CN111939960A - 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用 - Google Patents

一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用 Download PDF

Info

Publication number
CN111939960A
CN111939960A CN202010841131.8A CN202010841131A CN111939960A CN 111939960 A CN111939960 A CN 111939960A CN 202010841131 A CN202010841131 A CN 202010841131A CN 111939960 A CN111939960 A CN 111939960A
Authority
CN
China
Prior art keywords
doped
nitrogen
dimensional graphene
graphene aerogel
valent iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010841131.8A
Other languages
English (en)
Inventor
张鹏
范明毅
孙红文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202010841131.8A priority Critical patent/CN111939960A/zh
Publication of CN111939960A publication Critical patent/CN111939960A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种利用煅烧‑液相还原法制备三维石墨烯气凝胶负载纳米零价铁材料的方法。本发明发包括如下步骤:(1)氮掺杂氧化石墨烯的合成;(2)氮掺杂三维石墨烯气凝胶的合成;(3)氮掺杂三维石墨烯气凝胶负载纳米零价铁材料的合成。本发明的掺杂三维石墨烯气凝胶负载纳米零价铁材料,所获得的复合材料中零价铁颗粒为纳米级、分布均匀、催化活性高,其与过硫酸盐相互作用可产生强氧化性的硫酸根自由基和羟基自由基,进而降解有机污染物。本方法比以往合成三聚氰胺掺杂三维石墨烯气凝胶具有更高的氮含量,且其反应速率块、效率高,使用后易回收,无二次污染,具有简单、经济、操作性强的特点。

Description

一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及 其应用
技术领域
本发明属于复合材料领域,尤其涉及的是一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用
背景技术
有机氯农药(organ chlorine pesticides,OCPs)普遍具有毒性强、难降解、易富集等特点,且部分OCPs在低剂量长期暴露条件下仍具有内分泌干扰物特性,给生态环境和人类健康带来巨大的潜在威胁。随着我国工业化和城市化的快速发展及《斯德哥尔摩公约》的履行,大批OCPs生产企业被关闭,遗留污染场地达1200多个。这些污染场地往往具有污染浓度高、分布较深等特点,已成为我国环境中重要的OCPs污染源。六六六(hexachlorocyclohexane,HCHs)是一种典型的OCPs,截至20世纪80年代,HCHs生产总量占比高达33%。OCPs容易在人体内积累,造成急慢性毒性、内分泌干扰效应和“三致”效应等危害。
目前,主要采用化学氧化方法(包括芬顿/类芬顿氧化、活化过硫酸盐氧化、高铁酸钾氧化等方法氧化降解HCHs。高级氧化技术主要降解有毒难降解有机污染物,利用反应体系产生的强氧化性自由基将有机污染物分解成小分子物质,矿化为CO2,H2O及相应的无机离子,彻底去除污染物。传统的高级氧化技术以产生羟基为主要活性物种降解污染物,而过硫酸盐活化技术是产生SO4-·的一种高级氧化技术之一。过硫酸盐具有比过氧化氢更高的氧化还原电位、水溶解度高、化学反应相对温和,能够与环境中多种污染物反应以及在含水体系中具有较高的稳定性。以零价铁为代表的铁材料作为重要的过硫酸盐活化技术,具有低毒、廉价、易操作且对环境不会产生二次污染等特点。其中,纳米零价铁因其较大的比表面积具有更好的活化效果,能使氧化反应效率更高。但纳米零价铁较高的还原性使其在空气等氧化性环境中易氧化,使其结构、形态和性质发生变化,直接影响其对污染物的去除性能。零价铁在催化过程中其会有团聚的趋势,使得其纳米粒子的性能、比表面积和孔隙率降低,影响其稳定性及催化活性。因此,如何提高铁的利用率成为当前研究的主要趋势之一。
目前,国内外学者也提出一些有效方法,就是将纳米零价铁粒子负载于生物炭、沸石、碳纳米管、石墨烯等具有较大的比表面积、较强的机械性能、吸附性能和热稳定性能的材料上。不仅可以有效防止纳米粒子的团聚,而且可以提高其反应活性。石墨烯是目前材料领域的研究热点,在多个领域中都具有广阔的应用前景。石墨烯是由单层碳原子组成的新型二维碳纳米材料,具有由单层碳原子紧密堆积而成的2D蜂窝晶体结构,其具有独特的光学、热学、电子和机械性能。然而石墨烯片层之间强烈的π-π作用使其非常容易团聚,从而减小了比表面积和离子扩散速率,使得活性物质利用率降低大大。最近研究表明,具有多孔结构的三维石墨烯水凝胶能够减少石墨烯片层的团聚,提供更大的可利用表面积、更高的机械强度、更快的质子和电子传递以及更多的活性位点。与此同时,在碳晶格中掺杂杂原子(硼、氮、磷和硫等)可以进一步增强复合材料的相互作用,并在化学反应中调整碳原子周围的电子密度和自旋密度。而且,还可以为其创造出更多的活性位点以及新的性质,例如,电化学性能、亲水性和对氧化还原反应的更高选择性。
石墨烯/铁基复合材料的制备方法和在高级氧化技术中应用已有报道,例如,专利文献CN108176400A公开了一种纳米零价铁/石墨烯复合物活化过硫酸盐去除水体中阿特拉津的方法,此专利解决了传统芬顿催化剂难以回收,以及产生大量化学污泥的难题,避免了二次污染的问题。但此专利中的石墨烯均为二维结构,容易堆叠且其并未进行杂原子掺杂。而氮掺杂三维石墨烯气凝胶/铁基复合材料在高级氧化技术中的应用尚未报道。以上缺陷和不足严重阻碍了氮掺杂石墨烯气凝胶/零价铁复合材料在高级氧化中的应用,亟待解决。
发明内容
本发明的目的在于针对现有技术的不足,利用煅烧-还原法制备不易堆叠、氮含量高的氮掺杂三维还原氧化石墨烯气凝胶。
本发明的另一目的在于利用液相还原法制备氮掺杂三维石墨烯气凝胶负载纳米零价铁材料,本发明的符合材料中零价铁颗粒为纳米级、分布均匀、催化活性高,其与过硫酸盐相互作用可产生强氧化性的硫酸根自由基和羟基自由基,进而降解有机污染物。
为了达到上述目的,本发明采用如下技术方案:
(1)氮掺杂氧化石墨烯的合成:在氧化石墨烯溶液中加入三聚氰胺,吸附平衡一定时间后形成混合溶液;用去离子水洗涤后抽滤,经冷冻干燥后备用,将所得混合物研磨后转移至气氛炉中,在高温的静态氮气中气热;用乙醇和去离子水多次洗涤所得黑色粉末后抽滤,冷冻干燥一定时间后备用。
(2)氮掺杂三维石墨烯气凝胶的合成:将硼氢化钠粉末与步骤(1)制备得到的氮掺杂氧化石墨烯按照一定的质量比加入超声分离后的氮掺杂氧化石墨烯溶液中,超声后进行水浴加热,用去离子水洗涤,抽滤后冷冻干燥,制备得到氮掺杂三维石墨烯气凝胶。
(3)氮掺杂三维石墨烯气凝胶负载纳米零价铁材料的合成:将氮掺杂三维石墨烯气凝胶溶液放置于三口烧瓶中,充氮气后将一定量的FeSO4·7H2O加入至氮掺杂三维石墨烯气凝胶溶液搅拌,然后置于室温中加入NaBH4反应20-60min;用无水乙醇将产物洗涤后冷冻干燥10-40h,制得氮掺杂三维石墨烯气凝胶负载纳米零价铁材料,最后在氮气的保护下密封保存。
本发明的另一目的还在于提供一种本发明制备得到的氮掺杂三维石墨烯气凝胶负载纳米零价铁材料催化过硫酸盐氧化降解有机氯农药的应用。
进一步的,步骤(1)中的三聚氰胺还可以替换为其他氮源,包括但不限于尿素、缩二脲、乙二胺等。
进一步的,步骤(1)中氧化石墨烯和三聚氰胺的质量比为1:1-1:5,所述吸附平衡时间为12-36h,所述冷冻干燥时间为12-36h,所述气热温度范围为300-500℃,所述加热时间为30-120min。
进一步的,所述步骤(2)中硼氢化钠与氮掺杂氧化石墨烯的质量比例范围为1:1-15:1,优选为5:1-15:1;所述超声时间为30-120min,所述水浴加热的时间为30-120min。
进一步的,所述步骤(2)中硼氢化钠可用其他还原剂替代用于还原氮掺杂氧化石墨烯,包括但不限于抗坏血酸、水合肼。
进一步的,所述步骤(2)中超声时间为30-120min,水浴加热温度为80-100℃,优选为95℃,所述冷冻干燥时间为12-36h。
进一步的,所述步骤(3)中氮掺杂三维石墨烯气凝胶与铁的质量比范围为1:1-1:10,所述铁与硼氢化钠的摩尔比范围为1:1-1:5,所述洗涤次数为3次。
进一步的,所述步骤(3)中冷冻干燥时间优选为12-36h。
进一步的,所述步骤(3)中仅使用无水乙醇洗涤三维石墨烯气凝胶负载纳米零价铁,不可使用去离子水,否则会使得纳米零价铁氧化;
进一步的,所述具体试验步骤为:
(1)氮掺杂氧化石墨烯的合成:在氧化石墨烯(1g/300mL)溶液中加入三聚氰胺1g,吸附平衡12h后形成混合溶液。用去离子水洗涤三次后抽滤,经冷冻干燥24h后备用。将所得黑色混合物磨细后转移到气氛炉中,在300-500℃的静态中加氮气热30分钟,加热速率为5℃/min。接着,用乙醇和去离子水多次洗涤所得黑色粉末后抽滤,冷冻干燥24h以供进一步使用;
(2)氮掺杂三维石墨烯气凝胶的合成:将硼氢化钠粉末按照NaBH4:氮掺杂氧化石墨烯质量比为5:1-15:1的比例加入超声分离30-120min后的氮掺杂氧化石墨烯溶液中,超声30-120min后于95℃水浴加热30-120min后,用去离子水洗涤,抽滤后冷冻干燥12-36h,获得氮掺杂三维石墨烯气凝胶;
(3)氮掺杂三维石墨烯气凝胶负载纳米零价铁材料的合成:将氮掺杂三维石墨烯气凝胶溶液放置于三口烧瓶中,充氮气后将一定量的FeSO4·7H2O加入至氮掺杂三维石墨烯气凝胶溶液搅拌(氮掺杂三维石墨烯气凝胶与铁的质量比范围为1:1-1:10),然后置于室温中加入NaBH4反应30min(铁与硼氢化钠的摩尔比范围为1:1-1:5)。用无水乙醇将产物洗涤3遍后冷冻干燥12-36h,获得氮掺杂三维石墨烯气凝胶负载纳米零价铁材料,最后在氮气的保护下密封保存。
进一步的,所述降解有机氯包括如下步骤:先向40mL EPA瓶中加入3-10mg不同氮源的三维石墨烯气凝胶负载纳米零价铁材料,后加入适量蒸馏水和一定量的β-666,最后加入60-250μL浓度为800mM的过硫酸盐溶液,使其与三维石墨烯气凝胶负载纳米零价铁材料中铁含量摩尔比为20:1-1:1,立即放入摇床中进行反应,振荡频率150rpm/min,温度25℃。反应开始后按预设时间进行取样并测定β-666的浓度。
进一步的,所述铁与过硫酸盐的摩尔比范围为3:1-1:2。
进一步的,所述材料的投加量范围为3-10mg。
进一步的,所述反应体系的pH范围为1-9。
进一步的,所述体系的反应时间为1-30min。
与现有技术相比,本发明的有益效果为:
1、本发明制备的三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁材料具有更高的活性是因为三聚氰胺掺杂三维石墨烯具有更高的氮含量(50.87%),改变了碳原子周围的电子密度和自旋密度,还可能为其创造出更多的活性位点。
2、本发明制备的三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁材料具有三维空间结构,克服了二维石墨烯片层堆叠的问题。
3、本发明制备的三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁材料具有强磁性,有利于回收。
4、本发明制备的催化剂具有在水中分散性好、催化活性高、宽pH响应的优点。
5、本发明的制备方法反应速率块、效率高,使用后易回收,无二次污染,具有简单、经济、操作性强的特点。
附图说明
图1为实施例1的氮掺杂三维石墨烯气凝胶负载纳米零价铁的XRD图;
图2为实施例2的的氮掺杂三维石墨烯气凝胶负载纳米零价铁、纳米零价铁、氮掺杂三维石墨烯气凝胶及三维石墨烯气凝胶负载纳米零价铁对β-666的催化降解效果;
图3为实施例3的三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁在不同pH条件下对β-666的催化降解效果;
图4为实施例4的三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁在不同摩尔比的Fe以及过硫酸钠下对β-666的催化降解效果。
具体实施方式
参选以下本发明的优选实施方法的详述以及包括的实施例可更容易地理解本发明的内容。除非另有限定,本文使用的所有技术以及科学术语具有与本发明所属领域普通技术人员通常理解的相同的含义。当存在矛盾时,以本说明书中的定义为准。如本文所用术语“由…制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
连接词“由…组成”排除任何未指出的要素、步骤或组分。如果用于权利要求中,此短语将使权利要求为封闭式,使其不包含除那些描述的材料以外的材料,但与其相关的常规杂质除外。当短语“由…组成”出现在权利要求主体的子句中而不是紧接在主题之后时,其仅限定在该子句中描述的要素;其它要素并不被排除在作为整体的所述权利要求之外。
一、具体实施例
1、实施例1:在氧化石墨烯(1g/300mL)溶液中加入1g三聚氰胺,吸附平衡12h后形成混合溶液。用去离子水洗涤三次后抽滤,经冷冻干燥24h后备用。将所得黑色混合物磨细后转移到气氛炉中,在350℃的静态氮气中加热30分钟,加热速率为5℃/min。接着,用乙醇和去离子水多次洗涤所得黑色粉末后抽滤,冷冻干燥24h以供进一步使用。将硼氢化钠粉末(10g)加入超声分离1h后的三聚氰胺掺杂氧化石墨烯溶液(1g/300mL)中,超声1h后再95℃水浴加热1h后,用去离子水洗涤,抽滤后冷冻干燥24h,获得三聚氰胺掺杂三维石墨烯气凝胶。将1g/300mL三聚氰胺掺杂三维石墨烯气凝胶溶液放置于三口烧瓶中,充氮气后将15gFeSO4·7H2O加入至三聚氰胺三维石墨烯气凝胶溶液搅拌12h达到吸附平衡,然后加入7.9g/50mLNaBH4溶液反应30min。用无水乙醇将产物洗涤3遍后冷冻干燥24h,获得三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁材料,最后在氮气的保护下密封保存。
由图1可以看出,实施例1氮掺杂三维石墨烯气凝胶负载纳米零价铁的XRD图,其在2θ=44.7°处有明显的纳米零价铁的特征峰。
2、实施例2
向40mL EPA瓶中加入10mg氮掺杂三维石墨烯气凝胶负载纳米零价铁(纳米零价铁、氮掺杂石墨烯、三维石墨烯负载纳米零价铁),加入200μL,随后加入200μL浓度为2000ppm的β-666,最后加入100μL为1M的过硫酸钠溶液,使其与三维石墨烯气凝胶负载铁中铁含量摩尔比为1:1,立即放入摇床中进行反应,振荡频率150rpm/min,反应开始后于0、1、2、5、7、10、20、30min各取样0.5mL于2mL离心管中,立即加入1mL正己烷进行萃取(摇床30min),随后取0.7mL于进样小瓶中采用气相色谱-质谱联用仪测定。实验结果如和图2所示。结果表明:氮掺杂三维石墨烯气凝胶负载纳米零价铁催化过硫酸钠对β-666的去除率在5min时反应基本达到平衡,而三维石墨烯负载纳米零价铁在10min时才达到平衡,而且前者(85.64%)的去除效率也高于后者(69.07%)。当反应时间为30min时,氮掺杂三维石墨烯气凝胶负载纳米零价铁的去除率(90.76%)也高于三维石墨烯气凝胶负载纳米零价铁(80.64%)。
3、实施例3
向40mL EPA瓶中加入10mg三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁,加入适量蒸馏水,用1M硫酸或氢氧化钠调节pH为1.0、3.0、5.0、7.0、9.0,随后加入200μL浓度为2000ppm的β-666,最后加入100μL浓度为1M的过硫酸钠溶液,使其与三维石墨烯气凝胶负载铁中铁含量摩尔比为1:1,立即放入摇床中进行反应,振荡频率150rpm/min,反应开始后于0、1、2、5、7、10、20、30min各取样0.5mL于2mL离心管中,立即加入1mL正己烷进行萃取(摇床30min),随后取0.7mL于进样小瓶中采用气相色谱-质谱联用仪测定。实验结果如图3所示。结果表明:当反应时间为5min时,pH=5的氮掺杂三维石墨烯气凝胶负载纳米零价铁对β-666去除基本达到平衡(88.64%),优于其他pH条件下的去除率,且最终去除率均高于其他pH条件下的去除率(92.76%)。
4、实施例4
向40mL EPA瓶中加入10mg三聚氰胺掺杂三维石墨烯气凝胶负载纳米零价铁,加入适量蒸馏水,随后加入200μL浓度为2000ppm的β-666,最后加入17-150μL浓度为1M的过硫酸钠溶液,使其与三维石墨烯气凝胶负载铁中铁含量摩尔比为3:1-1:3,立即放入摇床中进行反应,振荡频率150rpm/min,反应开始后于0、1、2、5、7、10、20、30min各取样0.5mL于2mL离心管中,立即加入1mL正己烷进行萃取(摇床30min),随后取0.7mL于进样小瓶中采用气相色谱-质谱联用仪测定。实验结果如图4所示,结果表明:30min后降解达到平衡,不同摩尔比的Fe以及过硫酸钠平衡时的降解率分别为84.96%、84.43%、86.80%、90.76%和49.87%。由此可知,当Fe与过硫酸盐摩尔比为1:2时所制备的氮掺杂三维石墨烯气凝胶负载纳米零价铁具有良好的催化降解功能。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

Claims (10)

1.一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,包括如下步骤:
(1)氮掺杂氧化石墨烯的合成:在氧化石墨烯溶液中加入三聚氰胺,吸附平衡一定时间后形成混合溶液;用去离子水洗涤后抽滤,经冷冻干燥后备用,将所得混合物研磨后转移至气氛炉中,在高温的静态氮气中气热;用乙醇和去离子水多次洗涤所得黑色粉末后抽滤,冷冻干燥一定时间后备用;
(2)氮掺杂三维石墨烯气凝胶的合成:将硼氢化钠粉末与步骤(1)制备得到的氮掺杂氧化石墨烯按照一定的质量比加入超声分离后的氮掺杂氧化石墨烯溶液中,超声后进行水浴加热,用去离子水洗涤,抽滤后冷冻干燥,制备得到氮掺杂三维石墨烯气凝胶;
(3)氮掺杂三维石墨烯气凝胶负载纳米零价铁材料的合成:将氮掺杂三维石墨烯气凝胶溶液放置于三口烧瓶中,充氮气后将一定量的FeSO4·7H2O加入至氮掺杂三维石墨烯气凝胶溶液搅拌,然后置于室温中加入NaBH4反应20-60min;用无水乙醇将产物洗涤后冷冻干燥10-40h,制得氮掺杂三维石墨烯气凝胶负载纳米零价铁材料,最后在氮气的保护下密封保存。
2.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述三聚氰胺可以替换为其他氮源。
3.根据权利要求2所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述其他氮源选自尿素、缩二脲、乙二胺中任一种。
4.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述步骤(1)中氧化石墨烯和三聚氰胺的质量比为1:1-1:5,所述吸附平衡时间为12-36h,所述冷冻干燥时间为12-36h,所述气热温度范围为300-500℃,所述加热时间为30-120min。
5.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述步骤(2)中硼氢化钠与氮掺杂氧化石墨烯的质量比例范围为1:1-15:1,所述超声时间为30-120min,所述水浴加热的时间为30-120min,所述水浴加热的温度为95℃。
6.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述步骤(2)中硼氢化钠可以用其他还原剂替代,包括但不限于抗坏血酸、水合肼。
7.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述步骤(3)中氮掺杂三维石墨烯气凝胶与铁的质量比范围为1:1-1:10,所述铁与硼氢化钠的摩尔比范围为1:1-1:5,所述洗涤次数为3次。
8.根据权利要求1所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,包括如下步骤:
(1)氮掺杂氧化石墨烯的合成:在氧化石墨烯(1g/300mL)溶液中加入三聚氰胺1g,吸附平衡12h后形成混合溶液。用去离子水洗涤三次后抽滤,经冷冻干燥24h后备用。将所得黑色混合物磨细后转移到气氛炉中,在300-500℃的静态中加氮气热30分钟,加热速率为5℃/min。接着,用乙醇和去离子水多次洗涤所得黑色粉末后抽滤,冷冻干燥24h以供进一步使用;
(2)氮掺杂三维石墨烯气凝胶的合成:将硼氢化钠粉末按照NaBH4:氮掺杂氧化石墨烯质量比为5:1-15:1的比例加入超声分离30-120min后的氮掺杂氧化石墨烯溶液中,超声30-120min后于95℃水浴加热30-120min后,用去离子水洗涤,抽滤后冷冻干燥12-36h,获得氮掺杂三维石墨烯气凝胶;
(3)氮掺杂三维石墨烯气凝胶负载纳米零价铁材料的合成:将氮掺杂三维石墨烯气凝胶溶液放置于三口烧瓶中,充氮气后将一定量的FeSO4·7H2O加入至氮掺杂三维石墨烯气凝胶溶液搅拌,其中,氮掺杂三维石墨烯气凝胶与铁的质量比范围为1:1-1:10,然后置于室温中加入NaBH4反应30min(铁与硼氢化钠的摩尔比范围为1:1-1:5)。用无水乙醇将产物洗涤3遍后冷冻干燥12-36h,获得氮掺杂三维石墨烯气凝胶负载纳米零价铁材料,最后在氮气的保护下密封保存。
9.根据权利要求1或8中任一项权利要求所述的一种掺杂三维石墨烯气凝胶负载纳米零价铁材料的方法,其特征在于,所述步骤(3)仅使用无水乙醇洗涤三维石墨烯气凝胶负载纳米零价铁,不可使用去离子水。
10.根据权利要求1-8中任一项权利要求所述的氮掺杂三维石墨烯气凝胶负载纳米零价铁材料催化过硫酸盐氧化降解有机氯农药的应用,其特征在,包括如下步骤:先向40mLEPA瓶中加入3-10mg不同氮源的三维石墨烯气凝胶负载纳米零价铁材料,后加入适量蒸馏水和一定量的β-666,最后加入60-250μL浓度为800mM的过硫酸盐溶液,使其与三维石墨烯气凝胶负载纳米零价铁材料中铁含量摩尔比为20:1-1:1,立即放入摇床中进行反应,振荡频率150rpm/min,温度25℃。反应开始后按预设时间进行取样并测定β-666的浓度。
CN202010841131.8A 2020-08-20 2020-08-20 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用 Pending CN111939960A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010841131.8A CN111939960A (zh) 2020-08-20 2020-08-20 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010841131.8A CN111939960A (zh) 2020-08-20 2020-08-20 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN111939960A true CN111939960A (zh) 2020-11-17

Family

ID=73358529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010841131.8A Pending CN111939960A (zh) 2020-08-20 2020-08-20 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111939960A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897631A (zh) * 2021-01-18 2021-06-04 南开大学 一种微波诱导强化铁改性氮掺杂碳基材料降解染料和农药的方法
CN113877637A (zh) * 2021-09-29 2022-01-04 南京恒丰医疗器械有限公司 一种纳米零价铁改性气凝胶包覆碳纤维非均相Fenton催化剂的制备方法及应用
CN113877579A (zh) * 2021-08-13 2022-01-04 广东工业大学 一种用于降解内分泌干扰物的催化剂的制备方法及其应用
CN114588923A (zh) * 2022-02-17 2022-06-07 浙江大学 一种氮掺杂零价铁纳米材料及制备方法与应用
CN115106519A (zh) * 2022-06-09 2022-09-27 南开大学 一种超顺磁纳米铁材料及其复合材料、制备方法和应用
CN115400755A (zh) * 2022-08-27 2022-11-29 西南石油大学 一种核壳化氧化石墨烯量子点零价铁催化剂的制备方法及应用
CN117414869A (zh) * 2023-10-20 2024-01-19 安徽农业大学 一种零价铁固载功能化纤维及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525157A (zh) * 2015-01-13 2015-04-22 张一梅 一种以修饰后氧化石墨烯为载体的纳米零价铁的制备方法
US20170125800A1 (en) * 2014-06-11 2017-05-04 Suzhou Institute Of Nano-Tech And Nano-Bionics, Chinese Academy Of Science Nitrogen-doped graphene coated nano sulfur positive electrode composite material, preparation method, and application thereof
CN108878914A (zh) * 2018-06-20 2018-11-23 西北工业大学 基于氮掺杂石墨烯气凝胶的氧气还原催化剂及其制备方法
CN108906052A (zh) * 2018-06-29 2018-11-30 南京理工大学 零价铁/碳材料催化剂及其制备方法
CN110841639A (zh) * 2019-11-21 2020-02-28 南开大学 一种三维石墨烯基纳米零价铁材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125800A1 (en) * 2014-06-11 2017-05-04 Suzhou Institute Of Nano-Tech And Nano-Bionics, Chinese Academy Of Science Nitrogen-doped graphene coated nano sulfur positive electrode composite material, preparation method, and application thereof
CN104525157A (zh) * 2015-01-13 2015-04-22 张一梅 一种以修饰后氧化石墨烯为载体的纳米零价铁的制备方法
CN108878914A (zh) * 2018-06-20 2018-11-23 西北工业大学 基于氮掺杂石墨烯气凝胶的氧气还原催化剂及其制备方法
CN108906052A (zh) * 2018-06-29 2018-11-30 南京理工大学 零价铁/碳材料催化剂及其制备方法
CN110841639A (zh) * 2019-11-21 2020-02-28 南开大学 一种三维石墨烯基纳米零价铁材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨灵芳: "负载型纳米零价铁复合材料去除U(Ⅵ)的研究现状", 《江西化工》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897631A (zh) * 2021-01-18 2021-06-04 南开大学 一种微波诱导强化铁改性氮掺杂碳基材料降解染料和农药的方法
CN113877579A (zh) * 2021-08-13 2022-01-04 广东工业大学 一种用于降解内分泌干扰物的催化剂的制备方法及其应用
CN113877579B (zh) * 2021-08-13 2024-04-02 广东工业大学 一种用于降解内分泌干扰物的催化剂的制备方法及其应用
CN113877637A (zh) * 2021-09-29 2022-01-04 南京恒丰医疗器械有限公司 一种纳米零价铁改性气凝胶包覆碳纤维非均相Fenton催化剂的制备方法及应用
CN114588923A (zh) * 2022-02-17 2022-06-07 浙江大学 一种氮掺杂零价铁纳米材料及制备方法与应用
CN114588923B (zh) * 2022-02-17 2023-06-09 浙江大学 一种氮掺杂零价铁纳米材料及制备方法与应用
CN115106519A (zh) * 2022-06-09 2022-09-27 南开大学 一种超顺磁纳米铁材料及其复合材料、制备方法和应用
CN115400755A (zh) * 2022-08-27 2022-11-29 西南石油大学 一种核壳化氧化石墨烯量子点零价铁催化剂的制备方法及应用
CN115400755B (zh) * 2022-08-27 2024-02-02 西南石油大学 一种核壳化氧化石墨烯量子点零价铁催化剂的制备方法及应用
CN117414869A (zh) * 2023-10-20 2024-01-19 安徽农业大学 一种零价铁固载功能化纤维及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN111939960A (zh) 一种氮掺杂三维石墨烯气凝胶负载纳米零价铁的制备方法及其应用
Huang et al. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water
Jiang et al. Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation
Guo et al. Z-scheme heterojunction g-C3N4@ PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole
Peng et al. The carbon nanotubes-based materials and their applications for organic pollutant removal: A critical review
Xie et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism
Xie et al. ZIF-8 derived boron, nitrogen co-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Performance, mechanism and biotoxicity
Zhao et al. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation
Yu et al. Co/N co-doped carbonized wood sponge with 3D porous framework for efficient peroxymonosulfate activation: Performance and internal mechanism
Lv et al. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U (VI)
He et al. Efficient removal of perfluorooctanoic acid by persulfate advanced oxidative degradation: inherent roles of iron-porphyrin and persistent free radicals
Ahsan et al. Tissue paper-derived porous carbon encapsulated transition metal nanoparticles as advanced non-precious catalysts: Carbon-shell influence on the electrocatalytic behaviour
Shi et al. Recent advances in metal–organic frameworks–derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal
CN110841639A (zh) 一种三维石墨烯基纳米零价铁材料及其制备方法和应用
Wang et al. A novel partially carbonized Fe3O4@ PANI-p catalyst for tetracycline degradation via peroxymonosulfate activation
Ding et al. Simple fabrication of Fe 3 O 4/C/gC 3 N 4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light
Liu et al. Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline
CN110833817A (zh) 一种稻壳生物炭负载纳米铁材料的干式合成方法
Hu et al. Removal of organic contaminants by starch-derived porous carbon via peroxymonosulfate activation: the role of N doping and Fe/Mn loading
Gosu et al. Mineralization of pyridine by CWPO process using nFe0/GAC catalyst
Zhu et al. Non-radical pathway dominated degradation of organic pollutants by nitrogen-doped microtube porous graphitic carbon derived from biomass for activating peroxymonosulfate: Performance, mechanism and environmental application
CN113908835A (zh) 一种基于非自由基高效矿化磺胺类抗生素的活性复合材料的制备及其应用
Wang et al. Graphene aerogel-based catalysts in Fenton-like reactions for water decontamination: A short review
Xiunan et al. Construction of a C-decorated and Cu-doped (Fe, Cu) S/CuFe2O4 solid solution for photo-Fenton degradation of hydrophobic organic contaminant: Enhanced electron transfer and adsorption capacity
Tian et al. Sequential doping of exogenous iron and nitrogen to prepare Fe-N structured biochar to enhance the activity of OTC degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 94, Weijin Road, Nankai District, Tianjin city, 300350

Applicant after: NANKAI University

Address before: No.38, Tongyan Road, Haihe Education Park, Nankai District, Tianjin 300350

Applicant before: NANKAI University