CN116239380A - 一种电控可变梯度折射率的电光透明陶瓷及其制备方法 - Google Patents

一种电控可变梯度折射率的电光透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN116239380A
CN116239380A CN202211536510.1A CN202211536510A CN116239380A CN 116239380 A CN116239380 A CN 116239380A CN 202211536510 A CN202211536510 A CN 202211536510A CN 116239380 A CN116239380 A CN 116239380A
Authority
CN
China
Prior art keywords
ceramic matrix
electro
ceramic
powder
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211536510.1A
Other languages
English (en)
Other versions
CN116239380B (zh
Inventor
姜庆辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202211536510.1A priority Critical patent/CN116239380B/zh
Publication of CN116239380A publication Critical patent/CN116239380A/zh
Application granted granted Critical
Publication of CN116239380B publication Critical patent/CN116239380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及功能陶瓷材料领域,具体涉及一种电控可变梯度折射率的电光透明陶瓷及其制备方法。本发明提供一种电控可变梯度折射率的电光透明陶瓷的制备方法,包括如下步骤:分别制备不同Ti摩尔含量的陶瓷基质粉体,并制备相应的陶瓷基质流延膜片;将获得的陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量大小依次排序叠放在一起形成陶瓷基质流延层、之后对陶瓷基质流延层冷等静压成型、排胶、放电等离子体烧结、退火、抛光、极化得到所述电控可变梯度折射率的电光透明陶瓷。本发明提供的制备方法可制备得到了具有复合较高光电效应和梯度折射率效应的电控可变梯度折射率的电光透明陶瓷。

Description

一种电控可变梯度折射率的电光透明陶瓷及其制备方法
技术领域
本发明涉及功能陶瓷材料领域,具体涉及一种电控可变梯度折射率的电光透明陶瓷及其制备方法。
背景技术
激光调制技术作为激光技术的核心内容之一对其应用和发展具有重要意义。激光调制主要是通过调节激光的相位、强度或振幅等特征达到特定输出效果。常用的激光调制手段有机械调制、电光调制、声光调制、被动调制等,其中电光调制具有效率高、稳定性好、响应快、易操控及无惯性等优势,一直受到人们的重视。电光调制技术主要依赖于具有电光效应的晶体材料。电光效应通常定义为折射率对外加电场的依赖性,其大小可以拟合为电光系数。利用其电光效应实现传播特征调制,用于制作相位调制器、扫描器和光开关等器件,广泛应用于激光雷达、激光测距、生物医学显微成像等高精尖领域。电光材料是一大类具有重要应用的功能材料,新型高效电光材料的发展,对于激光技术的发展,特别是当前全固态激光器技术的发展和应用具有重要意义。梯度折射率效应是指晶体内部折射率沿某些方向呈现梯度变化的现象,该效应存在于固溶体类晶体中。使用具有梯度折射率效应的材料制备的自聚焦透镜具有体积小、数值孔径大、平面端面、焦距短、电控超快响应等优点。
在具有中心对称结构的化合物中,电光系数很弱,可以拟合为二次效应或克尔效应。在非中心对称结构的化合物中,电光效应变得更大,可以拟合成线性或普克尔效应。在电光调制中,由于迫切需要更低的工作电压或电场,因此线性电光效应受到广泛关注。集成化和小型化的主要挑战之一是更高的电光系数,它可以实现高集成密度、高频调制、低驱动电压和功耗。目前大的线性电光效应仅存在于铁电材料中。铌酸锂单晶是电光器件中商用的电光材料,具有适中的电光系数(约21pm/V),但是铌酸锂体系相图上体现出的热力学限制,无法用于制备梯度折射率的电光单晶材料。
综上,现有技术中没有复合较高光电效应和梯度折射率效应的电控可变梯度折射率的电光透明陶瓷。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中没有复合线性光电效应和梯度折射率效应的电控可变梯度折射率的电光透明陶瓷缺陷的问题,从而提供一种电控可变梯度折射率的电光透明陶瓷及其制备方法。
本发明提供一种电控可变梯度折射率的电光透明陶瓷的制备方法,包括如下步骤:
(1)分别制备不同Ti摩尔含量的陶瓷基质粉体,然后将不同Ti摩尔含量的陶瓷基质粉体分别与分散剂、黏结剂和增塑剂通过流延成型方法制备相应的陶瓷基质流延膜片;
所述陶瓷基质粉体的组成通式为:Ax(PbyPb)1-x[(Mg(1+z)1/3Nb2/3)1-tTit]O3,其中A包括La、Sm、Eu中的至少一种,0.02≤x≤0.04,0.03≤y≤0.10,0.002≤z≤0.03,0.25≤t≤0.4;
(2)将步骤(1)获得的陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量大小依次排序叠放在一起形成陶瓷基质流延层、之后对陶瓷基质流延层冷等静压成型、排胶、放电等离子体烧结、退火、抛光、极化得到所述电控可变梯度折射率的电光透明陶瓷。
优选的,陶瓷基质粉体的制备方法包括如下步骤:
1)以氧化镁和氧化铌为原料制备MgNb2O6前驱体粉体;
2)将步骤1)得到的MgNb2O6前驱体粉体、氧化铅、氧化钛和A的氧化物经球磨混合、烘干、煅烧、球磨粉碎、干燥得到所述陶瓷基质粉体。
其中,在步骤1)中,氧化镁和氧化铌的摩尔比为(1.002-1.03):1;
在步骤2)中,MgNb2O6前驱体粉体、PbO、TiO2、A的氧化物中A元素的摩尔比为(0.2-0.25):(0.98-1.09):(0.25-0.4):(0.02-0.04)。
可选的,在将不同Ti摩尔含量的的陶瓷基质流延膜片按照陶瓷基质粉体中Ti摩尔含量的的大小依次排序叠放之前,将不同的陶瓷基质流延膜片裁剪为直径相同的圆片。
可选的,得到所述MgNb2O6前驱体粉体后通过研钵手动敲碎所述MgNb2O6前驱体粉体,之后手工磨碎5-10min。
可选的,所述氧化镁的粒径为40-100nm,纯度≥99.9%。
可选的,所述五氧化二铌的纯度≥99.9%。
可选的,在陶瓷基质流延层冷等静压成型前,在陶瓷基质流延层两侧分别叠加保护陶瓷基质流延膜片,所述保护陶瓷基质流延膜片与邻接的陶瓷基质流延层中的陶瓷基质流延膜片的成分相同。
优选的,所述陶瓷基质流延膜片的制备方法包括:将陶瓷基质粉体与分散剂、无水乙醇混合得到混合浆料,调节混合浆料pH为8-12,之后再以180-350r/min的转速球磨2-12h后加入黏结剂和增塑剂继续以180-350r/min的转速球磨2-12h,然后在100-200Pa的真空度下保持10-60min,得到流延料浆,将所述流延料浆通过流延成型制备得到厚度为10-100μm的陶瓷基质流延膜片。
优选的,所述陶瓷基质流延膜片制备方法中陶瓷基质粉体、分散剂、黏结剂、增塑剂和无水乙醇的质量比为1:(0.02-0.12):(0.03-0.12):(0.02-0.07):(2-15);
所述分散剂选自亚麻籽油、鲱鱼油、聚乙二醇、柠檬酸铵、三油酸甘油酯、乙二醇或聚醚酰亚胺中的至少一种;
所述黏结剂选自聚乙烯醇缩丁醛、聚异丁烯、聚乙烯中的至少一种;
所述增塑剂选自邻苯二甲酸二丁酯、苯二甲酸正丁酯中的至少一种。
优选的,所述冷等静压成型的压力为150-300MPa,保压时间为1-10min;所述所述排胶过程为将冷等静压成型的产物以0.1-0.3℃/min的升温速度升温至300-350℃保温0.5-1.5h,之后再以0.1-0.3℃/min的升温速率升温至550-650℃保温0.5-1.5h后,再以0.3-0.6℃/min的升温速率升温至800~1100℃,保温30min-60min;
优选的,在步骤(2)中将陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量从小到大顺序依次叠放在一起形成陶瓷基质流延层。
优选的,所述放电等离子烧结的阻挡层选自石墨纸或钼箔中的至少一种;所述放电等离子烧结的压强为50-200MPa,温度为850-1000℃,时间为3-60min。
优选的,制备MgNb2O6前驱体粉体的步骤包括:将氧化镁和氧化铌以酒精为球磨介质,在120~200r/min转速下球磨混合0.5-2h后,在80-100℃下烘干5-10h,之后在900-1200℃下煅烧2-12h,再以酒精为球磨介质,在120~200r/min转速下球磨0.5-2h后在80-100℃下烘干5-10h,再在1000-1200℃下煅烧2-6h得到所述MgNb2O6前驱体粉体;
制备陶瓷基质粉体的步骤包括:将MgNb2O6前驱体粉体氧化铅、氧化钛和A的氧化物以酒精为球磨介质,在120~200r/min转速下球磨混合1-2h后,在80~100℃下烘干8-10h,之后先在700-850℃煅烧5-12h后在870~950℃煅烧1-3h,煅烧完成后在200~1000r/min转速下球磨粉碎0.5-10h,之后在80~100℃下干燥8-10h得到所述陶瓷基质粉体。
可选的,煅烧完成之后,在球磨粉碎之前,还包括将煅烧后得到的产物置于玛瑙研钵中手动研磨5-15min。
可选的,在制备MgNb2O6前驱体粉体的步骤中,球磨使用的球磨罐为聚四氟乙烯球磨罐,磨球为玛瑙球;进一步,对氧化镁和氧化铌球磨混合时使用的磨球直径为4-10mm。
可选的,在制备陶瓷基质粉体的步骤中,球磨混合使用的球磨罐为聚四氟乙烯球磨罐,磨球为玛瑙球,磨球直径为4-10mm;球磨粉碎使用的球磨罐为氧化锆球磨罐,磨球为氧化锆磨球,磨球直径为1-4mm。
优选的,还包括:在放电等离子体烧结之后,在退火之前还包括对放电等离子体烧结产物使用陶瓷基质粉体掩埋的步骤;
退火过程包括升温至90-120℃,之后在氧气气氛下,以0.2-0.4℃/min的升温速率升温至1000-1300℃,并在氧气气氛下保温2-20h。
可选的,所述掩埋的过程包括将放电等离子体烧结产物置于第一氧化铝坩埚中,并用陶瓷基质粉体掩埋放电等离子体烧结产物;之后将第一氧化铝坩埚置于第二氧化铝坩埚中,并用陶瓷基质粉体掩埋第一氧化铝坩埚,对第二氧化铝坩埚加盖氧化铝埚盖,并用耐火水泥密封第二氧化铝坩埚。
优选的,所述极化为直流电场极化,直流电场电压强度为3-10kV/cm,极化时间为10~30min。
本发明还提供一种电控可变梯度折射率的电光透明陶瓷,采用上述所述的制备方法制备得到。
本发明技术方案,具有如下优点:
(1)分别制备不同Ti摩尔含量的陶瓷基质粉体,然后将不同Ti摩尔含量的陶瓷基质粉体分别与分散剂、黏结剂和增塑剂通过流延成型方法制备相应的陶瓷基质流延膜片;
所述陶瓷基质粉体的组成通式为:Ax(PbyPb)1-x[(Mg(1+z)1/3Nb2/3)1-tTit]O3,其中A包括La、Sm、Eu中的至少一种,0.02≤x≤0.04,0.03≤y≤0.10,0.002≤z≤0.03,0.25≤t≤0.4;
(2)将步骤(1)获得的陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量大小依次排序叠放在一起形成陶瓷基质流延层、之后对陶瓷基质流延层冷等静压成型、排胶、放电等离子体烧结、退火、抛光、极化得到所述电控可变梯度折射率的电光透明陶瓷。
本发明在限定陶瓷基质粉体的成分,在此基础上制备不同Ti摩尔含量的陶瓷基质粉体,之后将不同Ti摩尔含量的陶瓷基质粉体与分散剂、黏结剂和增塑剂通过流延成型方法制备相应的陶瓷基质流延膜片;之后按照陶瓷基质粉体中Ti摩尔含量大小依次排序叠放在一起形成陶瓷基质流延层,并对该陶瓷基质流延层在冷等静压成型、排胶后进行放电等离子体烧结,因陶瓷基质粉体中Pb成分的设计,使形成的陶瓷基质流延膜片在放电等离子体烧结过程中实现含铅化合物液相包覆其他原料,从而实现液相烧结辅助放电等离子体烧结,而液相烧结辅助放电等离子体烧结可使陶瓷基质流延膜片快速致密化,可有效去除陶瓷基质流延膜片烧结过程中的微气孔,从而减少微气孔对光的散射,使制备得到的各陶瓷基质流延膜片具有高透明率;且液相烧结辅助放电等离子体烧结可使各陶瓷基质流延膜片之间无明显的界面产生,从而使陶瓷基质流延层经放电等离子体烧结具有高的透过率;且不同Ti摩尔含量的陶瓷基质流延层经放电等离子体烧结后具有不同的折射率。
同时,本发明的组分设计结合液相烧结辅助放电等离子体烧结使各陶瓷基质流延膜片在烧结过程中产生大量的活性纳米微区,活性纳米微区以及纳米微区界面将导致电子云异常扭曲,从而使各陶瓷基质流延膜片经过后续退火和极化后具有超高的线性电光系数;且因每种陶瓷基质流延膜片Ti摩尔含量的不同经烧结、退火和极化后具有不同的超高的线性电光系数,也即是陶瓷基质流延层经放电等离子体烧结、退火和极化后具有较高的梯度电光系数。
综上,本发明提供的制备方法可制备得到了具有复合较高光电效应和梯度折射率效应的电控可变梯度折射率的电光透明陶瓷。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例中1制备得到的电控可变梯度折射率的电光透明陶瓷的电光响应曲线图;
图2是本发明一个实施例1制备得到的电控可变梯度折射率的电光透明陶瓷在偏置电场中的电控光路示意图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例中使用的耐火水泥购自郑洲宇翔特种水泥厂,型号为CA50。
实施例1
本实施例提供一种电控可变梯度折射率的电光透明陶瓷的制备方法,制备方法包括如下步骤:
(1)将1.003mol的MgO粉体(粉体粒径为50nm,纯度99.9%)和1mol的Nb2O5粉体(纯度99.99%)放入聚四氟乙烯球磨罐中,选用玛瑙球(直径4mm)为磨球,以酒精为球磨介质,在150r/min的转速下球磨0.5h后,之后置入电热鼓风干燥箱中在90℃下烘干8h,烘干后在1000℃下煅烧12h,煅烧完成后再次放入聚四氟乙烯球磨罐中,选用玛瑙球为磨球,以酒精为球磨介质,在200r/min的条件下球磨1.5h,之后置入电热鼓风干燥箱中在90℃下烘干8h,烘干后在1100℃煅烧6h,得到所述MgNb2O6前驱体粉体(将得到的MgNb2O6前驱体粉体研钵手动敲碎,手工磨碎5min,备后续使用);
(2)制备第一陶瓷基质粉体,其组成为La0.03(Pb0.03Pb)0.97[(Mg(1.003/3Nb2/3)0.7Ti0.3]O3,具体步骤如下:将0.015mol的La2O3、0.9991mol的PbO、0.2233333mol步骤(1)得到的MgNb2O6前驱体粉体、0.30mol的TiO2放入聚四氟乙烯球磨罐中,选用玛瑙球为磨球(直径4mm),以酒精为球磨介质,在150r/min的转速下球磨1h,之后置入电热鼓风干燥箱中在90℃下烘干8h,烘干后将混合粉体置于氧化铝坩埚中,在800℃下煅烧12h,900℃煅烧2h;煅烧后,使用玛瑙研钵手动研磨10min,放入氧化锆球磨罐中,选用氧化锆磨球(直径1mm),以酒精为球磨介质,在1000r/min的转速下球磨2h,置入电热鼓风干燥箱中烘干在90℃下烘干8h,得到第一陶瓷基质粉体;
配制第二陶瓷基质粉体、第三陶瓷基质粉体、第四陶瓷基质粉体和第五陶瓷基质粉体,第二至五陶瓷基质粉体中与第一陶瓷基质粉体制备的区别为MgNb2O6前驱体粉体和TiO2的加入量分别为(0.23mol、0.31mol)、(0.223mol、0.33mol)、(0.2167mol、0.35mol)和(0.21mol、0.37mol),其组成分别为:
La0.03(Pb0.03Pb)0.97[(Mg1.003/3Nb2/3)0.69Ti0.31]O3;La0.03(Pb0.03Pb)0.97[(Mg1.003/ 3Nb2/3)0.67Ti0.33]O3;La0.03(Pb0.03Pb)0.97[(Mg1.003/3Nb2/3)0.65Ti0.35]O3;La0.03(Pb0.03Pb)0.97[(Mg1.003/3Nb2/3)0.63Ti0.37]O3
(3)分别制备第一至第五陶瓷基质流延膜片,制备方法为:将60g陶瓷基质粉体置于180g的无水乙醇中,加入2g柠檬酸铵和1g乙二醇混合均匀得到混合浆料,调节混合浆料pH为11,之后在以180r/min的转速球磨6h后加入1.8g聚乙烯醇缩丁醛和1.2g邻苯二甲酸二丁酯继续在以180r/min的转速球磨6h,然后转移至真空干燥箱中在150Pa的真空度下保持20min,得到流延料浆;将所述流延料浆通过流延成型制备得到厚度为0.08mm陶瓷基质流延膜片;
(4)将第一至第五陶瓷基质流延膜片剪切成直径为12mm的圆片,之后按照第一至第五陶瓷基质流延膜片的顺序进行叠加形成陶瓷基质流延层,在陶瓷基质流延层中的第一陶瓷基质流延膜片的表面叠加4层第一陶瓷基质流延膜片,在陶瓷基质流延层中的第五陶瓷基质流延膜片的表面叠加4层第五陶瓷基质流延膜片,之后进行冷等静压成型,冷等静压成型的压力为200MPa,保压时间为5min,之后在马弗炉中排胶,具体过程为在以0.1℃/min加热速度升温至300℃保温1h、之后以0.1℃/min加热速度升温至600℃保温1h,然后以0.4℃/min升至950℃保温30min,得到陶瓷素坯;将陶瓷素坯置于同尺寸的石墨模具(模具内壁喷涂氮化鹏喷剂)中,以钼箔作为压头和陶瓷素坯间的阻挡层,在放电等离子烧结炉中在950℃、50MPa下放电等离子烧结炉5min,之后将烧结产物置于内径15mm的氧化铝坩埚中,采用步骤(2)得到的陶瓷基质粉体掩埋放电等离子体烧结产物,再将该坩埚置于内径为30mm的氧化铝坩埚中,并用步骤(2)得到的陶瓷基质粉体掩埋内径15mm的氧化铝坩埚,之后对内径30mm的氧化铝坩埚加盖氧化铝坩埚盖,并使用耐火水泥密封内径30mm的氧化铝坩埚;随后将坩埚在90℃左右保温1h固化水泥,之后置于管式气氛炉中,在氧气气氛下(0.02MPa),以0.2℃/min的升温速率升温至1200℃,并在1200℃氧气气氛下退火6h,退火完成后打磨露出烧结后的陶瓷基质流延层,并进行抛光,之后在3kV/cm直流电场下极化10min后,得到所述电控可变梯度折射率的电光透明陶瓷;
采用最小偏向角法,测试上述得到的电控可变梯度折射率的电光透明陶瓷中第一至第五陶瓷基质流延膜片对应电光透明陶瓷部分的折射率,折射率依次为2.592;2.594;2.600;2.605;2.610,通过计算可得上述得到的电控可变梯度折射率的电光透明陶瓷的折射率的变化率为0.062/mm。
采用塞拿蒙补偿法(Senarmont compensator method)测试电光系数,其原理是以633nm氦氖激光器为光源,采用相位补偿法进行测量,其中样品的电光效应延迟偏振光的相位为:
Figure BDA0003977925260000111
其中Δn是外加直流电压下折射率的变化值;λ是激光波长,取为633×10-9m;l是样品在光路方向的厚度。
电光系数拟合公式为:
Figure BDA0003977925260000112
其中,d是电极间距;l是样品在光路方向的厚度;λ是激光波长,取为633×10-9m;n是标准样的折射率,取2.59;U是外加直流电压。在18℃下,测试得到电控可变梯度折射率的电光透明陶瓷的近线性电光系数为351pm/V,图1为制备得到的电控可变梯度折射率的电光透明陶瓷的电光响应曲线图;
采用紫外-可见-红外分光光度计测试透明电光陶瓷材料的透过率,在不考虑表面反射损失时,所述电控可变梯度折射率的电光透明陶瓷在905nm波长时直线透过率为62%。
图2为本实施例1制备得到的电控可变梯度折射率的电光透明陶瓷在偏置电场中的电控光路示意图。
对比例1
本对比例与实施例1的区别在于将步骤(4)中的放电等离子烧结炉中的烧结替换为在950℃、50MPa压强下(在非放电等离子体烧结条件)烧结5min。
得到陶瓷的在900-3000nm波长范围内的直线透过率小于30%,为半透明态;
采用与实施例1相同的测试方法测试电光系数,无法得到电光系数。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种电控可变梯度折射率的电光透明陶瓷的制备方法,其特征在于,包括如下步骤:
(1)分别制备不同Ti摩尔含量的陶瓷基质粉体,然后将不同Ti摩尔含量的陶瓷基质粉体分别与分散剂、黏结剂和增塑剂通过流延成型方法制备相应的陶瓷基质流延膜片;
所述陶瓷基质粉体的组成通式为:Ax(PbyPb)1-x[(Mg(1+z)1/3Nb2/3)1-tTit]O3,其中A包括La、Sm、Eu中的至少一种,0.02≤x≤0.04,0.03≤y≤0.10,0.002≤z≤0.03,0.25≤t≤0.4;
(2)将步骤(1)获得的陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量大小依次排序叠放在一起形成陶瓷基质流延层、之后对陶瓷基质流延层冷等静压成型、排胶、放电等离子体烧结、退火、抛光、极化得到所述电控可变梯度折射率的电光透明陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,陶瓷基质粉体的制备方法包括如下步骤:
1)以氧化镁和氧化铌为原料制备MgNb2O6前驱体粉体;
2)将步骤1)得到的MgNb2O6前驱体粉体、氧化铅、氧化钛和A的氧化物经球磨混合、烘干、煅烧、球磨粉碎、干燥得到所述陶瓷基质粉体;
其中,在步骤1)中,氧化镁和氧化铌的摩尔比为(1.002-1.03):1;
在步骤2)中,MgNb2O6前驱体粉体、PbO、TiO2、A的氧化物中A元素的摩尔比为(0.2-0.25):(0.98-1.09):(0.25-0.4):(0.02-0.04)。
3.根据权利要求1或2所述的制备方法,其特征在于,所述陶瓷基质流延膜片的制备方法包括:将陶瓷基质粉体与分散剂、无水乙醇混合得到混合浆料,调节混合浆料pH为8-12,之后再以180-350r/min的转速球磨2-12h后加入黏结剂和增塑剂继续以180-350r/min的转速球磨2-12h,然后在100-200Pa的真空度下保持10-60min,得到流延料浆,将所述流延料浆通过流延成型制备得到厚度为10-100μm的陶瓷基质流延膜片。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述陶瓷基质流延膜片制备方法中陶瓷基质粉体、分散剂、黏结剂、增塑剂和无水乙醇的质量比为1:(0.02-0.12):(0.03-0.12):(0.02-0.07):(2-15);
所述分散剂选自亚麻籽油、鲱鱼油、聚乙二醇、柠檬酸铵、三油酸甘油酯、乙二醇或聚醚酰亚胺中的至少一种;
所述黏结剂选自聚乙烯醇缩丁醛、聚异丁烯、聚乙烯中的至少一种;
所述增塑剂选自邻苯二甲酸二丁酯、苯二甲酸正丁酯中的至少一种。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,所述冷等静压成型的压力为150-300MPa,保压时间为1-10min;所述所述排胶过程为将冷等静压成型的产物以0.1-0.3℃/min的升温速度升温至300-35℃保温0.5-1.5h,之后再以0.1-0.3℃/min的升温速率升温至550-650℃保温0.5-1.5h后,再以0.3-0.6℃/min的升温速率升温至800~1100℃,保温30min-60min;
优选的,在步骤(2)中将陶瓷基质流延膜片按照相应陶瓷基质粉体中Ti摩尔含量从小到大顺序依次叠放在一起形成陶瓷基质流延层。
6.根据权利要求1-5任一项所述的制备方法,其特征在于,所述放电等离子烧结的阻挡层选自石墨纸和钼箔中的至少一种;所述放电等离子烧结的压强为50-200MPa,温度为850-1000℃,时间为3-60min。
7.根据权利要求1-6任一项所述的制备方法,其特征在于,制备MgNb2O6前驱体粉体的步骤包括:将氧化镁和氧化铌以酒精为球磨介质,在120~200r/min转速下球磨混合0.5-2h后,在80-100℃下烘干5-10h,之后在900-1200℃下煅烧2-12h,再以酒精为球磨介质,在120~200r/min转速下球磨0.5-2h后在80-100℃下烘干5-10h,再在1000-1200℃下煅烧2-6h得到所述MgNb2O6前驱体粉体;
制备陶瓷基质粉体的步骤包括:将MgNb2O6前驱体粉体氧化铅、氧化钛和A的氧化物以酒精为球磨介质,在120~200r/min转速下球磨混合1-2h后,在80~100℃下烘干8-10h,之后先在700-850℃煅烧5-12h后在870~950℃煅烧1-3h,煅烧完成后在200~1000r/min转速下球磨粉碎0.5-10h,之后在80~100℃下干燥8-10h得到所述陶瓷基质粉体。
8.根据权利要求1-7任一项所述的制备方法,其特征在于,还包括:在放电等离子体烧结之后,在退火之前还包括对放电等离子体烧结产物使用陶瓷基质粉体掩埋的步骤;
退火过程包括升温至90-120℃,之后在氧气气氛下,以0.2-0.4℃/min的升温速率升温至1000-1300℃,并在氧气气氛下保温2-20h。
9.根据权利要求1-8任一项所述的制备方法,其特征在于,所述极化为直流电场极化,直流电场电压强度为3-10kV/cm,极化时间为10~30min。
10.一种电控可变梯度折射率的电光透明陶瓷,其特征在于,采用权利要求1-9任一项所述的制备方法制备得到。
CN202211536510.1A 2022-12-02 2022-12-02 一种电控可变梯度折射率的电光透明陶瓷及其制备方法 Active CN116239380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211536510.1A CN116239380B (zh) 2022-12-02 2022-12-02 一种电控可变梯度折射率的电光透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211536510.1A CN116239380B (zh) 2022-12-02 2022-12-02 一种电控可变梯度折射率的电光透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116239380A true CN116239380A (zh) 2023-06-09
CN116239380B CN116239380B (zh) 2024-04-12

Family

ID=86631992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211536510.1A Active CN116239380B (zh) 2022-12-02 2022-12-02 一种电控可变梯度折射率的电光透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116239380B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628810A (zh) * 2009-08-12 2010-01-20 中国科学院上海硅酸盐研究所 高透明和高电光特性掺杂pmn-pt电光陶瓷材料及制备方法
CN101948311A (zh) * 2010-09-10 2011-01-19 上海师范大学 梯度分布铁电相变型铌镁酸铅-钛酸铅陶瓷材料
JP2014133670A (ja) * 2013-01-08 2014-07-24 Ryukoku Univ 電気光学セラミックスの製造方法及び電気光学セラミックス
CN104072136A (zh) * 2014-06-27 2014-10-01 青岛大学 镧掺杂铌镁酸铅-钛酸铅透明陶瓷的制备方法
CN111018512A (zh) * 2019-12-30 2020-04-17 江苏师范大学 一种具有梯度折射率结构的高光效、高显指荧光陶瓷的制备方法
CN112457007A (zh) * 2020-12-03 2021-03-09 常州大学 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法
CN113388892A (zh) * 2021-05-18 2021-09-14 西安交通大学 一种钛扩散制备铌镁酸铅钛酸铅光波导的方法
CN114804873A (zh) * 2022-03-22 2022-07-29 上海材料研究所 高电光系数及高温度稳定性的透明电光陶瓷材料及其制备方法
US20220334291A1 (en) * 2019-09-03 2022-10-20 National Research Council Of Canada 3d printed graded refractive index device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628810A (zh) * 2009-08-12 2010-01-20 中国科学院上海硅酸盐研究所 高透明和高电光特性掺杂pmn-pt电光陶瓷材料及制备方法
CN101948311A (zh) * 2010-09-10 2011-01-19 上海师范大学 梯度分布铁电相变型铌镁酸铅-钛酸铅陶瓷材料
JP2014133670A (ja) * 2013-01-08 2014-07-24 Ryukoku Univ 電気光学セラミックスの製造方法及び電気光学セラミックス
CN104072136A (zh) * 2014-06-27 2014-10-01 青岛大学 镧掺杂铌镁酸铅-钛酸铅透明陶瓷的制备方法
US20220334291A1 (en) * 2019-09-03 2022-10-20 National Research Council Of Canada 3d printed graded refractive index device
CN111018512A (zh) * 2019-12-30 2020-04-17 江苏师范大学 一种具有梯度折射率结构的高光效、高显指荧光陶瓷的制备方法
CN112457007A (zh) * 2020-12-03 2021-03-09 常州大学 一种预合成双晶相混合共烧制备高性能压电陶瓷的方法
CN113388892A (zh) * 2021-05-18 2021-09-14 西安交通大学 一种钛扩散制备铌镁酸铅钛酸铅光波导的方法
CN114804873A (zh) * 2022-03-22 2022-07-29 上海材料研究所 高电光系数及高温度稳定性的透明电光陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.P.GUHA: "Effect of compositional modifications on microstructure development and dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 solid solutions", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 23, no. 1, pages 133 - 139, XP004387487, DOI: 10.1016/S0955-2219(02)00084-5 *

Also Published As

Publication number Publication date
CN116239380B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US10727493B2 (en) Oriented apatite-type doped rare earth silicate and/or germanate ion conductor and method for manufacturing same
Sayer et al. Ceramic thin films: fabrication and applications
Yang et al. Optical and electrical properties of pressureless sintered transparent (K0. 37Na0. 63) NbO3-based ceramics
CN104557058A (zh) 真空-氧气氛复合热压烧结制备高透过率透明电光陶瓷的方法
WO2015055034A1 (zh) 无铅高压电活性晶体材料及其制备方法
CN104072136A (zh) 镧掺杂铌镁酸铅-钛酸铅透明陶瓷的制备方法
Shi et al. Rapid poling under low direct current field of [001] oriented BiFeO3-based lead-free ceramics
CN103224390B (zh) 压电组合物以及压电元件
CN116239380B (zh) 一种电控可变梯度折射率的电光透明陶瓷及其制备方法
CN107903055A (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN102180653A (zh) 一种高密度氧化铟锡靶材的制备方法
Mercadelli et al. Influence of carbon black on slurry compositions for tape cast porous piezoelectric ceramics
Yu et al. Microstructure and photoluminescence properties of Er3+/LaBiO3 co-modified (K0. 5Na0. 5) NbO3 transparent textured ceramics via tape-casting method
JP5717349B2 (ja) 光変調材料およびその製造方法
CN104529445B (zh) 压电驱动元件、多层无铅压电陶瓷及其制备方法
CN1696328A (zh) 氧化钇稳定氧化锆真空镀膜材料及其制备方法
CN115196961A (zh) 一种高织构度及高电致应变性能的钛酸铋钠基无铅压电织构陶瓷及其制备方法
Deshpande et al. Synthesis and characterization of lithium niobate ceramics with glass additions
Cheng et al. A novel vacuum/oxygen hot press sintering approach for the fabrication of transparent PLZT (7.4/70/30) ceramics
KR20220169975A (ko) 배향 무연 압전 세라믹 조성물 및 이의 제조방법
CN116283288B (zh) 一种具有超高电光系数和压电性能的透明光电陶瓷材料及其制备方法
Cao et al. Piezoelectric and magneto-optical effect of lanthanum-doped bismuth ferrite films on silicon substrate
Qi et al. Enhanced energy storage performance in Pb-free Na0. 5Bi0. 5TiO3–Sr0. 7Bi0. 2TiO3-based relaxor ferroelectric ceramics through a stepwise optimization strategy
CN116768623B (zh) 具有温度稳定性的铌酸钾钠基织构压电陶瓷及其制备方法
CN105624784B (zh) 适用于高温领域的四方相钛镁酸铋‑钛酸铅基压电单晶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant