液化行程过程中,在环境温度传感器 18和/或压力传感器9检测环境温度高于液化行程设定值和/或型腔6内压力高于能量体4的重力势能时,控制器17控制电磁阀Ⅰ7关闭,锁止器14对能量体4进行锁止,液化行程提 前结束。
所述储液器1内设置有上液位传感器10和下液位传感器11,控制器17与上液位传感器 10和下液位传感器11电连接,液态工质液位触发上液位传感器10时,液位行程结束,散热 器5停止工作,能量体4同时触发下限位开关13;液态工质液位触发下液位传感器11时, 做功行程结束,蒸发器2停止工作,能量体4同时触发上限位开关12。上液位传感器10和下液位传感器11的设置,可在上限位开关12和下限位开关13失灵时起到控制作用。
以恒定做功温度为60°(410A制冷剂压力约为3.83MP),恒定冷凝温度为30°(410A制冷剂压力约为1.88MP)为例,采用410A制冷剂作为膨胀介质,型腔容积为30m3,型腔6 的横截面积为5㎡,型腔6的体积会由能量体的上升不断扩大(本发明中制冷剂膨胀后的体 积与型腔6的空间相匹配),与此同时,蒸发器2不断蒸发制冷剂,当制冷剂体积蒸发至30m3时,能量体上升的距离是为6m,理论做功:500*500*3.14*19.5/1000/367*6约为250KW。
如图10-图13所示,本发明还包括至少一组滚珠丝杠副,所述机体3顶部设置有端盖33, 滚珠丝杆副的螺母组件34转动设置在端盖33上,所述滚珠丝杆副的螺杆35一端与能量体4 固定,另一端贯穿端盖33设置。
由于本原动机为直线运动,非连续循环,运行距离受限于设备制造工艺,通过加大型腔 直径获得超大的推力,采用齿轮齿条传动时,由于齿轮齿条的传动效率不高,传输速比受限 齿轮模数,需要配备超大增速比的增速器,导致设备制造难度大、机械摩擦损耗大,制造成 本高,还需要保证整体体积合理,本实施例中,采用滚珠丝杆副进行能量输出,同时适应大 推力、增速比大和结构紧凑体积小的需求,将原动机的直线运动转变为(转速合适)旋转运 动进行能量输出,如图11和图13所示,在做功行程中,能量体4进行上移,推动动滚珠丝 杆副的螺杆35上移,进而驱动与端盖33转动连接的螺母组件34旋转,并通过螺母组件34 的旋转输出机械能,设置滚珠丝杆副,在无需配备超大增速器和保证整体尺寸的前提下,可 以很好将能量体移动输出的垂直推力转换为方便利用的扭力。
所述端盖33上还设置有发电机38,发电机38上设置有与螺母组件34配合的传动轮39, 螺母组件34带动传动轮39驱动发电机38发电,其中,传动轮39可与螺母组件34齿形啮合, 或者通过链或皮带等进行传动,本实施例中,设置发电机38,将原动机的做功转换方便使用 的电能,如图11和图13所示,发电机38轴线与滚珠丝杆副的螺杆35轴线平行,优选设置 在端盖33背离能量体4一侧,以保证位于机体3内的结构紧凑,其中,传动轮39转动设置在端盖33靠近能量体4一侧,传动轮39与发电机38的输出杆固定连接,能量体4上移,带 动滚珠丝杆副的螺杆35上移,进而驱动滚珠丝杆副的螺母组件34旋转,螺母组件34带动传 动轮39旋转,进而使发电机38进行发电,其中,优选在螺母组件34外圈设置外齿轮,传动 轮39与外齿轮啮合,也可以通过皮带等进行传动,通过设置外齿轮并配合发电机38进行发 电,可利用温差进行发电,绿色清洁,变废为宝。
如图10和图11所示,滚珠丝杆副可以仅设置一组,发电机38和传动轮39可以沿滚珠 丝杆副的螺母组件34外侧设置一组或多组。
更进一步地,如图12和图13所示,所述滚珠丝杆副呈环形阵列设置有三组,所述发电 机38的传动轮39同时与三组螺母组件34的外齿轮啮合,本实施例中,三组滚珠丝杆副轴线 与传动轮39的轴线平行,同时,三组滚珠丝杆副轴线绕传动轮39的轴线呈环形阵列设置, 其中,三组滚珠丝杆副的螺母组件34相互独立,且同时与传动轮39啮合,本实施例中,通 过三组滚珠丝杆副组合使用,发挥滚珠丝杆副优势的同时还弥补了滚珠丝杆副承载力受滚珠 直径、滚珠圈数、丝杆长度材质硬度等局限的问题,在相同尺寸情况下,大幅提升丝杆的承 载力、稳定性、拓展了滚珠丝杆的长度。
本发明还包括一根或多根与螺杆35平行设置的导向支撑柱37,多根导向支撑柱37呈环 形阵列设置,所述导向支撑柱37一端与能量体4固定连接,另一端贯穿端盖33设置,具体 地,导向支撑柱37与端盖33间隙配合,避免造成能量损失,设置导向支撑柱37,保证滚珠丝杆副的螺杆35直线运动时的稳定性,大幅提高滚珠丝杆副的丝杆承载力,降低损坏的可能。
具体地,多根所述导向支撑柱37贯穿端盖33一侧固定连接有固定盘36,本实施例中, 滚珠丝杆副的螺杆35也与固定盘36连接,设置固定盘36,可使能量体4、螺杆35、导向支撑柱37四者合体一体,使能量体4在上下移动过程中,螺杆35与导向支撑柱37共同受力, 降低螺杆35所承受的压力,提高螺杆35的承载力。
同样以恒定做功温度为60°,恒定冷凝温度为30°,能量体的移动形成为6m为例,滚珠丝杆的尺寸为6m,滚珠丝杆的导程选用10mm,螺杆35上升10mm螺母组件34转一圈,采 用外齿轮与传动轮39的传动比为1;5(星形齿轮合理速比),即能量体上升10mm,传动轮 39转5圈,发电机使用30极(200转/分钟),螺杆上升6m会旋转6000/4圈,传动增速器 速比为10倍),以此,螺杆35上升至6m可使发电机旋转3W转,运转2.5小时,匹配相应 功率的发电机,发电量为功率*发电时长;其它参数都可以由机组合理设定。
如图9所示,所述机体3背离蒸发器2一侧设置有密封的端盖33,所述机体3内壁、端盖33和能量体4之间密封形成装有能量液的容纳空间,端盖33上设置有与容纳空间连通的管道Ⅳ27,管道Ⅳ27另一端连接有水轮机25,所述水轮机25出水端处设置有水池26,水池26通过管道Ⅳ27连接管道Ⅳ27或容纳空间,管道Ⅳ27上设置有阀门,所述水池26高于容纳空间。
本实施例通过能量液和水轮机25进行发电,无需变速系统、没有机械损耗,同时,原动 机做功行程完成后,能量液储存在水池26内,可以存储能量,为液化行程提供能量,具体地, 在做功行程中,能量体4移动,推动容纳空间内的能量液通过管道Ⅳ27推动至水轮机25的 入水端,并进行发电,最后流至水池26内。在液化行程时,由于水池26高于容纳空间,且 高低差满足液化行程所需的压力,打开管道Ⅳ27上设置的阀门,能量液因重力流回容纳空间, 并压缩气态工质完成液化行程,采用水轮机25进行发电,能量液水压为1.6MPa时,减去水 囊最高液位与水轮机出水口差值(水轮机出水口高于水池最高位,水池底面与水囊最高液位 差满足液化行程所需压力)设定液化行程需要0.57MPa(0.03MP计入水轮机到水池的高度差), 水轮机25的水头为100m,在不考虑机械损耗时,3.67T的冷量液可以发电1KWH,水轮机25 实际效率可达到80-85%,极大的提高了经济效益,保证原动机的可行性。
如图3-图8所示,本发明还包括设置在能量体4背离型腔6一侧的水轮机组,水轮机组 包括开口朝向能量体4的水囊机体22、设置在水囊机体22内的水囊23,所述水囊23连接有 管道Ⅲ24,管道Ⅲ24另一端连接有水轮机25,所述水轮机25出水端处设置有水池26,水池 26通过管道Ⅳ27连接管道Ⅲ24或水囊23,管道Ⅳ27上设置有阀门,所述水池26高于水囊23。
本实施例同样通过能量液和水轮机25进行发电,无需变速系统、没有机械损耗,具体地, 在做功行程中,型腔容积膨胀,推动能量体4上移,能量体4推动水囊23内能量液沿管道Ⅲ 24推动至水轮机25的入水端,并进行发电,最后流至水池26内。在液化行程时,由于水池 26高于水囊23,且高低差满足液化行程所需的压力,打开管道Ⅳ27上设置的阀门,能量液 因重力流回水囊23,并压缩气态工质完成液化行程。
管道Ⅳ27上设置的阀门为电磁阀Ⅳ28,在液化行程时,使位于水池26内的能量液流回 水囊23内。
所述水囊机体22与机体3固定连接,保证原动机的一体性,简化安装难度,所述能量体 4两端分别与机体3和水囊机体22优选设置为间隙配合,减少滑动摩擦,避免不必要的能量 损失。
一种做功方法,包括如下步骤:
蒸发器2内液态工质吸热蒸发,形成气态工质通至型腔6内推动能量体4向上移动并对 外做功,直至上极限行程;在环境温度满足液化温度时,能量体4因自重下移压缩气态工质 完成液化。
本发明还包括如下步骤:
步骤1:能量体4处于底部,在温度传感器8检测蒸发器2内温度达到做功设定时,控制器17控制电磁阀Ⅰ7开启,储液器1内液态工质流到蒸发器2内,蒸发并形成气态工质通 至型腔6内推动能量体4向上移动并对外做功;
步骤2:在能量体4上移至上极限行程后,触发上限位开关12,控制器17接收上限位开 关12的信号,控制电磁阀Ⅰ7关闭,并控制锁止器14锁止能量体4位置;
步骤3:在环境温度传感器18检测环境温度达到液化行设定时,控制器17控制散热器5 工作,型腔6内气态工质压力下降,在压力传感器9检测压力满足设定值时,控制器17控制 锁止器14解除锁定,同时控制电磁阀Ⅰ7开启,能量体4向下移动,液化气态工质流回至储液器1内;
步骤4:在能量体4下移至下极限行程后,触发下限位开关13,控制器17接收下限位开 关13的信号后,控制电磁阀Ⅰ7关闭,散热器5停止工作;
步骤5:重新进行步骤1,以此往复做功行程和液化行程。
还包括端盖33、滚珠丝杆副和发电机38,所述能量体4在做功移动过程中,能量体4推 动滚珠丝杆副的螺杆35上移,螺杆35驱动滚珠丝杆副的螺母组件34旋转,螺母组件34带动发电机38的传动轮39旋转进行发电。
还包括端盖33、水轮机25和水池26,机体3内壁、端盖33和能量体4之间密封形成装有能量液的容纳空间,所述能量体4在做功移动过程中,推动能量液沿管道Ⅲ24进入水轮机25进行发电,能量液从水轮机25出水端流入水池26,在液化行程时,经阀门与管道Ⅳ27, 能量液因重力流回容纳空间,并推动能量体移动,压缩气态工质完成液化。
包括水囊机体22、水囊23、水轮机25和水池26,所述能量体4在做功移动过程中,推动水囊23内能量液沿管道Ⅳ27进入水轮机25进行发电,能量液从水轮机25出水端流入水池26,在液化行程时,经阀门与管道Ⅳ27,能量液因重力流回水囊,压缩气态工质完成液化。
本发明的具体工作原理:
做功行程:在热源温度较高时,例如通过太阳集热、空调制冷时冷凝器的温度、发动机 的冷却水温和排气、工业冷却水或者工业废烟气等高温环境,优选为高于60°,在液化行程 散热温度相对低时,做功温度可以相应调低,蒸发器2吸收外界热量,温度传感器8检测到 蒸发器2内温度到达做功行程设定值时,发送信号给控制器17,控制器17控制电磁阀Ⅰ7开 启,锁止器14解除对能量体4的锁定,液态工质进入蒸发器2与蒸发器2内部滞留的液态工 质一并被蒸发成气态工质进入到型腔6内部,体积膨胀推动能量体4向上移动,同时对做功, 输出机械动能;
储液器1持续为蒸发器2提供液态工质,持续蒸发,持续推动能量体4向上移动,直至 能量体4到达上极限行程,触发上限位开关12,上限位开关12发送信号给控制器17,控制器17控制电磁阀Ⅰ7关闭,锁止器14对能量体4锁止,做功行程结束。
在做功行程过程中,在热源温度低于做功行程设定值时,热源温度下降,蒸发器2停止 吸热,能量体4停止向上移动和对外做功,控制器17控制锁止器14对能量体4锁止,做功 行程提前结束,待外部环境温度低于液化行程设定值或热源温度高于做功行程设定值后,继 续进行液化行程或者进行做功行程。
液化行程:在环境温度满足液化行程设定值时,优选为低于30°,环境温度传感器18 检测到环境温度下满足液化行程设定值时,发送信号给控制器17,控制器17控制电磁阀Ⅰ7 开启,锁止器14解除对能量体4的锁定,型腔6内气态工质随着温度下降同时压力降低,能 量体4由于自身重力向下移动,对型腔6气态工质进行压缩,体积缩小,气态工质液化,流回蒸发器2和储液器1内,完成液化行程。
液化行程开始时,同时开启散热器5,型腔6内压缩气态工质产生的高温经换热管501 输送至散热器5内排放至外界,此时,能量体4的重力势能大于型腔6内气态工质液化需要 的能量,能量体4液化行程同时对外做功。
液化行程过程中,环境温度传感器18检测到环境温度高于液化行程设定值时,能量体4 停止下移,环境温度传感器18发送信号给控制器17,控制器17控制电磁阀Ⅰ7关闭,锁止 器14对能量体4锁止,液化行程提前结束,待外部环境温度低于液化行程设定值或热源温度 高于做功行程设定值后,继续进行液化行程或者进行做功行程。
本发明能量体4的重量根据环境温度和热源温度的变化可调,能量体4可以通过对外输 出机械能,机械能通过变速器连接发电机,转换为电能等。

Claims (21)

1.一种原动机,其特征是,包括蒸发器(2)、机体(3)和能量体(4),所述能量体(4)滑动设置在机体(3)内,能量体(4)底部和机体(3)内壁之间形成密闭的型腔(6),蒸发器(2)与型腔(6)连通,蒸发器(2)持续吸热蒸发液态工质推动能量体(4)上移做功直至上极限行程,在环境温度低于蒸发温度时,能量体(4)因自重下移压缩气态工质完成液化。
2.如权利要求1所述的原动机,其特征是,还包括散热器(5),散热器(5)用于排放液化行程产生的热量。
3.如权利要求2所述的原动机,其特征是,还包括控制器(17),以及设置在能量体(4)上的上限位开关(12)和下限位开关(13),控制器(17)和上限位开关(12)、下限位开关(13)、蒸发器(2)以及散热器(5)电连接。
4.如权利要求3所述的原动机,其特征是,还包括用于锁止能量体(4)的锁止器(14),控制器(17)和锁止器(14)电连接。
5.如权利要求4所述的原动机,其特征是,所述蒸发器(2)内设置有温度传感器(8),温度传感器(8)用于检测蒸发器(2)温度是否达到做功设定值,控制器(17)与温度传感器(8)电连接。
6.如权利要求4所述的原动机,其特征是,还包括环境温度传感器(18)和/或压力传感器(9),压力传感器(9)用于监测型腔(6)内的压力值,环境温度传感器(18)和/或压力传感器(9)与控制器(17)电连接。
7.如权利要求5或6所述的原动机,其特征是,所述蒸发器(2)通过管道Ⅰ(15)连通有储液器(1),管道Ⅰ(15)上设置有电磁阀Ⅰ(7),控制器(17)与电磁阀Ⅰ(7)电连接。
8.如权利要求7所述的原动机,其特征是,所述储液器(1)内设置有上液位传感器(10)和下液位传感器(11),控制器(17)与上液位传感器(10)和下液位传感器(11)电连接。
9.如权利要求1-6或8任一项所述的原动机,其特征是,还包括至少一组滚珠丝杠副,所述机体(3)顶部设置有端盖(33),滚珠丝杆副的螺母组件(34)转动设置在端盖(33)上,所述滚珠丝杆副的螺杆(35)一端与能量体(4)固定,另一端贯穿端盖(33)设置。
10.如权利要求9所述的原动机,其特征是,所述端盖(33)上还设置有发电机(38),发电机(38)上设置有与螺母组件(34)配合的传动轮(39),螺母组件(34)带动传动轮(39)驱动发电机(38)发电。
11.如权利要求10所述的原动机,其特征是,所述滚珠丝杆副呈环形阵列设置有三组,所述发电机(38)的传动轮(39)同时与三组螺母组件(34)啮合。
12.如权利要求10或11所述的原动机,其特征是,还包括一根或多根与螺杆(35)平行设置的导向支撑柱(37),多根导向支撑柱(37)呈环形阵列设置,所述导向支撑柱(37)一端与能量体(4)固定连接,另一端贯穿端盖(33)设置。
13.如权利要求12所述的原动机,其特征是,多根所述导向支撑柱(37)贯穿端盖(33)一侧固定连接有固定盘(36)。
14.如权利要求1-6或8任一项所述的原动机,其特征是,所述机体(3)背离蒸发器(2)一侧设置有密封的端盖(33),所述机体(3)内壁、端盖(33)和能量体(4)之间密封形成装有能量液的容纳空间,端盖(33)上设置有与容纳空间连通的管道Ⅲ(24),管道Ⅲ(24)另一端连接有水轮机(25),所述水轮机(25)出水端处设置有水池(26),水池(26)通过管道Ⅳ(27)连接管道Ⅲ(24)或容纳空间,管道Ⅳ(27)上设置有阀门,所述水池(26)高于容纳空间。
15.如权利要求1-6或8任一项所述的原动机,其特征是,还包括设置在能量体(4)背离型腔(6)一侧的水轮机组,水轮机组包括开口朝向能量体(4)的水囊机体(22)、设置在水囊机体(22)内的水囊(23),所述水囊(23)连接有管道Ⅲ(24),管道Ⅲ(24)另一端连接有水轮机(25),所述水轮机(25)出水端处设置有水池(26),水池(26)通过管道Ⅳ(27)连接管道Ⅲ(24)或水囊,管道Ⅳ(27)上设置有阀门,所述水池(26)高于水囊(23)。
16.如权利要求15所述的原动机,其特征是,所述水囊机体(22)与机体(3)固定连接。
17.一种做功方法,其特征在于,包括权利要求1所述的原动机,包括如下步骤:
蒸发器(2)内液态工质吸热蒸发,形成气态工质通至型腔(6)内推动能量体(4)向上移动并对外做功,直至上极限行程;在环境温度满足液化温度时,能量体(4)因自重下移压缩气态工质完成液化。
18.如权利要求17所述的做功方法,其特征在于,包括如下步骤:
步骤1:能量体(4)处于底部,温度传感器(8)检测蒸发器(2)内温度达到做功设定时,控制器(17)控制电磁阀Ⅰ(7)开启,储液器(1)内液态工质流到蒸发器(2)内,蒸发并形成气态工质通至型腔(6)内推动能量体(4)向上移动并对外做功;
步骤2:在能量体(4)上移至上极限行程后,触发上限位开关(12),控制器(17)接收上限位开关(12)的信号,控制电磁阀Ⅰ(7)关闭,并控制锁止器(14)锁止能量体(4)位置;
步骤3:在环境温度传感器(18)检测环境温度达到液化行设定时,控制器(17)控制散热器(5)工作,型腔(6)内气态工质压力下降,在压力传感器(9)检测压力满足设定值时,控制器(17)控制锁止器(14)解除锁定,同时控制电磁阀Ⅰ(7)开启,能量体(4)向下移动,液化气态工质流回至储液器(1)内;
步骤4:在能量体(4)下移至下极限行程后,触发下限位开关(13),控制器(17)接收下限位开关(13)的信号后,控制电磁阀Ⅰ(7)关闭,散热器(5)停止工作;
步骤5:重新进行步骤1,以此往复做功行程和液化行程。
19.如权利要求17或18所述的做功方法,其特征在于,还包括端盖(33)、滚珠丝杆副和发电机(38),所述能量体(4)在做功移动过程中,能量体(4)推动滚珠丝杆副的螺杆(35)上移,螺杆(35)驱动滚珠丝杆副的螺母组件(34)旋转,螺母组件(34)带动发电机(38)的传动轮(39)旋转进行发电。
20.如权利要求17或18所述的做功方法,其特征在于,还包括端盖(33)、水轮机(25)和水池(26),机体(3)内壁、端盖(33)和能量体(4)之间密封形成装有能量液的容纳空间,所述能量体(4)在做功移动过程中,推动能量液沿管道Ⅲ(24)进入水轮机(25)进行发电,能量液从水轮机(25)出水端流入水池(26),在液化行程时,经阀门与管道Ⅳ(27),能量液因重力流回容纳空间,并推动能量体(4)移动,压缩气态工质完成液化。
21.如权利要求17或18所述的做功方法,其特征在于,还包括水囊机体(22)、水囊(23)、水轮机(25)和水池(26),所述能量体(4)在做功移动过程中,推动水囊(23)内能量液沿管道Ⅳ(27)进入水轮机(25)进行发电,能量液从水轮机(25)出水端流入水池(26),在液化行程时,经阀门与管道Ⅳ(27),能量液因重力流回水囊(23),压缩气态工质完成液化。
CN202011352924.XA 2019-11-29 2020-11-26 一种原动机和做功方法 Pending CN112502798A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/072572 WO2021104540A1 (zh) 2019-11-29 2021-01-18 一种原动机和做功方法及水轮机组
EP21728140.1A EP4067631A4 (en) 2019-11-29 2021-01-18 DRIVE MOTOR AND WORK COMPLETION METHOD AND WATER TURBINE GROUP
US17/781,230 US20220412229A1 (en) 2019-11-29 2021-01-18 Hydraulic turbine unit
JP2022532585A JP7301232B2 (ja) 2019-11-29 2021-01-18 水力タービンセット

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911204973.6A CN111058915A (zh) 2019-11-29 2019-11-29 一种密封效果好的原动机和做功方法
CN201911207014.XA CN110905612A (zh) 2019-11-29 2019-11-29 一种低损耗的原动机和做功方法
CN201911204772.6A CN110905621A (zh) 2019-11-29 2019-11-29 一种原动机和做功方法
CN201911207014X 2019-11-29
CN2019112047726 2019-11-29
CN2019112049736 2019-11-29

Publications (1)

Publication Number Publication Date
CN112502798A true CN112502798A (zh) 2021-03-16

Family

ID=74808545

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202011347292.8A Active CN112459856B (zh) 2019-11-29 2020-11-26 一种原动机和做功方法及水轮机组
CN202022783184.7U Withdrawn - After Issue CN215109061U (zh) 2019-11-29 2020-11-26 一种原动机及水轮机组
CN202022786320.8U Active CN215109062U (zh) 2019-11-29 2020-11-26 一种原动机
CN202011347271.6A Pending CN112502797A (zh) 2019-11-29 2020-11-26 一种低损耗的原动机和做功方法
CN202011352924.XA Pending CN112502798A (zh) 2019-11-29 2020-11-26 一种原动机和做功方法
CN202022807982.9U Active CN215109063U (zh) 2019-11-29 2020-11-26 一种低损耗的原动机

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CN202011347292.8A Active CN112459856B (zh) 2019-11-29 2020-11-26 一种原动机和做功方法及水轮机组
CN202022783184.7U Withdrawn - After Issue CN215109061U (zh) 2019-11-29 2020-11-26 一种原动机及水轮机组
CN202022786320.8U Active CN215109062U (zh) 2019-11-29 2020-11-26 一种原动机
CN202011347271.6A Pending CN112502797A (zh) 2019-11-29 2020-11-26 一种低损耗的原动机和做功方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202022807982.9U Active CN215109063U (zh) 2019-11-29 2020-11-26 一种低损耗的原动机

Country Status (5)

Country Link
US (1) US20220412229A1 (zh)
EP (1) EP4067631A4 (zh)
JP (1) JP7301232B2 (zh)
CN (6) CN112459856B (zh)
WO (2) WO2021104398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112502797A (zh) * 2019-11-29 2021-03-16 钟学斌 一种低损耗的原动机和做功方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784847A (zh) * 2007-11-05 2010-07-21 罗志荣 气压-热力膨胀式循环方法及其装置
DE102009039725A1 (de) * 2009-08-27 2011-09-15 Nabil Samak Der aus Flüssiggas-Füllungsdifferenz selbstverstärkte "NZPG(M)" oder auch "Anergie Antriebskreislauf" oder auch "Hydroanergie Stromgenerator(Motor)", der als direkter mechanischer Antrieb und/oder nur als Stromquelle eingesetzt wird [z.B. in Häusern, Maschinen oder in (auch Hybrid-) Fahrzeugen], mit oder ohne im selben Kreislauf zusätzlich integrierter Wärmepumpe. Bzw."Der selbstverstärkte NZPG(M)"
CN105545388A (zh) * 2016-03-10 2016-05-04 钟学斌 一种低温热能回收利用机组及方法
CN106628276A (zh) * 2016-11-01 2017-05-10 清华大学 一种航天器自驱动两相循环热控制系统
CN107288695A (zh) * 2016-04-01 2017-10-24 沈自全 一种环保温差发动机
CN109681283A (zh) * 2019-02-18 2019-04-26 李方耀 一种低温温差能热能利用装置及方法
CN110905621A (zh) * 2019-11-29 2020-03-24 湖南友风新材料科技有限公司 一种原动机和做功方法
CN215109062U (zh) * 2019-11-29 2021-12-10 钟学斌 一种原动机

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US995219A (en) * 1908-04-07 1911-06-13 Sun Power Company Utilizing natural heat.
US3611723A (en) * 1969-11-13 1971-10-12 Hollymatic Corp Hydraulic turbine and method
US4030303A (en) * 1975-10-14 1977-06-21 Kraus Robert A Waste heat regenerating system
WO1985001988A1 (en) * 1983-11-02 1985-05-09 Mitchell Matthew P Improved stirling cycle engine and heat pump
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
US5713202A (en) * 1994-04-04 1998-02-03 Energy Conservation Partnership, Ltd. Methods for producing hydro-electric power
US5461858A (en) * 1994-04-04 1995-10-31 Energy Conversation Partnership, Ltd. Method of producing hydroelectric power
US20020170292A1 (en) * 2001-05-19 2002-11-21 Awad Hanna Albert Concepts and their applications, pumps, compressors working on valves and engines working on those compressors
US20060266042A1 (en) * 2005-05-27 2006-11-30 Levine Michael R Submerged condenser for steam power plant
US20060059912A1 (en) * 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system
NO328059B1 (no) * 2008-04-10 2009-11-23 Energreen As Framgangsmate og apparat for a frambringe vaeskestromning i en rorledning
CN202431395U (zh) * 2012-01-04 2012-09-12 程明 一种斯特林循环发动机
CN103114939B (zh) * 2012-02-20 2015-01-21 摩尔动力(北京)技术股份有限公司 气缸相循环发动机
CN102645064A (zh) * 2012-05-24 2012-08-22 钟学斌 一种空气源热泵机组的化霜方法及装置
US9322299B2 (en) * 2012-08-29 2016-04-26 Ronald David Conry Heat engine shuttle pump system and method
CN202732203U (zh) * 2012-09-13 2013-02-13 陈阿萍 一种新型水能发电站
CN103104306A (zh) * 2012-12-12 2013-05-15 吕怀民 热风式重力热机装置
CN104343647A (zh) * 2013-08-04 2015-02-11 徐建宁 直立式太阳能重力发电机
US9797274B2 (en) * 2013-09-24 2017-10-24 Songwei GUO High-efficiency power generation system
US10060302B2 (en) * 2013-10-21 2018-08-28 Shanghai Jiaotong University Passive low temperature heat sources organic working fluid power generation method
CN103670888B (zh) * 2013-11-27 2016-02-10 陕西擎华新能源技术有限公司 一种热水余压余热回收系统
CN103742213B (zh) * 2014-01-17 2016-02-10 江勇 抽水装置
KR101495566B1 (ko) * 2014-05-07 2015-02-25 허상채 수압 및 증기를 이용한 자가발전 장치
CN104265501B (zh) * 2014-09-12 2016-03-02 徐承飞 一种液体热机及动力输出装置
WO2017101914A1 (de) * 2015-12-17 2017-06-22 Thermolectric Industrial Solutions Gmbh Gleichdruckmehrkammerbehälter, thermodynamischer energiewandler und betriebsverfahren
CN105822453A (zh) * 2016-05-11 2016-08-03 刘良存 外燃式液体发动机
KR20200005521A (ko) * 2016-07-05 2020-01-15 부두 레바노비치 크바리아니 열역학적 수력전기 발전 설비
CN106246484A (zh) * 2016-08-30 2016-12-21 郭远军 一种基于半导体冷凝的太阳能热能动力系统
CN108317058A (zh) * 2018-03-28 2018-07-24 天津融渌众乐科技有限公司 一种温度差驱动的热源利用系统
CN110030051B (zh) * 2019-04-24 2021-09-28 吉林大学 蓄压式隐性膨胀低品质能源利用系统
CN110486157A (zh) * 2019-09-20 2019-11-22 赵银生 基于重力势能回复的内燃发电机
CN110905612A (zh) * 2019-11-29 2020-03-24 湖南友风新材料科技有限公司 一种低损耗的原动机和做功方法
CN111058915A (zh) * 2019-11-29 2020-04-24 湖南友风新材料科技有限公司 一种密封效果好的原动机和做功方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784847A (zh) * 2007-11-05 2010-07-21 罗志荣 气压-热力膨胀式循环方法及其装置
DE102009039725A1 (de) * 2009-08-27 2011-09-15 Nabil Samak Der aus Flüssiggas-Füllungsdifferenz selbstverstärkte "NZPG(M)" oder auch "Anergie Antriebskreislauf" oder auch "Hydroanergie Stromgenerator(Motor)", der als direkter mechanischer Antrieb und/oder nur als Stromquelle eingesetzt wird [z.B. in Häusern, Maschinen oder in (auch Hybrid-) Fahrzeugen], mit oder ohne im selben Kreislauf zusätzlich integrierter Wärmepumpe. Bzw."Der selbstverstärkte NZPG(M)"
CN105545388A (zh) * 2016-03-10 2016-05-04 钟学斌 一种低温热能回收利用机组及方法
CN107288695A (zh) * 2016-04-01 2017-10-24 沈自全 一种环保温差发动机
CN106628276A (zh) * 2016-11-01 2017-05-10 清华大学 一种航天器自驱动两相循环热控制系统
CN109681283A (zh) * 2019-02-18 2019-04-26 李方耀 一种低温温差能热能利用装置及方法
CN110905621A (zh) * 2019-11-29 2020-03-24 湖南友风新材料科技有限公司 一种原动机和做功方法
CN215109062U (zh) * 2019-11-29 2021-12-10 钟学斌 一种原动机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112502797A (zh) * 2019-11-29 2021-03-16 钟学斌 一种低损耗的原动机和做功方法

Also Published As

Publication number Publication date
WO2021104398A1 (zh) 2021-06-03
CN215109062U (zh) 2021-12-10
CN112502797A (zh) 2021-03-16
US20220412229A1 (en) 2022-12-29
JP7301232B2 (ja) 2023-06-30
CN112459856B (zh) 2024-02-27
WO2021104540A1 (zh) 2021-06-03
EP4067631A4 (en) 2024-02-21
JP2023507908A (ja) 2023-02-28
CN215109063U (zh) 2021-12-10
CN215109061U (zh) 2021-12-10
CN112459856A (zh) 2021-03-09
EP4067631A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
CN103930672B (zh) 利用空气热能输出动力、制冷、淡水的冷态发动机
JP6140710B2 (ja) 発電機
CA3208084A1 (en) Co2 gas-liquid phase transition-based multistage compression energy storage apparatus for converting thermal energy into mechanical energy
WO2009059562A1 (fr) Procédé de cyclage de type à détente pneumatique-thermique et son appareil
CN215109062U (zh) 一种原动机
EP2558689B1 (en) Generator
WO2008103638A1 (en) An engine
CA2895243C (en) Compressed air energy storage system
CN110905621A (zh) 一种原动机和做功方法
CN110905612A (zh) 一种低损耗的原动机和做功方法
CN111058915A (zh) 一种密封效果好的原动机和做功方法
CN101071007A (zh) 一个环境热能的合理利用体系
AU2020295027A1 (en) Thermoelectric device for storage or conversion of energy
CN2177815Y (zh) 温差能动机
CN116387689B (zh) 一种新能源电池组散热系统及散热方法
CN102146856A (zh) 斯特林低温高效发电装置
CN2510796Y (zh) 惯性储能气压返还式制冷压缩机
CN202073609U (zh) 一种基于朗肯循环的涡盘发动机系统
Rius-Alonso et al. SOLAR ADSORPTION REFRIGERATION USING METHANOL/ACTIVATED CHARCOAL
CN1058642A (zh) 太阳能压差制冷设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination