CN112457007A - 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法 - Google Patents

一种预合成双晶相混合共烧制备高性能压电陶瓷的方法 Download PDF

Info

Publication number
CN112457007A
CN112457007A CN202011396457.0A CN202011396457A CN112457007A CN 112457007 A CN112457007 A CN 112457007A CN 202011396457 A CN202011396457 A CN 202011396457A CN 112457007 A CN112457007 A CN 112457007A
Authority
CN
China
Prior art keywords
phase
crystal phase
synthesizing
site
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011396457.0A
Other languages
English (en)
Other versions
CN112457007B (zh
Inventor
李坤
包国翠
李政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202011396457.0A priority Critical patent/CN112457007B/zh
Publication of CN112457007A publication Critical patent/CN112457007A/zh
Application granted granted Critical
Publication of CN112457007B publication Critical patent/CN112457007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及超声换能器、超声传感器领域。具体涉及一种预合成双晶相混合共烧制备高性能压电陶瓷的方法。本发明先选取目标组成,利用相平衡计算方法的杠杆原理,选取其准同型相界两侧晶相所对应的化学成份,再研磨到合适的粒径,然后将其混合烧结,制备出两种晶相占比可控的压电陶瓷。该方法制造的压电陶瓷具有比传统方法制造的陶瓷更高的压电性能。工艺的重复性更好,也能较好的控制焦绿石相的产生,从而保证了产品压电性能的稳定性。

Description

一种预合成双晶相混合共烧制备高性能压电陶瓷的方法
技术领域
本发明涉及超声换能器、超声传感器领域。具体涉及一种预合成双晶相混合共烧制备高性能压电陶瓷的方法。
背景技术
压电功能材料在超声成像、无损探伤、超声流量检测、超声距离探测、超声马达和超声破碎等领域有着广泛的应用。通常,超声换能器中所使用的功能材料为压电陶瓷、压电晶体、磁致伸缩材料和压电高分子。
实用的压电晶体包括:铌镁酸铅-钛酸铅、铌锌酸铅-钛酸铅、铌铟酸铅-钛酸铅、钽酸锂、铌酸锶钡、石英、氧化碲、氧化锌等。其中,复合铌酸盐系列具有非常高的压电性能,压电应变常数高达3000pC/N,机电转换系数超过0.91;但是单晶、尤其是大尺寸单晶的制造非常困难。
实用的磁致伸缩材料主要是镝铁合金系列和铁酸钴系列。镝铁合金系具有非常高的磁致伸缩系数,但需要用电磁驱动,只适合尺寸较大的低频超声器件。
实用的压电陶瓷主要包括:锆钛酸铅系列、铌镍酸铅-锆钛酸铅、铌镁酸铅-锆钛酸铅、铌锌酸铅-锆钛酸铅、钛酸钡系列、铌酸锶钡等。其中,锆钛酸铅系列和多元系复合陶瓷具有较高的压电性能,其压电应变常数在250-1500pC/N,机电转换系数在0.50-0.81。压电陶瓷的制造工艺难度不大,成本低,已经广泛应用于超声清洗、超声成像、无损探伤、超声流量检测、超声距离探测、超声马达和超声破碎等。但是,实际生产中发现:传统的混合氧化物预烧工艺很难保证不同批次产品中共存的两种晶相的比例统一性,因此,产品的性能波动较大。在烧结过程中,陶瓷由高温冷却到室温经历了由立方顺电晶相到三方或者四方晶相的转变。一般来说,B位离子钛、锆和铌的价态高,扩散能力差。而含这些元素的氧化物原材料的硬度大,氧化物粉体颗粒的直径在2-5微米范围。虽然在预烧工艺中,通过铅的氧化物在823-850℃形成的液相可以促使其相互扩散,加上预烧料的二次球磨可以提高材料体系的均匀性,但不同微区的钛/锆离子比例偏离设计的化学计量比必然存在。钛离子比例高的地方倾向于形成四方晶相,锆离子比例高的地方倾向于形成三方晶相。这就造成化学组成在准同型相界附近(相界两侧)出现两相共存。但两相的比例易受工艺条件的影响,进而影响陶瓷性能的统一性。另外,掺杂元素的分布也影响压电陶瓷材料的电学性能。某些体系中,成份或掺杂元素的梯度分布也会提高材料的压电性能。再则,有些多元系压电陶瓷体系,掺杂元素的引入会造成焦绿石相的产生。例如PMN-PT体系中引入镧系元素(镧、钐、钕等)就会诱发焦绿石相的产生,从而导致压电性能劣化。
发明内容
影响压电器件性能的因素主要有:压电元件性能、器件结构设计、匹配材料选用等。锆钛酸铅系列及其多元系复合陶瓷在准同型相界附近有较高的压电性能。其主要原因是陶瓷体系中两种晶相共存,电畴的取向自由度高,在极化过程中的翻转难度降低,极化后电畴取向度提高。
对于锆钛酸铅基、铌镁酸铅-钛酸铅基、铌镍酸铅-钛酸铅基、铌锌酸铅-钛酸铅基、铌镍酸铅-锆钛酸铅、铌镁酸铅-锆钛酸铅、铌锌酸铅-锆钛酸铅基压电陶瓷,在三方/四方相界附近其压电活性最高。电致伸缩性能也最大。
针对上述多元压电陶瓷体系,本发明提供了一种预合成双晶相混合共烧制备高性能压电陶瓷的方法,具体方法为:
(1)首先在准同型相界线上选取目标组成,再利用相平衡计算方法中的杠杆原理,选取准同型相界两侧适当距离处晶相所对应的化学成份。例如:对于(Pb1-1.5xLax)(Ti1-y-zZryNbz)O3体系,相图为图1。选取准同型相界组成为o点处。如果选择左侧组成为a,则右侧的化学组成必须选择在ao连线的延长线上。如选择aˊ,且符合杠杆规则:
a点摩尔质量Ma×ao长度=aˊ摩尔质量Maˊ×aˊo长度
同时,对于图1体系要提高压电性能,选择连线ao小于aˊo,对应的Ma大于Maˊ。
同理如果选择左侧组成为b,则右侧的化学组成bˊ必须选择在bo连线的延长线上。且符合杠杆规则:
b点摩尔质量Mb×bo长度=bˊ摩尔质量M×bˊo长度。
如果b点在四方相一侧,则要选择连线bo小于bˊo,对应的Mb大于Mbˊ。
然后,按照传统工艺分别用原料预合成两种晶相材料。
(2)将预合成的两种晶相材料按照设计的摩尔比混合,使混合粉体中所含元素的总比例符合准同型相界处的化学组成。将混合粉体球磨粉碎到合适颗粒尺寸(平均粒径0.2-2.0微米);经过成型,脱胶,烧结,制备出两种晶相占比可控的压电陶瓷材料。
同样的原理可以制备Pb1-xBaxZr1-yTiyO3系列陶瓷,该陶瓷的相图如图2,制备工艺为:
(1)选择准同型相界两侧附近合适的化学组成;
(2)控制两相的比例;
(3)所制备的粉体粒径在合适的范围。
可以对所选择的两个晶相材料分别掺杂,或其中一个掺杂,然后混合、成型烧结,制备出非均匀掺杂的陶瓷体系。
传统方法中,镧系元素掺杂铌镁酸铅-钛酸铅系陶瓷时通常诱发大量的焦绿石杂相。本发明方法可以通过调整A和B位元素比例,合成出掺杂镧系元素、且形成纯净的钙钛矿晶相的粉体,然后制备出晶相纯净的铌镁酸铅-钛酸铅系陶瓷。可以有效控制多元系压电陶瓷中焦绿石相的产生。所制造的不同批次陶瓷产品性能统一性大幅提高,陶瓷的压电应变常数更高。
方法一:
一般来说,多元系压电陶瓷体系中A位离子和B位离子各自的配比都会影响体系的晶相。可以通过改变A位离子比例制备晶相在准同型相界两侧的材料。也可以通过改变B位离子比例制备晶相在准同型相界两侧的材料。具体方法如下:
(1)选取准同型相界处陶瓷材料的化学式(A1-xAx′)(B1-yBy′)O3;其中A、A′、B、B′分别代表两种A位离子和B位离子。
(2)如果通过A位离子含量来调控晶相比例,其工艺过程为:保持y不变,先预合成化学式为(A1-x1Ax1′)(B1-yBy′)O3和(A1-x2Ax2′)(B1-yBy′)O3的两种粉体;其中x1>x>x2,使得这两种粉体的组成处在准同型相界两侧,以保证所制备的粉体各自为纯净单一晶相。再将两种粉体按照设计的比例混合,w(A1-x1A′x1)(B1-yBy′)O3–p(A1-x2Ax2′)(B1-yBy′)O3。其中,w和p为摩尔分数。粉料混合必须满足:wx1+px2=x。混合粉体经过球磨、成型、脱胶、烧结、制备出相应的压电陶瓷材料。
(3)如果通过B位离子含量来调控晶相比例,其工艺过程为:保持x不变,先预合成化学式为(A1-xAx′)(B1-y1By1′)O3和(A1-xAx′)(B1-y2By2′)O3的两种粉体;其中y1>y>y2,使得这两种粉体的化学组成处在准同型相界两侧,以保证所制备的粉体为纯净单一晶相。再将两种粉体按照设计的比例混合,q(A1-xA′x)(B1-y1By1′)O3–u(A1-xAx′)(B1-y2By2′)O3。其中q和u为摩尔分数。粉料混合必须满足:qy1+uy2=y。混合粉体经过球磨、成型、脱胶、烧结、制备出相应的压电陶瓷材料。
方法二:
制备非均匀掺杂的陶瓷体系。具体方法如下:
(1)陶瓷材料的化学式(A1-xFx)(B1-yGy)O3;其中A、B分别代表陶瓷基体的A位离子和B位离子。F和G代表A位和B位的掺杂离子。
(2)如果制备A位离子非均匀掺杂,其工艺过程为:保持y不变,先预合成化学式为(A1-x1Fx1)(B1-yGy)O3和(A1-x2Fx2)(B1-yGy)O3的两种粉体;其中0≤x1<x,x<x2。再将两种粉体按照设计的比例混合,w(A1-x1Fx1)(B1-yGy)O3–p(A1-x2Fx2)(B1-yGy)O3,其中w和p为摩尔分数。粉料混合必须满足:wx1+px2=x。混合粉体经过球磨、成型、脱胶、烧结、制备出相应的压电陶瓷材料。
(3)如果制备B位离子非均匀掺杂体系,其工艺过程为:保持y不变,先预合成化学式为(A1-xFx)(B1-y1Gy1)O3和(A1-xFx)(B1-y2Gy2)O3的两种粉体;其中0≤y1<y,y<y2。再将两种粉体按照设计的比例混合,w(A1-xFx)(B1-y1Gy1)O3–p(A1-xFx)(B1-y2Gy2)O3,其中w和p为摩尔分数。粉料混合必须满足:wy1+py2=y。混合粉体经过球磨、成型、脱胶、烧结、制备出相应的压电陶瓷材料。
有益效果
(1)本发明所述的方法可以调控晶相比例,制备出压电性能更加优异的压电陶瓷产品。
(2)本发明方法可以提高不同批次产品的压电性能的均一性。
(3)本发明方法可以制备非均匀掺杂压电陶瓷体系,提高陶瓷的压电性能。
(4)本发明方法可以制备出主晶相化学组成梯度分布的陶瓷,也可以制备掺杂元素梯度分布的压电陶瓷。为高压电活性陶瓷的研发开辟了一条新的途径。
附图说明
图1为(Pb1-1.5xLax)(Ti1-y-z ZryNbz)O3陶瓷的相图;
图2为Pb1-xBaxZr1-yTiyO3陶瓷相图;
图3为本发明方法制备的PMN-PST陶瓷的XRD理论与计算结果对比图;
图4为PMN-PST陶瓷X射线衍射四方相(111)峰放大图;
图5为PMN-PST陶瓷X射线衍射四方相(102)(201)峰放大图;
图6为传统工艺制备的PMN-PST陶瓷的XRD理论与计算结果对比图.
具体实施方式
实施例1
PLZT陶瓷
选取化学式为(Pb1-1.5xLax)(Ti1-y-z ZryNbz)O3。其中x=0.07,y=0.60,z=0.02;
用氧化物原料分别制备一号粉体(Pb1-1.5x1Lax1)(Ti1-y-z ZryNbz)O3(x1=0.055,y=0.60,z=0.02)和二号粉体(Pb1-1.5x2Lax2)(Ti1-y-z ZryNbz)O3(x2=0.08,y=0.60,z=0.02)。预烧条件:温度880℃,保温4小时。对于镧的含量:0.055×0.4+0.08×0.6=0.07。
将一号粉体和二号粉体按照摩尔比0.4/0.6混合,用尼龙罐和氧化锆珠球磨4小时。激光粒径分析仪测得粉体平均粒径为1.9μm。粉体干燥后于500℃热解1小时,除去有机物。按照聚乙烯醇固体(PVA)/陶瓷粉质量比1.5/100加入5%PVA水溶液,造粒;在400MPa压力下成型,于600℃脱胶2小时。然后,把圆片样品叠放于氧化铝坩埚中,用相同组分的粉体包埋并密封坩埚;以5℃/min升温到850℃,保温2小时;以3.5℃/min升温到1280℃,保温1.5小时,自然冷却。
陶瓷经打磨、切割、焙银电极、极化(条件为3.0kV/mm,15分钟)后测量其电学性能。其中,直径23.0mm,厚度1.5mm的圆片样品用于测量机电转换系数Kp、介电常数εr、介电损耗Tanδ、和机械品质因数Qm。用陶瓷片切割出的1.5x1.5x6mm3长棒样品用于测量压电应变常数。每组样品不少于7个。性能列于下表并与传统的一次预烧进行对比。对样品制备工艺重复四次,数据列于表1。
粉体粒径对陶瓷的烧结条件、晶相比例调控、致密度、压电性能有很大影响。本实例所用粉体的最佳粒径D50在1.0-2.0μm。当粉体粒径大于5μm时,气孔率增高。所制备的陶瓷性能大幅下降,烧结时间对陶瓷的性能影响较大。长时间的高温导致离子扩散均匀化,晶粒变大,气孔率提高,气孔增大,陶瓷性能劣化。
同样工艺重复四次,以检验工艺可靠性。
作为对比,PLZT陶瓷的传统工艺为:按照化学计量比准确称取四氧化三铅、二氧化钛、二氧化锆、三氧化二镧、五氧化二铌粉体。粉体粒径必须小于5微米。用球磨机研磨混合均匀。抽滤,干燥,装入刚玉坩埚中,于880℃预烧4小时。再将预烧料用球磨机研磨到颗粒直径小于1微米。加入PVA水溶液,以陶瓷总质量计算,PVA含量为1.5%。喷雾造粒。在400MPa压力下成型。陶瓷坯叠放于刚玉板上,于600℃脱胶4小时。将刚玉坩埚倒扣于陶瓷坯上密封;以3.5℃/min升温到880℃,保温2小时,再以2.5℃/min升温到1280℃,保温1.5小时自然冷却。烧银电极,极化等条件与上述工艺相同。
同样工艺重复四次,以检验工艺可靠性。
表1新工艺与传统工艺制备的PLZT陶瓷性能对照表
Figure BDA0002815420170000071
Figure BDA0002815420170000081
实施例2
锶钡改性PZT陶瓷
选取化学式为PbQBaxSryTiAZrBNbCSbDO3,其中x=0.10,y=0.08,Q=1-x-y-1/2(C+D),A=0.425,B=0.545,C=0.015,D=0.015)。
用氧化物原料分别制备一号粉体(x=0.10,y=0.08,Q=0.805,A=0.405,B=0.565,C=0.015,D=0.015)和二号粉体(x=0.10,y=0.08,Q=0.805,A=0.445,B=0.525,C=0.015,D=0.015)。预烧条件:温度880℃,保温4小时。
以钛含量计算:0.5×0.405+0.5×0.445=0.425
以锆含量计算:0.5×0.565+0.5×0.525=0.545
将一号粉体和二号粉体按照摩尔比0.5/0.5混合,用尼龙罐和氧化锆珠球磨4小时。粉体干燥后于500℃热解1小时,除去有机物。按照聚乙烯醇固体(PVA)/陶瓷粉质量比1.5/100加入5%PVA水溶液,造粒;在400MPa压力下成型,于600℃脱胶2小时。然后,把圆片样品叠放于氧化铝坩埚中,用相同组分的粉体包埋并密封坩埚;以5℃/min升温到850℃,保温2小时;以3.5℃/min升温到1295℃,保温2.0小时,自然冷却。
陶瓷经打磨、切割、焙银电极、极化(条件为2.8kV/mm,15分钟)后测量其电学性能。其中直径23.0mm,厚度1.5mm的圆片样品用于测量机电转换系数Kp、介电常数εr、介电损耗Tanδ、和机械品质因数Qm。用陶瓷片切割出的1.5x1.5x6mm3长棒样品用于测量压电应变常数。每组样品不少于5个。性能列于下表并与传统的一次预烧进行对比。对样品制备工艺重复四次,数据列于表2。
表2新工艺与传统工艺制备的锶钡改性PZT陶瓷性能对照表
Figure BDA0002815420170000091
实施例3
选取化学式为:
新1:Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3
两个晶相及比例
0.7×Pb(Mg1/3Nb2/3)0.67Ti0.33O3-0.3×Pb0.87505Sm0.0833(Mg1/3Nb2/3)0.8367Ti0.1633O3
新2:Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3
两个晶相及比例
0.6×Pb(Mg1/3Nb2/3)0.67Ti0.33O3-0.4×Pb0.90625Sm0.0625(Mg1/3Nb2/3)0.795Ti0.205O3
新3:Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3
两个晶相及比例
0.5×Pb(Mg1/3Nb2/3)0.67Ti0.33O3-0.5×Pb0.925Sm0.05(Mg1/3Nb2/3)0.77Ti0.23O3
新4:Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3
两个晶相及比例
0.4×Pb(Mg1/3Nb2/3)0.67Ti0.33O3-0.6×Pb0.9375Sm0.0417(Mg1/3Nb2/3)0.7533Ti0.2467O3
Pb0.9625Sm0.025(Mg1/3Nb2/3)0.72Ti0.28O3陶瓷用传统的混合氧化物烧结法很难获得晶相纯净的压电陶瓷。本实例作为对照实验。
制备过程如下:
按照化学式先合成铌酸镁。按照化学计量比称取五氧化二铌、碱式碳酸镁,球磨混料。于1200℃煅烧4小时。球磨到颗粒直径小于2微米。
晶相1和晶相2的合成:
按照化学计量比准确称取四氧化三铅、二氧化钛、上述合成铌酸镁(晶相二添加三氧化二钐)。用球磨机研磨混合均匀。抽滤,干燥,装入刚玉坩埚中,于880℃预烧4小时。再将预烧料用球磨机研磨到颗粒直径1-2微米。
按照摩尔比称取晶相1和晶相2,球磨混料。加入PVA水溶液,以陶瓷总质量计算,PVA含量为1.5%。喷雾造粒。在400MPa压力下成型。陶瓷坯叠放于刚玉板上,于600℃脱胶4小时。将刚玉坩埚倒扣于陶瓷坯上密封;以3.5℃/min升温到880℃,保温2小时,再以2.5℃/min升温到1250℃,保温1.5小时.自然冷却。
陶瓷经打磨、切割、焙银电极、极化(条件为2.8kV/mm,15分钟)后测量其电学性能。其中直径23.0mm,厚度1.5mm的圆片样品用于测量机电转换系数Kp、介电常数εr、介电损耗Tanδ、和机械品质因数Qm。用陶瓷片切割出的1.5x1.5x6mm3长棒样品用于测量压电应变常数。每组样品不少于5个。性能列于下表并与传统的一次预烧进行对比。对样品制备工艺重复四次,数据列于表4。
对比实验样品按照传统工艺制备。先合成铌酸镁,再按照化学式的配比将氧化铅、铌酸镁、二氧化钛、三氧化二钐混合,预烧,球磨、制备出陶瓷粉体。按照上述的陶瓷制备工艺制备陶瓷并测量物理性能。
XRD结果显示,新工艺制备样品的晶相为纯净的钙钛矿结构,主晶相为四方相,如图3。存在少量三方相,如图4和图5。
衍射结果经wincell计算与原XRD结果完全匹配。而传统工艺制备的样品晶相含有一定量的焦绿石相,如图6。
表3新工艺与传统工艺制备PMN-PSmT陶瓷粉体化学式
Figure BDA0002815420170000111
表4新工艺与传统工艺制备的PMN-PSmT陶瓷性能对照表
Figure BDA0002815420170000112

Claims (6)

1.一种预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,所述方法为:
(1)选取目标组成,利用相平衡计算方法的杠杆原理,选取其准同型相界两侧晶相所对应的化学成份,分别用相应原料预合成两种晶相材料;
(2)将步骤(1)的两种晶相材料按照摩尔比混合,并粉碎到颗粒尺寸为0.2-2.0微米,经干压成型,脱胶,烧结,制得压电陶瓷材料。
2.根据权利要求1所述预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,步骤(1)预合成两种晶相材料的方法为:
①选取准同型相界处或稍微偏离相界处陶瓷材料的化学式(A1-xAx′)(B1-yBy′)O3;其中A、A′、B、B′分别代表两种A位离子和B位离子;
②如果通过A位离子含量来调控晶相比例,其工艺过程为:保持y不变,先预合成化学式为(A1-x1Ax1 )(B1-yBy′)O3和(A1-x2Ax2′)(B1-yBy′)O3的两种粉体;其中x1>x>x2,使得这两种粉体的组成处在准同型相界两侧;
③如果通过B位离子含量来调控晶相比例,其工艺过程为:保持x不变,先预合成化学式为(A1-xAx′)(B1-y1By1′)O3和(A1-xAx′)(B1-y2By2′)O3的两种粉体;其中y1>y>y2,使得这两种粉体的化学组成处在准同型相界两侧。
3.根据权利要求1所述预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,步骤(1)对两种预合成晶相材料分别掺杂或其中一个掺杂。
4.根据权利要求3所述预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,预合成两种晶相材料的方法为:
①陶瓷材料的化学式(A1-xFx)(B1-yGy)O3;其中A、B分别代表陶瓷基体的A位离子和B位离子,F和G代表A位和B位的掺杂离子;
②如果制备A位离子非均匀掺杂,其工艺过程为:保持y不变,先预合成化学式为(A1- x1Fx1)(B1-yGy)O3和(A1-x2Fx2)(B1-yGy)O3的两种粉体;其中0≤x1<x,x<x2;
③如果制备B位离子非均匀掺杂体系,其工艺过程为:保持y不变,先预合成化学式为(A1-xFx)(B1-y1Gy1)O3和(A1-xFx)(B1-y2Gy2)O3的两种粉体;其中0≤y1<y,y<y2。
5.根据权利要求1所述预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,步骤(2)将两种晶相材料按照比例混合,q(A1-xA′x)(B1-y1By1′)O3–u(A1-xAx′)(B1-y2By2′)O3,其中q和u为摩尔分数,粉料混合必须满足:qy1+uy2=y。
6.根据权利要求1所述预合成双晶相混合共烧制备高性能压电陶瓷的方法,其特征在于,步骤(2)将两种晶相材料按照比例混合,w(A1-xFx)(B1-y1Gy1)O3–p(A1-xFx)(B1-y2Gy2)O3,其中w和p为摩尔分数,粉料混合必须满足:wy1+py2=y。
CN202011396457.0A 2020-12-03 2020-12-03 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法 Active CN112457007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011396457.0A CN112457007B (zh) 2020-12-03 2020-12-03 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011396457.0A CN112457007B (zh) 2020-12-03 2020-12-03 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法

Publications (2)

Publication Number Publication Date
CN112457007A true CN112457007A (zh) 2021-03-09
CN112457007B CN112457007B (zh) 2022-08-26

Family

ID=74806454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011396457.0A Active CN112457007B (zh) 2020-12-03 2020-12-03 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法

Country Status (1)

Country Link
CN (1) CN112457007B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292340A (zh) * 2021-06-02 2021-08-24 哈尔滨工业大学 一种高压电性低损耗施主受主共掺杂压电陶瓷、制备方法及其应用
CN116063071A (zh) * 2023-01-16 2023-05-05 西安电子科技大学 一种高温压电陶瓷材料及其相界调控方法
CN116239380A (zh) * 2022-12-02 2023-06-09 华中科技大学 一种电控可变梯度折射率的电光透明陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333109A (zh) * 2008-07-11 2008-12-31 华中科技大学 宽温区相变型热释电陶瓷材料的制备方法
CN101935212A (zh) * 2010-09-09 2011-01-05 西北工业大学 一种锆钛酸钡钙无铅压电陶瓷及其制备方法
US20130168596A1 (en) * 2011-12-29 2013-07-04 The Pennsylvania State University Pb(Hf,Ti)O3 BASED HIGH PERFORMANCE POLYCRYSTALLINE PIEZOELECTRIC MATERIALS
CN106588007A (zh) * 2016-11-29 2017-04-26 桂林理工大学 一种高品质因数的无铅压电陶瓷
CN107117964A (zh) * 2017-05-15 2017-09-01 湖北大学 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN108503359A (zh) * 2018-03-28 2018-09-07 江苏大学 一种适用于驱动器的小迟滞无铅压电陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333109A (zh) * 2008-07-11 2008-12-31 华中科技大学 宽温区相变型热释电陶瓷材料的制备方法
CN101935212A (zh) * 2010-09-09 2011-01-05 西北工业大学 一种锆钛酸钡钙无铅压电陶瓷及其制备方法
US20130168596A1 (en) * 2011-12-29 2013-07-04 The Pennsylvania State University Pb(Hf,Ti)O3 BASED HIGH PERFORMANCE POLYCRYSTALLINE PIEZOELECTRIC MATERIALS
CN106588007A (zh) * 2016-11-29 2017-04-26 桂林理工大学 一种高品质因数的无铅压电陶瓷
CN107117964A (zh) * 2017-05-15 2017-09-01 湖北大学 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN108503359A (zh) * 2018-03-28 2018-09-07 江苏大学 一种适用于驱动器的小迟滞无铅压电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈森等: "制备工艺对PZT陶瓷压电性能的影响", 《压电与声光》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292340A (zh) * 2021-06-02 2021-08-24 哈尔滨工业大学 一种高压电性低损耗施主受主共掺杂压电陶瓷、制备方法及其应用
CN113292340B (zh) * 2021-06-02 2022-08-26 哈尔滨工业大学 一种高压电性低损耗施主受主共掺杂压电陶瓷、制备方法及其应用
CN116239380A (zh) * 2022-12-02 2023-06-09 华中科技大学 一种电控可变梯度折射率的电光透明陶瓷及其制备方法
CN116239380B (zh) * 2022-12-02 2024-04-12 华中科技大学 一种电控可变梯度折射率的电光透明陶瓷及其制备方法
CN116063071A (zh) * 2023-01-16 2023-05-05 西安电子科技大学 一种高温压电陶瓷材料及其相界调控方法

Also Published As

Publication number Publication date
CN112457007B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN112457007B (zh) 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法
US8034250B2 (en) Piezoelectric material
JP5979992B2 (ja) 圧電材料
EP2622661B1 (en) Lead-free piezoelectric material based on bismuth zinc titanate-bismuth potassium titanate-bismuth sodium titanate
JP2001261435A (ja) 圧電セラミックス及びその製造方法
JP2010053028A (ja) 金属酸化物および圧電材料
WO2005037508A2 (en) Compositions for high power piezoelectric ceramics
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
KR20170042171A (ko) 무연 압전 세라믹스, 이의 제조방법 및 이를 포함하는 액추에이터
KR930002641B1 (ko) 강유전성 세라믹스
US4882078A (en) Piezoelectric ceramic composition for actuators
US5425889A (en) Method for producing a piezoceramic
JP2000272963A (ja) 圧電体磁器組成物
EP0444204B1 (en) Piezoelectric ceramic composition for actuator
US5171484A (en) Piezoelectric ceramic composition for actuator
JP2839253B2 (ja) アクチュエータ用圧電セラミック組成物
JP2000264727A (ja) 圧電セラミックス
Hamzioui et al. Structure, dielectric and piezoelectric properties of Pb [(Zr0. 45, Ti0. 5)(Mn0. 5, Sb0. 5) 0.05] O3 ceramics
US6702952B2 (en) Piezoelectric/electrostrictive material and method for preparing the same
JPH08268756A (ja) 強誘電性セラミックスの製造方法
JP2023553068A (ja) 内部電界を有する圧電単結晶、その製造方法、並びにそれを用いた圧電及び誘電応用部品
Kelly et al. A comparison of the properties of (1-x) PMN-xPT ceramics near the morphotropic phase boundary prepared by sol-gel and columbite precursor methods
JP2768068B2 (ja) Pzt圧電板の製造方法
Trivijitkasem et al. Characterization of lead lanthanum zirconate titanate (PLZT) ceramics sintered at various temperatures
KR100586952B1 (ko) 고출력 압전 세라믹 조성물 및 압전소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant