CN112452327B - 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用 - Google Patents

一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112452327B
CN112452327B CN202011333006.2A CN202011333006A CN112452327B CN 112452327 B CN112452327 B CN 112452327B CN 202011333006 A CN202011333006 A CN 202011333006A CN 112452327 B CN112452327 B CN 112452327B
Authority
CN
China
Prior art keywords
mesoporous silicon
iron
carbon microsphere
layer
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011333006.2A
Other languages
English (en)
Other versions
CN112452327A (zh
Inventor
滕玮
张伟贤
付融冰
范建伟
陈小倩
冉献强
陈燕燕
马倩
薛英浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202011333006.2A priority Critical patent/CN112452327B/zh
Publication of CN112452327A publication Critical patent/CN112452327A/zh
Application granted granted Critical
Publication of CN112452327B publication Critical patent/CN112452327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种铁基介孔硅‑碳微球纳米复合材料及其制备方法和应用,本发明提供的铁基介孔硅‑碳微球纳米复合材料,通过在介孔碳硅小球堆积的微球中引入纳米零价铁,大幅提升了对水体中重金属的去除性能。铁基介孔硅‑碳微球纳米复合材料对重金属的去除过程主要通过吸附、还原、沉淀等多种途径实现。其中,有序介孔结构显著增强了对重金属的吸附性能,而纳米零价铁的原位合成则成功引入了多个反应活性位点。本发明可用于对水体中铬(Ⅵ)、镉(Ⅱ)等多种重金属的去除,具有去除能力强、可再生循环等优点。

Description

一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和 应用
技术领域
本发明属于污水处理技术领域,具体涉及一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用。
背景技术
随着工业化的发展和农业的规模化,人类一直面临严峻的水环境问题。到2025年,世界上约三分之二的人口将面对严重缺水的状况,保障水环境安全是20世纪面临的重大挑战之一。作为主要的水体污染物类型之一,重金属在水环境中的积累会对水生生态系统造成严重危害,它们不仅不能在自然条件下降解,而且可以通过食物链在人体内富集,从而威胁人体健康甚至生命安全。这些重金属不论以何种状态、以何种水平存在,对生物和环境都具有明显的毒性。世界卫生组织(WHO)规定了可接受的最大污染水平,将水源中的重金属浓度限制为零或仅允许阈值,其中镉(Cd)和铬(Cr)的最大污染水平分别为3ppb和100ppb。水体中重金属离子的污染正严重影响我国社会和经济的发展,对其研究、去除刻不容缓。
发明内容
本发明针对上述缺陷,提供一种将纳米零价铁负载至制备得到的介孔硅-碳微球纳米复合材料,形成铁基介孔硅-碳微孔复合材料,并应用所述铁基介孔硅-碳微孔复合材料去除水体中重金属离子的应用,该纳米复合改性材料对重金属具有较好的去除效果。
本发明提供如下技术方案:一种铁基双层介孔硅-碳微球纳米复合材料的制备方法,包括如下步骤:
(1)、在室温下,将4g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物非离子表面活性剂P123溶解在质量分数浓度为16%、体积为150mL的盐酸水溶液中,形成非离子表面活性剂P123盐酸水溶液,然后依次将3g的1,3,5-三甲苯、8g的正硅酸四乙酯逐滴加入到所述非离子表面活性剂P123盐酸水溶液中,并在35℃下持续搅拌2h;
(2)、将所述步骤(1)得到的混合液倒入水热反应釜,置于烘箱内进行水热反应,然后过滤、洗涤、干燥;然后将所得样品用质量分数为1.5%的硫酸进行预碳化处理,得到预碳化后的材料;
(3)、将所述步骤(2)得到的预碳化后材料在氮气气氛下加热至600℃,获得外硅层、内碳层均由介孔硅-碳小球堆积而成的双层介孔硅-碳微球纳米复合材料;
(4)、将所述步骤(3)得到的0.4g的双层介孔硅-碳微球纳米复合材料中均匀分散在10mL无水乙醇中,将Fe(NO3)3·9H2O完全溶解于2mL无水乙醇中,混合上述两种溶液,在室温下连续搅拌直到乙醇溶剂蒸发;
(5)、将所述步骤(4)得到的混合物放入敞口玻璃管中,将所述敞口玻璃管置于装有10mL质量分数为14%的氨水溶液的Teflon瓶中,避免样品与氨水溶液直接接触;将所述Teflon瓶密封并在60℃下水热反应3h,之后用去离子水和乙醇洗涤以除去生成的NH4NO3,最后在100℃下干燥过夜;
(6)、将所述步骤(5)得到的物质在还原气氛中进行热还原,使纳米零价铁在双层介孔硅-碳微球纳米复合材料的孔道内和孔壁上原位生成,最终得到所述铁基双层介孔硅-碳微球纳米复合材料。
进一步地,所述的步骤(2)中水热反应的条件为,35℃下水热24h,100℃下水热36h。
进一步地,所述的步骤(2)中预碳化处理条件为先室温放置2h,再在160℃下干燥12h。
进一步地,所述的步骤(4)中加入Fe(NO3)3·9H2O的质量为0.2g~0.4g。
进一步地,所述的步骤(5)中的还原气氛为氢气,还原温度为400℃。
本发明还提供上述制备方法制备得到的铁基双层介孔硅-碳微球纳米复合材料,所述铁基介孔硅-碳微球的孔体积为1.38cm3/g,比表面积为491m2/g,微孔表面积为65m2/g,所述铁基介孔硅-碳微球的孔径为2nm~50nm。
本发明还提供上述铁基双层介孔硅-碳微球纳米复合材料在重金属去除中的应用,所述重金属离子为Cr6+或Cd2+中的一种或两种。
本发明的有益效果为:
1、纳米零价铁(nZVI)能够有效地去除和固定多种重金属离子。作为一种具有优异性能的材料,nZVI可去除水中多种污染物质。负载型nZVI以多孔材料为载体,有效地将nZVI分散开,减少nZVI单独应用于污水处理时易团聚和易氧化等缺点,避免了它在环境修复领域中的应用颗粒团聚现象的发生,进而增强污染物去除能力。
2、与现有技术的其他载体材料相比,有序介孔材料具有比表面积高、孔体积大、孔道均一性好、孔道排布有序等特殊结构,作为纳米零价铁(nZVI)的载体主要有以下优势:1)高比表面积有利于纳米颗粒的分散与固定;2)高度有序的介孔结构能够将纳米颗粒精准限域并抑制其氧化;3)互穿的孔道促进了分子的扩散和运输。因此,有序介孔材料是包含nZVI在内的各种催化剂和纳米颗粒的极佳载体。
3、本发明提供的制备方法得到铁基双层介孔硅-碳微球有序介孔材料具有均匀的孔径(2nm~50nm)、规则的介孔结构、以及较大的表面积和孔体积等独特的优势,因而是一种有前途的载体材料,可用于负载纳米零价铁。
4、本申请提供的铁基双层介孔硅-碳微球纳米复合材料,具有由纳米小球紧密堆积而成的微球形态,呈现外硅层、内碳层的独特结构。
5、本申请提供的铁基双层介孔硅-碳微球纳米复合材料不仅能够精确地连接、分散和固定纳米零价铁颗粒,抑制其氧化,而且能够有效地促进重金属离子的扩散与运输。因此,本发明制备的铁基双层介孔硅-碳微球纳米复合材料对重金属具有较好的去除效果。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为本发明实施例1中提供的预碳化后的材料的扫描电镜图(SEM);
图2为本发明实施例1中提供的外硅层、内碳层的介孔硅-碳小球堆积而成的双层介孔硅-碳微球纳米复合材料的扫描电镜图(SEM);
图3为本发明实施例1中提供的铁基双层介孔硅-碳纳米复合材料的扫描电镜图(SEM);
图4为本发明实施例1中提供的铁基双层介孔硅-碳纳米复合材料的X射线能谱图(EDS);
图5为本发明实施例1中提供的HF酸刻蚀后的铁基双层介孔硅-碳纳米复合材料的透射电镜图(TEM);
图6为本发明实施例2中提供的铁基双层介孔硅-碳纳米复合材料的X射线能谱图(EDS)。
具体实施例方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供的一种铁基介孔硅-碳微球纳米复合材料,包括以下步骤:
(1)、首先,在室温下,将4g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物非离子表面活性剂P123溶解在150mL的质量分数浓度为16%的盐酸水溶液中,然后,依次将3g的1,3,5-三甲苯(TMB)、8g的正硅酸四乙酯(TEOS)逐滴加入到上述溶液中,并在35℃下持续搅拌2h;
(2)、将所述步骤(1)得到的混合液倒入水热反应釜,置于烘箱内35℃下水热24h,100℃下水热36h,然后过滤、洗涤、干燥。将所得样品用质量分数为1.5%的硫酸进行预碳化处理,即先室温放置2h,再在160℃下干燥12h,得到预碳化后的材料,扫描电镜图如图1所示;
(3)、将所述步骤(2)得到的样品在氮气下加热至600℃,获得外硅层、内碳层均由介孔硅-碳小球堆积而成的双层介孔硅-碳微球纳米复合材料,扫描电镜图如图2所示;
(4)、将所述步骤(3)得到的0.4g双层介孔硅-碳微球纳米复合材料中均匀分散在10mL无水乙醇中,将0.2g Fe(NO3)3·9H2O完全溶解于2mL无水乙醇中,混合上述两种溶液,在室温下连续搅拌直到乙醇溶剂蒸发;
(5)、将所述步骤(4)得到的样品放入敞口玻璃管中,将所述敞口玻璃管置于装有10mL氨水溶液(质量分数为14%)的Teflon瓶中,避免样品与氨水溶液直接接触。将所述Teflon瓶密封并在60℃下水热反应3h,之后用去离子水和乙醇洗涤以除去生成的NH4NO3,最后在100℃下干燥过夜;
(6)、将所述步骤(5)得到的物质在400℃的氢气气氛中进行热还原,使纳米零价铁在双层介孔硅-碳微球纳米复合材料的孔道内和孔壁上原位生成,最终得到铁基双层介孔硅-碳微球纳米复合材料,其材料表征结果如图3-6所示。
图3为最终得到的铁基双层介孔硅-碳微球纳米复合材料的扫描电镜图(SEM),从图中可以看出,纳米零价铁颗粒均匀地嵌在孔壁上和孔道中,颗粒大小约为2nm左右,没有明显地铁颗粒团聚。说明通过氨气原位熏蒸的方法,可以很好地控制铁在双层介孔硅-碳微球纳米复合材料中的原位固定和转化,有效地减少团聚现象的发生。图4为最终得到的铁基双层介孔硅-碳微球纳米复合材料的X射线能谱图(EDS),表明所述材料中铁元素的含量为3.92%。为了进一步证明所述复合材料外硅层、内碳层的双层结构,用HF酸对铁基双层介孔二氧化硅-碳微球纳米复合材料进行刻蚀,将二氧化硅和纳米零价铁颗粒溶出,刻蚀后的透射电镜图如图5所示,可见铁基仍保持着类似的介孔小球形貌,说明在介孔硅球的内部确实形成了碳层。
对实施例1中制备的铁基介孔硅-碳微球纳米复合材料进行水中重金属去除实验,以Cr6+、Cd2+为重金属离子代表,在一定体积、一定初始浓度的重金属模拟废水中加入一定量的复合材料。采用电感耦合等离子体发射光谱仪(ICP-OES)测量反应前后的重金属浓度。实验参数如下:
所述复合材料投加量为20mg;
所述重金属初始浓度为5~15mg/L,体积为20mL;
所述反应温度为常温25℃;
所述反应时间是100min,摇床速度为200rpm/min;
实施例1中制备的复合材料对Cr6+和Cd2+的去除效果如表1和表2所示。
表1实施例1中复合材料对Cr6+的去除效果
Figure BDA0002796342180000061
表2实施例1中复合材料对Cd2+的去除效果
Figure BDA0002796342180000062
实施例2
(1)、首先,在室温下,将4g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物非离子表面活性剂P123溶解在150mL的质量分数浓度为16%的盐酸水溶液中,然后,依次将3g的1,3,5-三甲苯(TMB)、8g的正硅酸四乙酯(TEOS)逐滴加入到上述溶液中,并在35℃下持续搅拌2h;
(2)、将所述步骤(1)得到的混合液倒入水热反应釜,置于烘箱内35℃下水热24h,100℃下水热36h,然后过滤、洗涤、干燥。将所得样品用质量分数为1.5%的硫酸进行预碳化处理,即先室温放置2h,再在160℃下干燥12h,得到预碳化后的材料;
(3)、将所述步骤(2)得到的样品在氮气下加热至600℃,获得外硅层、内碳层均由介孔硅-碳小球堆积而成的双层介孔硅-碳微球纳米复合材料;
(4)、将所述步骤(3)得到的0.4g介孔硅-碳微球纳米复合材料中均匀分散在10mL无水乙醇中,将0.4g Fe(NO3)3·9H2O完全溶解于2mL无水乙醇中,混合上述两种溶液,在室温下连续搅拌直到乙醇溶剂蒸发;
(5)、将所述步骤(4)得到的样品放入敞口玻璃管中,将所述敞口玻璃管置于装有10mL氨水溶液(质量分数为14%)的Teflon瓶中,避免样品与氨水溶液直接接触;将所述Teflon瓶密封并在60℃下水热反应3h,之后用去离子水和乙醇洗涤以除去生成的NH4NO3,最后在100℃下干燥过夜;
(6)、将所述步骤(5)得到的物质在400℃的氢气气氛中进行热还原,使纳米零价铁在双层介孔硅-碳微球纳米复合材料的孔道内和孔壁上原位生成,最终得到铁基双层介孔硅-碳微球纳米复合材料,其X射线能谱图(EDS)如图6所示。
对实施例2中制备的铁基双层介孔硅-碳微球纳米复合材料进行水中重金属去除实验,以Cr6+、Cd2+为重金属离子代表,在一定体积、一定初始浓度的重金属模拟废水中加入一定量的复合材料。采用电感耦合等离子体发射光谱仪(ICP-OES)测量反应前后的重金属浓度。实验参数如下:
所述复合材料投加量为20mg;
所述重金属初始浓度为5~15mg/L,体积为20mL;
所述反应温度为常温25℃;
所述反应时间是100min,摇床速度为200rpm/min;
实施例2中制备的复合材料对Cr6+和Cd2+的去除效果如表3和表4所示。
表3实施例2中复合材料对Cr6+的去除效果
Figure BDA0002796342180000081
表4实施例2中复合材料对Cd2+的去除效果
Figure BDA0002796342180000082
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (6)

1.一种铁基双层介孔硅-碳微球纳米复合材料的制备方法,其特征在于,包括如下步骤:
(1)、在室温下,将4g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物非离子表面活性剂P123溶解在质量分数浓度为16%、体积为150mL的盐酸水溶液中,形成非离子表面活性剂P123盐酸水溶液,然后依次将3g的1,3,5-三甲苯、8g的正硅酸四乙酯逐滴加入到所述非离子表面活性剂P123盐酸水溶液中,并在35℃下持续搅拌2h;
(2)、将所述步骤(1)得到的混合液倒入水热反应釜,置于烘箱内进行水热反应,然后过滤、洗涤、干燥;然后将所得样品用质量分数为1.5%的硫酸进行预碳化处理,得到预碳化后的材料;所述的水热反应的条件为,先在35℃下水热24h,然后于100℃下水热36h;
(3)、将所述步骤(2)得到的预碳化后材料在氮气气氛下加热至600℃,获得外硅层、内碳层均由介孔硅-碳小球堆积而成的双层介孔硅-碳微球纳米复合材料;
(4)、将所述步骤(3)得到的0.4g的双层介孔硅-碳微球纳米复合材料中均匀分散在10mL无水乙醇中,将Fe(NO3)3·9H2O完全溶解于2mL无水乙醇中,混合两种溶液,在室温下连续搅拌直到乙醇溶剂蒸发;
(5)、将所述步骤(4)得到的混合物放入敞口玻璃管中,将所述敞口玻璃管置于装有10mL质量分数为14%的氨水溶液的Teflon瓶中,避免样品与氨水溶液直接接触;将所述Teflon瓶密封并在60℃下水热反应3h,之后用去离子水和乙醇洗涤以除去生成的NH4NO3,最后在100℃下干燥过夜;
(6)、将所述步骤(5)得到的物质在还原气氛中进行热还原,使纳米零价铁在双层介孔硅-碳微球纳米复合材料的孔道内和孔壁上原位生成,最终得到所述铁基双层介孔硅-碳微球纳米复合材料。
2.根据权利要求1所述的一种铁基双层介孔硅-碳微球纳米复合材料的制备方法,其特征在于,所述的步骤(2)中预碳化处理条件为先室温放置2h,再在160℃下干燥12h。
3.根据权利要求1所述的一种铁基双层介孔硅-碳微球纳米复合材料的制备方法,其特征在于,所述的步骤(4)中加入Fe(NO3)3·9H2O的质量为0.2g~0.4g。
4.根据权利要求1所述的一种铁基双层介孔硅-碳微球纳米复合材料的制备方法,其特征在于,所述的步骤(6)中的还原气氛为氢气,还原温度为400℃。
5.根据权利要求1~4任一所述的制备方法制备得到的铁基双层介孔硅-碳微球纳米复合材料,其特征在于,所述铁基介孔硅-碳微球的孔体积为1.38cm3/g,比表面积为491m2/g,微孔表面积为65m2/g,所述铁基介孔硅-碳微球的孔径为2nm~50nm。
6.根据权利要求5所述的一种铁基双层介孔硅-碳微球纳米复合材料在重金属去除中的应用,其特征在于,所述重金属离子为Cr6+或Cd2+中的一种或两种。
CN202011333006.2A 2020-11-25 2020-11-25 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用 Active CN112452327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011333006.2A CN112452327B (zh) 2020-11-25 2020-11-25 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011333006.2A CN112452327B (zh) 2020-11-25 2020-11-25 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112452327A CN112452327A (zh) 2021-03-09
CN112452327B true CN112452327B (zh) 2021-12-21

Family

ID=74798767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011333006.2A Active CN112452327B (zh) 2020-11-25 2020-11-25 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112452327B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636495A (zh) * 2022-10-13 2023-01-24 淮阴工学院 一种辐照改性膨润土负载硫化纳米零价铁的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264189A (ja) * 1992-08-03 1994-09-20 Hitachi Metals Ltd 低温衝撃特性のすぐれた高強度高靭性ステンレス鋼およびその製造方法
CN105148916A (zh) * 2015-09-02 2015-12-16 湖南大学 负载钯铁双金属的磷杂化介孔碳及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786598A (zh) * 2009-12-31 2010-07-28 南京理工大学 纳米零价铁/有序介孔氧化硅复合材料的制备方法
CN105344325B (zh) * 2015-11-04 2018-06-26 同济大学 一种处理重金属污染水体的纳米铁/介孔硅复合材料的制备方法
CN105289500B (zh) * 2015-12-03 2018-08-03 湖南大学 磁性纳米载铁有序介孔碳及其制备方法和应用
CN106040239B (zh) * 2016-05-27 2018-12-04 同济大学 一种高分散纳米金属单质/碳复合材料可控制备方法及其电催化应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264189A (ja) * 1992-08-03 1994-09-20 Hitachi Metals Ltd 低温衝撃特性のすぐれた高強度高靭性ステンレス鋼およびその製造方法
CN105148916A (zh) * 2015-09-02 2015-12-16 湖南大学 负载钯铁双金属的磷杂化介孔碳及其制备方法与应用

Also Published As

Publication number Publication date
CN112452327A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
Hassani et al. Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes
Wang et al. A heterogeneous Fenton reaction system of N-doped TiO2 anchored on sepiolite activates peroxymonosulfate under visible light irradiation
CN110203994B (zh) 利用多层级孔生物炭激活过硫酸盐降解有机污染物的方法
CN109603757B (zh) 五氟镁铝/多孔碳复合材料及其制备方法与应用
Hu et al. Characteristics of manganese-coated sand using SEM and EDAX analysis
Chen et al. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica
Wu et al. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO
CN111939960A (zh) 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用
CN114100634B (zh) 一种磁性多组分铁碳复合类芬顿催化剂的制备方法、产品及应用
CN112452327B (zh) 一种铁基双层介孔硅-碳微球纳米复合材料及其制备方法和应用
Liu et al. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets
Guo et al. Preparation and Pb (II) adsorption in aqueous of 2D/2D g‐C3N4/MnO2 composite
Kalantari et al. Thiolated silica nanoadsorbents enable ultrahigh and fast decontamination of mercury (ii): understanding the contribution of thiol moieties' density and accessibility on adsorption performance
CN113181949A (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
Yu et al. Ternary metal oxide embedded carbon derived from metal organic frameworks for adsorption of methylene blue and acid red 73
Wu et al. A low-cost cementite (Fe 3 C) nanocrystal@ N-doped graphitic carbon electrocatalyst for efficient oxygen reduction
Gong et al. Synthesis of a novel mesoporous Fe 3 O 4@ SiO 2/CTAB-SiO 2 composite material and its application in the efficient removal of bisphenol A from water
CN102744030B (zh) 一种含氧化石墨的纳米材料及其制备方法和水处理剂及水处理方法
Wang et al. Confined self-assembly of S, O co-doped GCN short nanotubes/EG composite towards HMIs electrochemical detection and removal
KR101038253B1 (ko) 메조기공 활성탄소섬유의 제조방법
CN114797847B (zh) 一种金属掺杂的介孔碳基催化剂及其制备方法与应用
CN112191220A (zh) 具有吸附光催化协同效应的g-C3N4/SiO2复合环境净化材料
Kumar et al. Facile bile salt-induced synthesis of porous MnO 2 nanoflowers: applications in dye removal and oxidation
CN114733552B (zh) 一种整体式轻质双磁性光催化复合材料的制备方法及应用
CN112044392A (zh) 镁改性纳米二氧化硅中空球的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant