CN112447524A - 半导体装置的形成方法 - Google Patents

半导体装置的形成方法 Download PDF

Info

Publication number
CN112447524A
CN112447524A CN202010881891.1A CN202010881891A CN112447524A CN 112447524 A CN112447524 A CN 112447524A CN 202010881891 A CN202010881891 A CN 202010881891A CN 112447524 A CN112447524 A CN 112447524A
Authority
CN
China
Prior art keywords
layer
metal oxide
oxide layer
type finfet
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010881891.1A
Other languages
English (en)
Inventor
曹敏
王培宇
杨世海
蔡庆威
程冠伦
王志豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN112447524A publication Critical patent/CN112447524A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

本公开提供一种半导体装置的形成方法,此种半导体装置包括n型鳍式场效晶体管结构及p型鳍式场效晶体管结构,其中n型鳍式场效晶体管及p型鳍式场效晶体管结构的每一个皆包括半导体基板及栅极沟槽。所述方法包括:沉积界面层于每一个栅极沟槽中;沉积第一金属氧化物层于界面层上;从p型鳍式场效晶体管结构移除第一金属氧化物层;沉积铁电层于每一个栅极沟槽中;沉积第二金属氧化物层于铁电层上;从n型鳍式场效晶体管结构移除第二金属氧化物层;以及沉积栅极电极于每一个栅极沟槽中。

Description

半导体装置的形成方法
技术领域
本发明实施例涉及半导体装置,特别是涉及一种包含金属氧化物层间结构的半导体装置及其形成方法。
背景技术
半导体集成电路产业经历了指数型的成长。集成电路材料和设计上的技术进展已造就了数个世代的集成电路,其中每一世代都比前一世代具有较小且更复杂的电路。在集成电路演进期间,功能密度(亦即,单位芯片面积的互连装置数目)通常会增加而几何尺寸(亦即,即可使用制程生产的最小元件(或线))却减少。此微缩化的制程通常会提供增加生产效率及降低相关成本的助益。但此微缩化也增加了集成电路结构的制程及制造上的复杂性。
随着技术节点缩小,在一些集成电路设计(例如场效晶体管(FET)设计)中实现的一项进展是有关于引入及利用负电容(NC)晶体管。负电容晶体管是将铁电材料层添加到惯用的晶体管中,以降低所需的供应电压(supply voltage)并降低功率消耗(powerconsumption)。负电容场效晶体管可能存在的问题是栅极电流密度泄漏,其可能会破坏负电容特性(NC behavior)。可用较厚的界面层来处理栅极电流泄漏的问题,但可能会因为较大的有效氧化物厚度/反转厚度(inversion thickness),反而降低装置性能。此外,铁电界面问题可能会导致负电容场效晶体管在p型鳍式场效晶体管上的增益较低(例如,底部界面是铁电与介电质的界面,且顶部界面是铁电与金属的界面)。栅极电流泄漏及界面问题可能对负电容匹配造成不利的影响且劣化装置性能。因此,如何改善负电容晶体管的性能是半导体工业面临的挑战。本揭露旨在解决以上问题以及其他相关问题。
发明内容
本发明实施例提供一种半导体装置的形成方法,包括:提供n型鳍式场效晶体管结构及p型鳍式场效晶体管结构,所述n型鳍式场效晶体管及p型鳍式场效晶体管结构的每一个皆包括半导体基板及栅极沟槽;沉积界面层于每一个栅极沟槽中;沉积第一金属氧化物层于界面层上;从p型鳍式场效晶体管结构移除第一金属氧化物层;沉积铁电层于每一个栅极沟槽中;沉积第二金属氧化物层于铁电层上;从n型鳍式场效晶体管结构移除第二金属氧化物层;以及沉积栅极电极于每一个栅极沟槽中。
本发明实施例提供一种半导体装置的形成方法,包括:提供半导体基板,具有第一及第二栅极沟槽形成于其上;沉积界面层于所述第一栅极沟槽及第二栅极沟槽的每一个中;沉积第一金属氧化物层于所述第一栅极沟槽及第二栅极沟槽的每一个中的界面层上;从所述第一栅极沟槽移除第一金属氧化物层,露出所述第一栅极沟槽中的界面层;沉积铁电层于所述第一栅极沟槽中的界面层上及所述第二栅极沟槽中的第一金属氧化物层上;沉积第二金属氧化物层于所述第一栅极沟槽及第二栅极沟槽的每一个中的铁电层上;从所述第二栅极沟槽移除第二金属氧化物层,露出所述第二栅极沟槽中的铁电层;以及沉积栅极电极于所述第一栅极沟槽中的第二金属氧化物层上及所述第二栅极沟槽中的铁电层上。
本发明实施例提供一种半导体结构,包括:n型鳍式场效晶体管结构,具有一第一通道区及一第一栅极结构,第一栅极结构包括:第一界面层,在第一通道区上;第一金属氧化物层,在第一界面层上,第一金属氧化物层具有一第一化学组成(chemicalcomposition);第一铁电层,在第一金属氧化物层上,第一铁电层具有不同于第一化学组成的一第二化学组成;及第一栅极电极,在第一铁电层上;以及p型鳍式场效晶体管结构,具有第二通道区及第二栅极结构,第二栅极结构包括:第二界面层,在第二通道区上;第二铁电层,在第二界面层上,第二铁电层具有第二化学组成;第二金属氧化物层,在第二铁电层上,第二金属氧化物层具有第一化学组成;及第二栅极电极,在第二金属氧化物层上。
附图说明
由以下的详细叙述配合附图,可最好地理解本发明实施例。应注意的是,依据在业界的标准做法,各种特征并未按照比例绘制。事实上,可任意地放大或缩小各种元件的尺寸,以清楚地表现出本发明实施例的特征。
图1A是根据一些实施例建构的n型鳍式场效晶体管半导体结构的截面图。
图1B是根据一些实施例建构的p型鳍式场效晶体管半导体结构的截面图。
图2是根据一些实施例,示出形成图1A及图1B的半导体结构的方法的流程图。
图3A-图10A是根据一些实施例,示出图1A的n型鳍式场效晶体管半导体结构在各种制造阶段的截面图。
图3B-图10B是根据一些实施例,示出图1B的p型鳍式场效晶体管半导体结构在各种制造阶段的截面图。
图11是根据一些实施例,示出形成图1A及图1B的半导体结构的另一方法的流程图。
其中,附图标记说明如下:
100A、100B:半导体结构
102:半导体基板
104:通道区
106:源极/漏极区
108:层间介电层
120:栅极结构
122:界面层
124:第一金属氧化物层
126:铁电层
128:金属电极
130:栅极间隔物
132:栅极沟槽
134:第二金属氧化物层
200,300:方法
202,204,206,208,210,212,214,216:操作
302,304,306,308,310,312,314,316:操作
具体实施方式
以下提供了许多的实施例或范例,用于实施所提供的标的物的不同元件。各元件和其配置的具体范例描述如下,以简化本发明实施例的说明。当然,这些仅仅是范例,并非用以限定本发明实施例。举例而言,叙述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接触的实施例,也可能包含额外的元件形成在第一和第二元件之间,使得它们不直接接触的实施例。此外,本发明实施例可能在各种范例中重复参考数值以及/或字母。如此重复是为了简明和清楚的目的,而非用以表示所讨论的不同实施例及/或配置之间的关系。
此外,其中可能用到与空间相对用词,例如“在……之下”、“下方”、“较低的”、“上方”、“较高的”等类似用词,是为了便于描述附图中一个(些)部件或特征与另一个(些)部件或特征之间的关系。空间相对用词用以包括使用中或操作中的装置的不同方位,以及附图中所描述的方位。当装置被转向不同方位时(旋转90度或其他方位),其中所使用的空间相对形容词也将依转向后的方位来解释。再者,当以“大约”、“近似”等用语描述数量或数量的范围时,除非另有说明,否则此用语涵盖所述数量的+/-10%以内的数量。举例而言,用语“约5nm”涵盖从4.5nm至5.5nm的尺寸范围。
本发明实施例大致上涉及半导体装置结构及制造方法。具体而言,本发明实施例涉及提供金属氧化物层间结构,以处理负电容场效晶体管中的栅极电流泄漏及界面问题。在各种实施例中,界面层的厚度大约为
Figure BDA0002654327620000041
在一些实施例中,界面层的厚度可高达约
Figure BDA0002654327620000042
参照图1A及图1B,根据一些实施例,分别绘示了n型鳍式场效晶体管半导体装置结构100A及p型鳍式场效晶体管半导体装置结构100B。半导体结构100A、100B的每一个皆包括具有通道区104的半导体基板102。半导体结构100A、100B的每一个皆包括设置在通道区104的两侧的半导体基板102中的源极/漏极区106。半导体结构100A、100B的每一个还包括栅极结构120。栅极结构120包括设置于半导体基板102上的界面层122。特别参照图1A,n型鳍式场效晶体管半导体结构100A包括设置在界面层122上的第一金属氧化物层124及设置在第一金属氧化物层124上的铁电层126。参照图1B,p型鳍式场效晶体管半导体结构100B包括不同顺序的相似材料层。具体而言,p型鳍式场效晶体管半导体结构100B包括设置于界面层122上的铁电层126及设置于铁电层126上的第二金属氧化物层134。再同时参照图1A及图1B,半导体结构100A、100B的每一个皆包括设置于栅极结构120的前述层上的金属电极128。半导体结构100A、100B的每一个还包括设置在栅极结构120的侧壁上的栅极间隔物130。半导体结构100A、100B的每一个还包括设置在通道区104外的源极/漏极区106上的层间介电(ILD)层108。层间介电层108邻近栅极结构120的两侧的栅极间隔物130。
可通过不同的方法200、300来形成半导体结构100A、100B。将在以下进一步详细描述半导体结构100A、100B,特别是金属氧化物层间结构及方法200、300。通过实施半导体结构100A、100B及其制造方法200、300,排除或减少栅极泄漏电流及界面问题。在一些实施例中,金属氧化物层间结构可减少有效氧化物厚度/反转厚度。在一些实施例中,改善了负电容匹配及装置性能。在一些实施例中,n型鳍式场效晶体管及p型鳍式场效晶体管的负电容匹配都得到改善。
参照图2、图3A、及图3B,方法200起始于操作202,提供n型鳍式场效晶体管半导体结构100A及p型鳍式场效晶体管半导体结构100B,其中半导体结构100的每一个皆包括:具有通道区104的半导体基板102、源极/漏极区106、层间介电层108、栅极间隔物130、以及栅极沟槽132。操作202可包含图1A及图1B的类似结构的详细描述,且不被限制。在一些实施例中,半导体基板102包括一或多个沿着x方向纵向延伸的鳍片,每个鳍片都具有矩形轮廓并且在z方向上突出远离基板102。
在一些实施例中,基板102为硅基板。替代地,基板102可包括另一元素半导体,例如锗。基板102还可包括化合物半导体,其包含:碳化硅、氮化镓、砷化镓、磷化镓、磷化铟、砷化铟、及锑化铟。基板102还可包括合金半导体,其包含:硅锗、磷砷化镓(gallium arsenidephosphide)、磷化铝铟(aluminum indium phosphide)、砷化铝镓(aluminum galliumarsenide)、砷化镓铟(gallium indium arsenide)、磷化镓铟(gallium indiumphosphide)、及磷砷化镓铟(gallium indium arsenide phosphide)。在一些实施例中,基板102可包括外延层。举例而言,基板102可具有在块体半导体上方的外延层。基板102可为晶圆,例如硅晶圆,且基板102可包括在其上方部分中外延成长的一或多个半导体层。此外,基板102可包括绝缘体上覆半导体(semiconductor-on-insulator,SOI)结构。举例而言,基板102可包括埋入式氧化物(buried oxide,BOX)层,其形成是通过例如分离植入氧气(separation by implanted oxygen,SIMOX)制程或其他适合的技术,例如晶圆接合(bonding)或研磨。在一些其他实施例中,基板102可包括铟锡氧化物(indium tin oxide,ITO)玻璃。
源极/漏极区106形成于通道区104的两侧的半导体基板102中。换言之,通道区104被定义为设置在源极/漏极区106之间的部分基板102。可通过一或多道离子布植制程来形成源极/漏极区106,其中在基板102中布植n型或p型掺质离子是取决于所欲的基板102的类型及晶体管的类型(例如n型鳍式场效晶体管或p型鳍式场效晶体管)。可分别形成用于n型鳍式场效晶体管结构100A及p型鳍式场效晶体管结构100B的源极/漏极区106。举例而言,用于n型鳍式场效晶体管结构100A的源极/漏极区106可由n型掺杂的硅形成,或用于p型鳍式场效晶体管结构100B的源极/漏极区106可由p型掺杂的硅锗形成。在一些实施例中,通过电隔离区域(例如浅沟槽隔离部件)将源极/漏极区106与相邻的掺杂部件(例如附近晶体管的其他源极/漏极区)分隔。
层间介电层108包括介电材料,例如:低介电常数(low-k)介电材料(介电材料的介电常数小于二氧化硅的介电常数)。作为非限制性的示例,低介电常数介电材料可包括:掺氟的二氧化硅、掺碳的二氧化硅、多孔的(porous)二氧化硅、多孔的掺碳二氧化硅、旋涂(spin-on)有机聚合介电质(polymeric dielectric)、旋涂硅为主的聚合介电质、或前述的组合。替代地,层间介电层108可包括:氧化硅或氮化硅、或前述的组合。在一些其他实施例中,层间介电层108可包括:四乙氧基硅烷(tetraethylorthosilicate,TEOS)、未掺杂的硅酸盐玻璃、或掺杂的氧化硅,例如:硼磷硅酸盐玻璃(borophosphosilicate glass,BPSG)、石英玻璃(fused silica glass,FSG)、磷硅酸盐玻璃(phosphosilicate glass,PSG)、硼掺杂的硅玻璃(boron doped silicon glass,BSG)、或其他适合的介电材料。可通过等离子体辅助化学气相沉积(PECVD)、流动式化学气相沉积(FCVD)、或其他适合的方法来形成层间介电层108。
在一些实施例中,半导体结构100A、100B的每一个皆包括在源极/漏极区106及层间介电层108之间的接触蚀刻停止层(未示出)。接触蚀刻停止层可包括:氮化硅、氮氧化硅、带有氧或碳元素的氮化硅、或其他适合的材料,且可通过化学气相沉积、物理气相沉积、原子层沉积、或其他适合的方法来形成。
栅极间隔物130可包括介电材料,例如:氧化硅、氮化硅、氮氧化硅、碳化硅、其他介电材料、或前述的组合,且可包括一或多层材料。可在虚设栅极(未示出)上沉积间隔物材料来形成栅极间隔物130。可通过非等向性蚀刻制程来蚀刻间隔物材料。在蚀刻后,留在虚设栅极的侧壁上的部分间隔物材料可成为栅极间隔物130。
参照图2、图4A、及图4B,方法200进行至操作204,在栅极沟槽132中沉积界面层122。界面层122在通道区104及栅极结构120之间提供界面。界面层122可包括二氧化硅或氮氧化硅。可使用化学氧化、热氧化、原子层沉积、化学气相沉积、或其他适合的方法来形成界面层122。在一些实施例中,界面层122的厚度可为约
Figure BDA0002654327620000071
在一些其他实施例中,界面层122的厚度可为约5至
Figure BDA0002654327620000072
厚度低于
Figure BDA0002654327620000073
的界面层增加栅极电流泄漏,然而厚度大于
Figure BDA0002654327620000074
的界面层因为较大的有效氧化物厚度/反转厚度而降低装置性能。在一些实施例中,界面层122的厚度可小于或约等于第一金属氧化物层124、第二金属氧化物层134、及铁电层126中的每一个的厚度。在一些其他实施例中,界面层122的厚度可大于第一金属氧化物层124、第二金属氧化物层134、及铁电层126中的每一个的厚度。
参照图2、图5A、及图5B,方法200进行至操作206,在界面层122上沉积第一金属氧化物层124。在一些实施例中,可将第一金属氧化物层124沉积在n型鳍式场效晶体管半导体结构100A及p型鳍式场效晶体管半导体结构100B上。在一些实施例中,第一金属氧化物层124可包括具有化学式M1O的材料,其中M1为金属。在一些实施例中,第一金属氧化物层124可包括:Al2O3、Ta2O5、La2O3、Y2O3、HfO2、ZrO2、或前述的组合。在一些实施例中,第一金属氧化物层124可为非晶的,可促进后续步骤中的移除。在一些实施例中,第一金属氧化物层124的厚度为约
Figure BDA0002654327620000075
在一些实施例中,第一金属氧化物层124具有约10或更大的有效介电常数。在一些实施例中,通过化学气相沉积、物理气相沉积、等离子体辅助化学气相沉积、原子层沉积、或其他适合的方法来沉积第一金属氧化物层124。
参照图2、图6A、及图6B,方法200进行至操作208,从p型鳍式场效晶体管半导体结构100B移除第一金属氧化物层124。第一金属氧化物层124的移除可包括:在半导体结构100A、100B的每一个上形成硬遮罩层。在一些实施例中,硬遮罩层可包括SiO2。移除制程可进一步包括:在n型鳍式场效晶体管半导体结构100A上形成光阻图案。移除制程还可包括:使用光阻图案作为蚀刻遮罩,移除覆盖p型鳍式场效晶体管半导体结构100B的部分硬遮罩层,从而形成图案化的硬遮罩层。随后可移除光阻,例如通过灰化来移除光阻。移除制程可进一步包括:使用图案化的硬遮罩层作为蚀刻遮罩,从p型鳍式场效晶体管半导体结构100B选择性地移除第一金属氧化物层124。在一些其他实施例中,光阻图案可代替硬遮罩层,将光阻图案直接形成在n型鳍式场效晶体管半导体结构100A上,并作为第一金属氧化物层124的蚀刻遮罩。在一些实施例中,可通过湿清洁来移除第一金属氧化物层124,其中使用包含H2O2的湿溶液。在一些实施例中,在实质上移除第一金属氧化物层124之后,湿清洁制程还可移除界面层122的至少一部分。在一些实施例中,在湿清洁前,界面层122的第一厚度可大于
Figure BDA0002654327620000081
而在湿清洁后,界面层122的第二厚度可为约
Figure BDA0002654327620000082
在一些其他实施例中,第二厚度可高达
Figure BDA0002654327620000083
在一些实施例中,在第一厚度与第二厚度的比例为约3:2至3:1之间的情况下,可使界面层122薄化。在一些实施例中,可进一步使界面层122更薄,使所述比例可大于3:1。由于较大有效氧化物厚度/反转厚度,小于3:2的第一厚度与第二厚度的比例降低了装置性能。在一些实施例中,大于3∶1的比例增加了栅极电流泄漏。在一些实施例中,可根据湿清洁制程时间来调整界面层122的厚度,使较长的制程时间可产生较薄的界面层122。在一些实施例中,可通过等向性蚀刻来移除第一金属氧化物层124,例如通过湿蚀刻,其中使用氟化氢的溶液、低氟化铵液体(low ammonium fluoride liquid)、或其他适合的溶液。在一些实施例中,可通过非等向性蚀刻来移除第一金属氧化物层124,例如通过反应性离子蚀刻。在一些实施例中,蚀刻可选择性地移除第一金属氧化物层124而不会影响界面层122。
参照图2、图7A、及图7B,方法200进行至操作210,在栅极沟槽132中沉积铁电层126。在一些实施例中,可将铁电层126沉积在n型鳍式场效晶体管半导体结构100A及p型鳍式场效晶体管半导体结构100B上。在一些实施例中,铁电层126可包括具有化学式M2M3O的材料,其中M2为金属,且其中M3可包括:元素、不同于M2的金属、或硅。在一些实施例中,铁电层126可包括;HfZrOx、HfSiOx、HfAlOx、HfLaOx、或前述的组合。在一些实施例中,由于非晶结构可能会降低负电容性能,因此铁电层126应为结晶结构以改善性能。在一些实施例中,铁电层126包括具有斜方相晶体结构的上述铁电材料。在一些实施例中,处于斜方相可赋予铁电层126适当的铁电性质。在一些实施例中,铁电层126的厚度为约
Figure BDA0002654327620000091
此厚度降低了所需的供应电压并降低功率消耗。一些实施例中,在前述的整个范围内,负电容晶体管中的铁电层126的性能可实质上不变。在一些实施例中,铁电层126具有约20或更大的有效介电常数。在一些实施例中,高介电常数(例如约20或更大的介电常数)可减少有效氧化物厚度。在一些实施例中,通过原子层沉积来沉积铁电层126,可有助于控制铁电层126的厚度及均匀性。在一些实施例中,铁电层126是在约200℃至约400℃的温度范围沉积。在其他实施例中,铁电层126是通过化学气相沉积、等离子体辅助化学气相沉积、金属有机化学气相沉积、或物理气相沉积、或其他适合的方法来沉积。在一些其他实施例中,铁电层126可包括:PbZrTiOx、BaTiOx、或前述的组合。在一些其他实施例中,可使用布植制程或扩散制程,以掺质掺杂铁电层126。掺质可包括:锆、硅、铝、铅、钡、钛、用于有机铁电材料的聚合物、或前述的组合。
参照图2、图8A及图8B,方法200进行至操作212,在铁电层126上沉积第二金属氧化物层134。在一些实施例中,可将第二金属氧化物层134沉积在n型鳍式场效晶体管半导体结构100A及p型鳍式场效晶体管半导体结构100B上。在一些实施例中,第二金属氧化物层134可包括具有化学式M1O的材料,其中M1为金属。在一些实施例中,第二金属氧化物层134可包括:Al2O3、Ta2O5、La2O3、Y2O3、HfO2、ZrO2、或前述的组合。在一些实施例中,第二金属氧化物层134的厚度为约
Figure BDA0002654327620000092
在一些实施例中,第二金属氧化物层134具有约10或更大的有效介电常数。在一些实施例中,可通过化学气相沉积、物理气相沉积、等离子体辅助化学气相沉积、原子层沉积、或其他适合的方法来沉积第二金属氧化物层134。
参照图2、图9A及图9B,方法200进行至操作214,从n型鳍式场效晶体管半导体结构100A移除第二金属氧化物层134。第二金属氧化物层134的移除可包括:在半导体结构100A、100B的每一个上形成硬遮罩层。在一些实施例中,硬遮罩层可包括SiO2。移除制程可进一步包括:在p型鳍式场效晶体管半导体结构100B上形成光阻图案。移除制程还可包括:使用光阻图案作为蚀刻遮罩,移除覆盖n型鳍式场效晶体管半导体结构100A的部分硬遮罩层,从而形成图案化的硬遮罩层。随后可移除光阻,例如通过灰化来移除光阻。移除制程可进一步包括:使用图案化的硬遮罩层作为蚀刻遮罩,从n型鳍式场效晶体管半导体结构100A选择性地移除第二金属氧化物层134。在一些其他实施例中,光阻图案可代替硬遮罩层,将光阻图案直接形成在p型鳍式场效晶体管半导体结构100B上,并作为第二金属氧化物层134的蚀刻遮罩。在一些实施例中,可通过等向性蚀刻来移除第二金属氧化物层134,例如通过湿蚀刻,其中使用氟化氢的溶液、低氟化铵液体、或其他适合的溶液。在一些实施例中,可通过非等向性蚀刻来移除第二金属氧化物层134,例如通过反应性离子蚀刻。在一些实施例中,蚀刻可选择性地移除第二金属氧化物层134而不会影响铁电层122。
参照图2、图10A、图10B,方法200进行至操作216,在栅极沟槽132中沉积栅极电极128。栅极电极128可包括一或多个金属层,例如:功函数金属层、导电阻障层(conductivebarrier layer)、及金属填充层。取决于装置的类型(p型鳍式场效晶体管或n型鳍式场效晶体管),功函数金属层可为p型或n型功函数层。p型功函数层可包括具有足够高的有效功函数的金属,其包括(但不限于):TiN、TaN、Ru、Mo、W、Pt、或前述的组合。n型功函数层可包括具有足够低的有效功函数的金属,其包括(但不限于):Ti、Al、TaC、TaCN、TaSiN、TiSiN、或前述的组合。金属填充层可包括:Al、W、Cu、Co、或前述的组合。可通过化学气相沉积、物理气相沉积、原子层沉积、电镀、或其他适合的制程来沉积栅极电极128。栅极电极128的形成也可包括一或多道退火制程。举例而言,在一些实施例中,功函数金属层及/或金属填充层可包括多个金属层。在这些实施例中,可在沉积栅极电极128的每个金属层后执行相应的退火制程。
在一些其他实施例中,可以替代的方法300取代方法200,用来形成半导体结构100A、100B。如上所述,部分的方法200包括:沉积第一金属氧化物层124,然后从p型鳍式场效晶体管半导体结构100B上方移除部分第一金属氧化物层124。在沉积铁电层126之后,方法200包括:沉积第二金属氧化物层134,然后从n型鳍式场效晶体管半导体结构100A上方移除部分第二金属氧化物层134。与方法200相比,方法300包括移除一或多个铁电层的步骤,而非移除第一金属氧化物层124及第二金属氧化物层134。图11是根据一些实施例,示出形成半导体结构100A、100B的方法300的流程图。
参照图11,方法300起始于操作302,提供n型鳍式场效晶体管及p型鳍式场效晶体管半导体结构,每个半导体结构皆包括:半导体基板、通道区、源极/漏极区、层间介电层、栅极间隔物、及栅极沟槽。方法300继续进行至操作304,沉积界面层于栅极沟槽中。方法300进行至操作306,沉积第一铁电层于界面层上。方法300进行至操作308,从n型鳍式场效晶体管移除第一铁电层。方法300进行至操作310,沉积金属氧化物层于栅极沟槽中。方法300进行至操作312,沉积第二铁电层于金属氧化物层上。方法300进行至操作314,从p型鳍式场效晶体管移除第二铁电层。在一些实施例中,可通过使用H2O2的湿清洁来移除第一及第二铁电层。在一些实施例中,可通过等向性蚀刻来移除第一及第二铁电层,例如通过湿蚀刻,其中使用氟化氢的溶液、低氟化铵液体、或其他适合的溶液。在一些实施例中,可通过非等向性蚀刻来移除第一及第二铁电层,例如通过反应性离子蚀刻。方法300进行至操作316,沉积栅极电极于栅极沟槽中。应理解的是,方法300类似于结合前述各种制程及材料的方法200。如此,方法300可包含方法200中的类似结构、材料、及制程的详细描述,且不被限制。
在一些其他的实施例中,可形成半导体结构100A、100B而不移除一或多个金属氧化物层或铁电层的其中之一。可依据需求使用任何适合的制程,将各种层选择性地仅形成于n型鳍式场效晶体管半导体结构100A或p型鳍式场效晶体管半导体结构100B上,而不是将一个或多个金属氧化物层或铁电层沉积在整个工件上,其中需要选择性的移除。
并非限制性的,本发明的一或多个实施例为半导体装置及其形成提供了许多益处。举例而言,本发明实施例提供金属氧化物层间结构,以处理负电容场效晶体管中的栅极电流泄漏及界面问题。
在一示例方面,本发明实施例针对一种半导体装置的形成方法。此方法包括:提供n型鳍式场效晶体管结构及p型鳍式场效晶体管结构,n型鳍式场效晶体管及p型鳍式场效晶体管结构中的每一个均包括半导体基板及栅极沟槽;在每个栅极沟槽中沉积界面层;在界面层上沉积第一金属氧化物层;从p型鳍式场效晶体管结构中移除第一金属氧化物层;在每个栅极沟槽中沉积铁电层;在铁电层上沉积第二金属氧化物层;从n型鳍式场效晶体管结构中移除第二金属氧化物层;在每个栅极沟槽中沉积栅极电极。
在另一示例方面,本发明实施例针对一种半导体结构。此半导体结构包括:具有通道区的半导体基板;设置在通道区的两侧的半导体基板中的第一及第二源极/漏极区;以及栅极结构,包括:通道区上的界面层;界面层上的金属氧化物层;以及界面层上的铁电层,其中金属氧化物层与铁电层具有不同的材料组成。
在另一个示例方面,本发明实施例针对一种半导体结构。此半导体结构包括:n型鳍式场效晶体管结构,具有第一通道区及第一栅极结构,第一栅极结构包括:第一界面层,在第一通道区上;第一金属氧化物层,在第一界面层上,第一金属氧化物层具有第一化学组成;第一铁电层,在第一金属氧化物层上,第一铁电层具有不同于第一化学组成的第二化学组成;及第一栅极电极,在第一铁电层上;以及p型鳍式场效晶体管结构,具有第二通道区及第二栅极结构,第二栅极结构包括:第二界面层,在第二通道区上;第二铁电层,在第二界面层上,第二铁电层具有第二化学组成;第二金属氧化物层,在第二铁电层上,第二金属氧化物层具有第一化学组成;及一第二栅极电极,在第二金属氧化物层上。
在另一个示例方面,本发明实施例针对一种n型鳍式场效晶体管半导体结构。此半导体结构包括:具有通道区的半导体基板;设置在通道区的两侧的半导体基板中的第一及第二源极/漏极区;以及栅极结构,包括:通道区上的界面层;界面层上的金属氧化物层;金属氧化物层上的铁电层;及铁电层上的栅极电极。
在又一示例方面,本发明实施例针对一种p型鳍式场效晶体管半导体结构。此半导体结构包括:具有通道区的半导体基板;设置在通道区的两侧的半导体基板中的第一及第二源极/漏极区;以及栅极结构,包括:通道区上的界面层;界面层上的铁电层;铁电层上的金属氧化物层;及金属氧化物层上的栅极电极。
一些实施例中,将界面层沉积至第一厚度,且所述方法更包括:移除界面层的至少一部分,以形成薄化的界面层,其具有小于第一厚度的第二厚度。一些实施例中,界面层的至少一部分的移除是通过使用H2O2的湿清洁制程。一些实施例中,第一厚度大于
Figure BDA0002654327620000131
且其中第二厚度为
Figure BDA0002654327620000132
或更小。一些实施例中,将第一金属氧化物层及第二金属氧化物层的每一个皆沉积至大约
Figure BDA0002654327620000133
的厚度。一些实施例中,将铁电层沉积至大约
Figure BDA0002654327620000134
的厚度。
一些实施例中,将所述第一栅极沟槽形成于半导体装置的p型鳍式场效晶体管区域中,且其中将所述第二栅极沟槽形成于半导体装置的n型鳍式场效晶体管区域中。一些实施例中,在所述第一栅极沟槽及第二栅极沟槽的每一个中,将界面层沉积至第一厚度,且所述方法更包括:移除所述第一栅极沟槽及第二栅极沟槽的每一个中的界面层的至少一部分,以形成薄化的界面层,其具有小于第一厚度的一第二厚度。一些实施例中,界面层的至少一部分的移除包括:执行使用H2O2的一湿清洁制程。一些实施例中,第一厚度大于约
Figure BDA0002654327620000135
且其中第二厚度大约为
Figure BDA0002654327620000136
或更小。一些实施例中,将第一金属氧化物层及第二金属氧化物层的每一个皆沉积至大约
Figure BDA0002654327620000137
的厚度。一些实施例中,将铁电层沉积至大约
Figure BDA0002654327620000138
的厚度。
一些实施例中,第一金属氧化物层及第二金属氧化物层的每一个皆包括选自由Al2O3、Ta2O5、La2O3、Y2O3、HfO2、及ZrO2所组成的群组的材料。一些实施例中,第一金属氧化物层及第二金属氧化物层的每一个皆为非晶的(amorphous)。一些实施例中,第一金属氧化物层及第二金属氧化物层的每一个的厚度皆为约
Figure BDA0002654327620000139
一些实施例中,第一金属氧化物层及第二金属氧化物层的每一个的介电常数皆为约10或更大。一些实施例中,第一铁电层及第二铁电层的每一个皆包括选自由HfZrOx、HfSiOx、HfAlOx、及HfLaOx所组成的群组的材料。一些实施例中,第一金属氧化物层及第二金属氧化物层的每一个皆包括具有化学式M1O的第一材料,且其中第一铁电层及第二铁电层的每一个皆包括不同于第一材料的第二材料,第二材料具有化学式M2M3O,其中M1为第一金属、M2为第二金属、M3为元素、且O代表氧。
以上概述数个实施例的特点,以便在本发明所属技术领域中技术人员可更好地了解本发明的各个方面。在本发明所属技术领域中技术人员,应理解其可轻易地利用本发明实为基础,设计或修改其他制程及结构,以达到和此中介绍的实施例的相同的目的及/或优点。在本发明所属技术领域中技术人员,也应理解此类等效的结构并无背离本发明的精神与范围,且其可于此作各种的改变、取代、和替换而不背离本发明的精神与范围。

Claims (1)

1.一种半导体装置的形成方法,包括:
提供一n型鳍式场效晶体管结构及一p型鳍式场效晶体管结构,所述n型鳍式场效晶体管结构及p型鳍式场效晶体管结构的每一个皆包括一半导体基板及一栅极沟槽;
沉积一界面层于每一个栅极沟槽中;
沉积一第一金属氧化物层于该界面层上;
从该p型鳍式场效晶体管结构移除该第一金属氧化物层;
沉积一铁电层于每一个栅极沟槽中;
沉积一第二金属氧化物层于该铁电层上;
从该n型鳍式场效晶体管结构移除该第二金属氧化物层;以及
沉积一栅极电极于每一个栅极沟槽中。
CN202010881891.1A 2019-08-30 2020-08-28 半导体装置的形成方法 Pending CN112447524A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962894200P 2019-08-30 2019-08-30
US62/894,200 2019-08-30
US16/895,436 US11158721B2 (en) 2019-08-30 2020-06-08 Metal oxide interlayer structure for nFET and pFET
US16/895,436 2020-06-08

Publications (1)

Publication Number Publication Date
CN112447524A true CN112447524A (zh) 2021-03-05

Family

ID=74679588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010881891.1A Pending CN112447524A (zh) 2019-08-30 2020-08-28 半导体装置的形成方法

Country Status (3)

Country Link
US (4) US11158721B2 (zh)
CN (1) CN112447524A (zh)
TW (1) TW202111784A (zh)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664186B1 (en) * 2000-09-29 2003-12-16 International Business Machines Corporation Method of film deposition, and fabrication of structures
US8101485B2 (en) * 2005-12-16 2012-01-24 Intel Corporation Replacement gates to enhance transistor strain
US7563730B2 (en) * 2006-08-31 2009-07-21 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US8592922B2 (en) * 2008-06-09 2013-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor device and a method of manufacturing the same
US8816444B2 (en) 2011-04-29 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. System and methods for converting planar design to FinFET design
KR20130047054A (ko) * 2011-10-31 2013-05-08 에스케이하이닉스 주식회사 고유전층 및 금속게이트전극을 갖는 반도체장치 및 그 제조 방법
US9236267B2 (en) 2012-02-09 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Cut-mask patterning process for fin-like field effect transistor (FinFET) device
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US8860148B2 (en) 2012-04-11 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for FinFET integrated with capacitor
US8823065B2 (en) 2012-11-08 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US9105490B2 (en) 2012-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US8772109B2 (en) 2012-10-24 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for forming semiconductor contacts
US9236300B2 (en) 2012-11-30 2016-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Contact plugs in SRAM cells and the method of forming the same
US9567814B2 (en) 2014-06-13 2017-02-14 Cameron Sense AS Hoisting systems with heave compensation
US9520482B1 (en) 2015-11-13 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of cutting metal gate
US10643904B2 (en) * 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
KR102422386B1 (ko) * 2017-04-21 2022-07-20 주식회사 루멘스 마이크로 led 디스플레이 장치 및 그 제조방법
US11031490B2 (en) * 2019-06-27 2021-06-08 Taiwan Semiconductor Manufacturing Co., Ltd Fabrication of field effect transistors with ferroelectric materials

Also Published As

Publication number Publication date
US20240194762A1 (en) 2024-06-13
US11594612B2 (en) 2023-02-28
US20230223459A1 (en) 2023-07-13
US11916128B2 (en) 2024-02-27
US11158721B2 (en) 2021-10-26
TW202111784A (zh) 2021-03-16
US20210066469A1 (en) 2021-03-04
US20220045192A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
CN108231664B (zh) 半导体器件及其形成方法
TWI711075B (zh) 半導體結構及其製造方法
US11710792B2 (en) Semiconductor structure with improved source drain epitaxy
TWI570915B (zh) 半導體裝置以及製造鰭式場效電晶體裝置的方法
US11923430B2 (en) Gate structure and patterning method for multiple threshold voltages
TWI654671B (zh) 半導體裝置與其製作方法
US11037826B2 (en) Semiconductor device having merged epitaxial features with arc-like bottom surface and method of making the same
TW201735154A (zh) 半導體裝置及其製造方法
US10867870B1 (en) Semiconductor device with funnel shape spacer and methods of forming the same
TW202002004A (zh) 半導體結構的製造方法
TW201919119A (zh) 製造半導體結構之方法
TW202017014A (zh) 半導體元件的形成方法
US11916128B2 (en) Metal oxide interlayer structure for nFET and pFET
KR20220002028A (ko) 반도체 디바이스 및 방법
CN110838469A (zh) 集成电路结构的制作方法
CN110648969A (zh) 制作集成电路结构的方法
TWI756018B (zh) 半導體元件及半導體方法
CN220856579U (zh) 半导体装置
TW202431545A (zh) 半導體裝置及其製造方法
TW202412262A (zh) 半導體結構
TW202243030A (zh) 半導體裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210305