CN112458542B - 应用于热电器件的p型碲化铋基材料的表面处理剂及方法 - Google Patents

应用于热电器件的p型碲化铋基材料的表面处理剂及方法 Download PDF

Info

Publication number
CN112458542B
CN112458542B CN202011239999.7A CN202011239999A CN112458542B CN 112458542 B CN112458542 B CN 112458542B CN 202011239999 A CN202011239999 A CN 202011239999A CN 112458542 B CN112458542 B CN 112458542B
Authority
CN
China
Prior art keywords
bismuth telluride
type bismuth
roughening
based material
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011239999.7A
Other languages
English (en)
Other versions
CN112458542A (zh
Inventor
唐新峰
唐昊
鄢永高
张政楷
苏贤礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202011239999.7A priority Critical patent/CN112458542B/zh
Publication of CN112458542A publication Critical patent/CN112458542A/zh
Application granted granted Critical
Publication of CN112458542B publication Critical patent/CN112458542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/105Nitrates; Nitrites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种p型碲化铋基材料的表面处理剂,包括粗化液和除灰液两部分;所述粗化液的组成按体积百分比计包括:5~50%盐酸、5~40%双氧水、5~10%硝酸、余量为水;所述除灰液的组成按体积百分比计包括:5~50%氢氟酸、5~20%盐酸、5~10%硝酸、余量为水。该表面处理剂在使用时,粗化液和除灰液配合使用,洁净的p型碲化铋基晶片先浸入粗化液中,再浸入除灰液中,即可完成预处理,后续直接通过电镀或化学镀方式进行金属化连接。本发明提出的p型碲化铋基材料的表面处理剂及方法,避免了传统喷砂‑电弧喷涂处理较薄p型碲化铋基晶片时,容易导致晶片破损的问题,同时可以减少生产环节,提高成品率及生产效率,降低生产成本。

Description

应用于热电器件的p型碲化铋基材料的表面处理剂及方法
技术领域
本发明涉及热电器件领域,尤其涉及一种应用于热电器件的p型碲化铋基材料的表面处理剂及方法。
背景技术
随着工业技术水平的提高,越来越多的电子设备趋向微型化和柔性化方向发展。热电技术作为一种可实现热能与电能之间直接相互转换的新型能源技术,在目前的石油危机之后,越来越受到人们的广泛关注。热电器件具有结构简单、无噪音、无传动部件和响应速度快等一系列优点,同时可实现发电和致冷两种功能。目前,热电器件同样趋于微型化方向发展,更多的用于激光通信、电子工业、生物医疗及航空航天等领域,比如激光器的精确控温、物联网的节点电源、可穿戴电子设备的供能等。
传统的p型碲化铋基晶片表面处理分为两个阶段,预处理阶段和电镀处理阶段。其中预处理阶段又可称为电镀前处理阶段,传统方式为喷砂结合电弧喷涂镍,喷砂起粗化片材表面作用,电弧喷涂镍起预先沉积作用,便于后续电镀处理阶段的进行,这种处理方式一般用于常规热电器件的制作,而常规热电器件所需p型碲化铋基晶片厚度均超过1mm,然而对于微型热电器件来说,其所用p型碲化铋基晶片厚度小于1mm,甚至达到0.2mm。采用传统表面处理方式,会在喷砂过程中产生高压环境,在电弧喷涂过程中产生高温环境,极易造成p型碲化铋基晶片的破损,降低成品率和生产效率,同时增加生产环节和生产成本。因此,发展一种新型的p型碲化铋基晶片表面处理方式迫在眉睫。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种应用于热电器件的p型碲化铋基材料的表面处理剂及方法,处理工艺简便、对晶片不造成破损,尤其适宜规模化处理的应用于微型热电器件的p型碲化铋基材料的表面处理。
本发明为解决上述提出的问题所采用的技术方案为:
一种应用于热电器件的p型碲化铋基材料的表面处理方法,包括以下步骤:
配置p型碲化铋基晶片粗化溶液,粗化液包括5~50%盐酸(体积)、5~50%双氧水(体积)、5~10%硝酸(体积)、余量为水;
配置p型碲化铋基晶片除灰溶液,除灰液包括5~50%氢氟酸(体积)、5~20%盐酸(体积)、5~10%硝酸(体积)、余量为水;
将洁净的p型碲化铋基晶片浸入粗化液中进行粗化;
再将经过粗化后的p型碲化铋基晶片浸入除灰液中进行除灰;
除灰后的p型碲化铋基晶片即完成表面处理,可直接通过电镀或化学镀方式进行金属化连接。
按上述方案,所述洁净的p型碲化铋基晶片为预先经过水洗以及丙酮和无水乙醇等溶剂洗涤的p型碲化铋基晶片,除去了表面的油脂等污物或杂质。
按上述方案,所述硝酸为分析纯,浓度65~68%;盐酸为分析纯,浓度35~40%;双氧水为分析纯,浓度25~35%;氢氟酸为分析纯,浓度35~45%。
优选地,p型碲化铋基晶片粗化液,所述盐酸10%(体积),所述双氧水40%(体积),所述硝酸5%(体积)、余量为水。
优选地,p型碲化铋基晶片粗化所需温度为30℃,粗化时间为5min。
优选地,p型碲化铋基晶片除灰液,所述氢氟酸50%(体积)、所述盐酸10%(体积)、所述硝酸5%(体积)、余量为水。
优选地,p型碲化铋基晶片除灰所需温度为25℃,除灰时间5min。
以上述内容为基础,在不脱离本发明基本技术思想的前提下,根据本领域的普通技术知识和手段,对其内容还可以有多种形式的修改、替换或变更。比如p型碲化铋基晶片的制备方式包括区熔和粉末冶金等,本发明不限定p型碲化铋基晶片的制备方式。
在微型热电器件中,半导体与金属间的连接一直是关键技术问题。连接技术的好坏直接影响器件的发电与致冷性能,器件服役性能与可靠性。本发明采用化学粗化和除灰进行p型碲化铋基晶片表面处理,后续直接通过电镀或化学镀方式进行金属化连接,提升了界面结合强度,有效降低了界面接触电阻和界面接触热阻,这对于制备高性能微型热电器件是非常有益处的。
与现有技术相比,本发明的有益效果是:
1.本发明在不损伤晶片完整性的前提下,提高p型碲化铋基热电晶片的表面粗糙度,提升后续镍层与p型碲化铋基晶片的界面结合强度,有效降低了界面接触电阻和界面接触热阻,使热电器件的使用寿命,循坏次数及性能得到优化;
2.本发明溶液配置简便,方便操作,由于化学法除去表面轻微的氧化膜,使得片材表面活性提高,可减少电弧喷涂预先沉积镍这一工艺流程,可通过定期分析检测进行溶液管理,适合规模化生产。
因此,本发明提出的p型碲化铋基材料的表面处理剂及方法,避免了传统喷砂-电弧喷涂处理较薄p型碲化铋基晶片时,容易导致晶片破损的问题,同时可以减少生产环节,提高成品率及生产效率,降低生产成本理。
附图说明
图1为实施例1中步骤1)所用p型碲化铋基晶片照片;
图2为实施例1中步骤1)所用p型碲化铋基晶片的粗糙度测试结果;
图3为实施例1中步骤2)所得p型碲化铋基晶片的粗糙度测试结果;
图4为实施例1中步骤3)所得镀镍镀金后的p型碲化铋基晶片照片;
图5为实施例1中步骤4)中p型碲化铋基晶片的百格刀试验结果;
图6为实施例1中步骤5)所制作出的微型热电器件;
图7为实施例2中步骤1)所用p型碲化铋基晶片的表面SEM形貌图;
图8为实施例2中步骤2)所得化学处理完后的p型碲化铋基晶片的表面SEM形貌图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例中,所用硝酸AR分析纯,浓度65~68%;浓盐酸为AR分析纯,浓度36~38%;双氧水为AR分析纯,浓度30%;氢氟酸为AR分析纯,浓度40%。
实施例1
一种p型碲化铋基材料的表面处理方法,它包括以下步骤:
1)直径30mm,厚度0.3mm的半圆形p型碲化铋基晶片,经丙酮洗涤脱脂除去表面污染物、无水乙醇脱水、干燥后采用OLS5000激光扫描显微镜进行表面粗糙度测试,其面粗糙度Sa为0.197μm,随后浸入粗化液(粗化液的组成为盐酸10%(体积)、双氧水40%(体积)、硝酸5%(体积)、余量为水)中,粗化温度30℃,粗化时间5min;
2)将步骤1)中粗化后的p型碲化铋基晶片转入除灰液(除灰液的组成为氢氟酸50%(体积)、盐酸10%(体积)、硝酸5%(体积)、余量为水)中进行除灰处理,除灰温度25℃,除灰时间5min,随后采用OLS5000激光扫描显微镜进行表面粗糙度测试,其面粗糙度Sa为0.649μm;
3)将步骤2)中除灰后的p型碲化铋基晶片放入电镀液中预先电镀镍,随后进行化学镀镍、电镀金,其中,
电镀镍的具体条件如下:硫酸镍200g/L;氯化镍45g/L;硼酸45g/L,8000#A半光亮镍开缸剂10mL/L,8000#B半光亮镍补充剂0.8mL/L,低泡润湿剂1mL/L,pH值4.0,温度55℃,阴极电流密度3A/dm2,3min;
化学镀镍的具体条件如下:硫酸镍0.095mol/L,次磷酸钠0.227mol/L,琥珀酸0.135mol/L,苹果酸0.179mol/L,pH 6,温度90℃,40min;
电镀金的具体条件如下:金氰化钾15g/L,柠檬酸35g/L,柠檬酸钾55g/L,pH 4.5,温度50℃,阴极电流密度1.3A/dm2,10min;
4)将步骤3)中得到的镀镍镀金的p型碲化铋基晶片进行QFH-A百格刀试验(根据ISO2409-1992标准设计制造,适用于GB/T9286-98、BS 3900E6、ASTM D3359),以“ISO/ASTM等级”评价镀层结合强度,其百格刀试验结果显示达到1/4B级别,在切口的相交处有小片剥落,划格区内实际破损不超过5%;
5)将步骤3)中得到的镀镍镀金的p型碲化铋基晶片进行一个8×8mm2微型热电器件的组装,并测试其致冷性能。
图1为实施例1中步骤1)所用p型碲化铋基晶片照片,可以看到表面有明显切割痕迹;
图2为实施例1中步骤1)所用p型碲化铋基晶片的粗糙度测试结果,粗糙度Sa为0.197μm;
图3为实施例1中步骤2)所得p型碲化铋基晶片的粗糙度测试结果,经表面酸洗后,粗糙度增大到0.649μm;
图4为实施例1中步骤3)所得镀镍镀金后的p型碲化铋基晶片照片;
图5为实施例1中步骤4)中p型碲化铋基晶片的百格刀试验结果,为1/4B等级,满足微电子行业标准;
图6为实施例1中步骤5)所制作出的微型热电器件;
表1为实施例1中步骤5)所制作出的微型热电器件的致冷性能,最大制冷温差达58℃。
表2为采用传统方式制作出的微型热电器件的致冷性能。传统方式的制备过程是喷砂+电弧喷涂+电镀镍+化学镀镍+化学镀金,即没有采用实施例1步骤(1)和(2)进行表面处理,而是采用喷砂+电弧喷涂镍的预处理方式(喷砂采用320目球型玻璃珠磨料,压力0.05MPa;电弧喷涂工艺:采用Φ1.2 mm镍丝,工作电压25V,工作电流90A,空气压力0.65MPa,喷枪电压9V),后续处理工艺一致。
由表1和表2对比,可以看到传统方式制作出的器件,电阻增加0.445Ω,主要由接触电阻贡献,最大制冷温差为55℃,减小3℃。因此,本发明所述表面处理方法,在不损伤晶片完整性的前提下,有效降低了界面接触电阻,说明表面处理后的p型碲化铋基晶片与后续镍层的界面接触性能提高了。
表1
Figure BDA0002768125950000061
表2
Figure BDA0002768125950000062
Figure BDA0002768125950000071
实施例2
一种p型碲化铋基材料的表面处理方法,它包括以下步骤:
1)直径30mm,厚度0.3mm的半圆形p型碲化铋基晶片,经丙酮洗涤脱脂除去表面污染物、无水乙醇脱水、干燥后采用SEM进行形貌观察,随后浸入粗化液(粗化液的组成为盐酸20%(体积)、双氧水30%(体积)、硝酸5%(体积)、余量为水)中,粗化温度30℃,粗化时间10min;
2)将步骤1)中粗化后的p型碲化铋基晶片转入除灰液(除灰液的组成为氢氟酸40%(体积)、盐酸10%(体积)、硝酸5%(体积)、余量为水)中进行除灰处理,除灰温度25℃,除灰时间10min,随后采用SEM继续形貌观察;
3)将步骤2)中除灰后的p型碲化铋基晶片放入电镀液中预先电镀镍,随后进行化学镀镍、电镀金(电镀镍、化学镀镍、电镀金的具体条件与实施例1相同);
4)将步骤3)中得到的镀镍镀金的p型碲化铋基晶片进行QFH-A百格刀试验,其百格刀试验结果显示达到1/4B级别,在切口的相交处有小片剥落,划格区内实际破损不超过5%;
5)将步骤3)中得到的镀镍镀金的p型碲化铋基晶片进行一个8×8mm2微型热电器件的组装,并测试其致冷性能。
图7为实施例2中步骤1)所用p型碲化铋基晶片SEM形貌图,可以看到表面有明显切割划痕;
图8为实施例2中步骤2)所得化学处理完后的p型碲化铋基晶片的SEM形貌图,可以看到化学处理后切割划痕消失;
表3为实施例2中步骤5)所制作出的微型热电器件的致冷性能,最大制冷温差达57.8℃。
表3
Figure BDA0002768125950000081
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (4)

1.一种p型碲化铋基材料的表面处理剂,其特征在于包括粗化液和除灰液两部分;所述粗化液的组成按体积百分比计包括:5~20%盐酸、20~40%双氧水、5~10%硝酸、余量为水;所述除灰液的组成按体积百分比计包括:30~50%氢氟酸、5~20%盐酸、5~10%硝酸、余量为水;
所述硝酸的质量百分浓度为60~70%;盐酸的质量百分浓度为30~40%;双氧水的质量百分浓度为20~40%;氢氟酸的质量百分浓度为30~50%。
2.一种p型碲化铋基材料的表面处理方法,其特征在于采用权利要求1所述的表面处理剂对p型碲化铋基晶片进行预处理,首先将洁净的p型碲化铋基晶片先浸入粗化液中,再浸入除灰液中,即可完成预处理,后续直接通过电镀或化学镀方式进行金属化连接。
3.根据权利要求2所述的一种p型碲化铋基材料的表面处理方法,其特征在于p型碲化铋基晶片浸入粗化液中,粗化液温度为20~35℃,粗化时间为1~15min。
4.根据权利要求2所述的一种p型碲化铋基材料的表面处理方法,其特征在于将经过粗化液处理的p型碲化铋基晶片浸入除灰液中,除灰液温度为20~30 ℃,除灰时间1~10 min。
CN202011239999.7A 2020-11-09 2020-11-09 应用于热电器件的p型碲化铋基材料的表面处理剂及方法 Active CN112458542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011239999.7A CN112458542B (zh) 2020-11-09 2020-11-09 应用于热电器件的p型碲化铋基材料的表面处理剂及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011239999.7A CN112458542B (zh) 2020-11-09 2020-11-09 应用于热电器件的p型碲化铋基材料的表面处理剂及方法

Publications (2)

Publication Number Publication Date
CN112458542A CN112458542A (zh) 2021-03-09
CN112458542B true CN112458542B (zh) 2022-08-02

Family

ID=74825232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011239999.7A Active CN112458542B (zh) 2020-11-09 2020-11-09 应用于热电器件的p型碲化铋基材料的表面处理剂及方法

Country Status (1)

Country Link
CN (1) CN112458542B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561257A (zh) * 2021-11-15 2022-05-31 杭州大和热磁电子有限公司 一种碲化铋的表面处理剂及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701348B (zh) * 2009-06-26 2012-05-23 上海申和热磁电子有限公司 用于半导体n\p型致冷晶片表面电镀前处理的粗化液及相关的电镀前处理工艺
TWI545813B (zh) * 2014-08-04 2016-08-11 中國鋼鐵股份有限公司 熱電材料的表面粗化方法
CN107227475A (zh) * 2017-05-22 2017-10-03 广东省稀有金属研究所 一种碲化铋基热电材料晶片的表面处理方法
CN107723767B (zh) * 2017-09-29 2019-04-30 广东先导稀贵金属材料有限公司 碲铋基晶片的表面处理方法

Also Published As

Publication number Publication date
CN112458542A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN102345145B (zh) 钼铜合金表面电镀的方法
CN112458541B (zh) 一种n型碲化铋基热电材料的表面处理剂及方法
CN111334795B (zh) 一种金刚石铝复合材料表面镀覆工艺
CN112376098B (zh) 一种钼铜合金表面电镀的方法
CN112458542B (zh) 应用于热电器件的p型碲化铋基材料的表面处理剂及方法
CN114108051B (zh) 一种耐腐蚀性混酸阳极氧化工艺
CN110743913A (zh) 一种铜铝复合装饰材料的生产工艺
CN107723767B (zh) 碲铋基晶片的表面处理方法
CN112376090A (zh) 一种铜基镀钯镍合金键合丝的制备方法
CN113337817A (zh) 铜金刚石的电镀工艺
CN110552030B (zh) 一种铜铝电接触件及其制备方法
CN111215856A (zh) 一种钢芯线镀铜再镀锌的电极丝及生产工艺
EP4148165B1 (en) Method for preparing heat dissipation component with high flexibility made of graphite or graphene material
CN116043296A (zh) 一种钼铜合金电镀镍的方法
CN115968245A (zh) 一种基于锚固效应提高n型碲化铋基热电元件金属化连接强度的方法
CN115505975A (zh) 一种硅太阳能电池片的电镀方法
CN104466589A (zh) 一种可伐合金玻封连接器镀镍方法
CN113235141B (zh) 一种铁基材滚镀镍镀金工艺
US6884542B1 (en) Method for treating titanium to electroplating
CN115044892B (zh) 一种金刚石微槽热沉器件的表面改性方法
CN114561257A (zh) 一种碲化铋的表面处理剂及其使用方法
CN107287580A (zh) 一种铝基复合材料的化学镀镍方法
CN115182033A (zh) 一种碲化铋基材料的电解抛光表面处理方法
CN109951947B (zh) 一种反射陶瓷电路板及其加工方法
CN116288554A (zh) 一种热压石墨件表面电镀镍方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant