CN112436129B - 一种锂离子电池负极复合材料的制备方法 - Google Patents
一种锂离子电池负极复合材料的制备方法 Download PDFInfo
- Publication number
- CN112436129B CN112436129B CN202011385973.3A CN202011385973A CN112436129B CN 112436129 B CN112436129 B CN 112436129B CN 202011385973 A CN202011385973 A CN 202011385973A CN 112436129 B CN112436129 B CN 112436129B
- Authority
- CN
- China
- Prior art keywords
- composite material
- lithium ion
- ion battery
- preparation
- graphene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种锂离子电池负极复合材料的制备方法,通过多壁氧化碳纳米管(oCNT)、氧化石墨烯、N‑乙酰‑L‑半胱氨酸和氯化铜的混合合成,能够有效提高电极材料的存储能力和电化学导电率。石墨烯/碳纳米管网络内部铜纳米颗粒的存在可以提高复合材料的电化学导电性,防止枝晶形成,作为锂离子电池的负极具有出色的电容性能。
Description
技术领域
本发明设计了一种锂离子电池负极复合材料的制备方法。
背景技术
锂离子电池因高能量密度、优异的循环寿命、高工作电压、较低的自放电率、环境友好等突出优势,被广泛应用于各种领域。石墨类负极材料是目前商业化锂离子电池使用的主要负极材料,其理论容量低,已不能满足下一代高比能量锂离子电池得需求。迫切需要开发具有高能量密度,长循环寿命以及环境友好性的新型负极候选材料。
石墨烯由单原子厚的sp2-杂化碳单层蜂窝状格子构成,是具有二维结构的单层石墨,可作为储能中的电极材料显示出了巨大的潜力。
然而,强范德华力的作用降低了石墨烯的活性物质比表面积,阻碍电解质离子进入晶格,导致库伦效率低,倍率能力差和显著的容量衰减。
金属纳米粒子的掺入可通过形成三维结构并增加表面积以防止石墨烯层的重新堆积,从而提高其存储离子的能力。与此同时,通过化学掺杂,也可提高石墨烯用于锂电池储能时的倍率能力和循环能力。
发明内容
针对现有技术不足,本发明目的在于提供一种锂离子电池负极复合材料的制备方法。
本发明目的通过以下方案实现:一种锂离子电池负极复合材料的制备方法,锂离子电池负极材料为石墨烯/碳纳米管复合材料,通过多壁氧化碳纳米管(oCNT) 、氧化石墨烯、N-乙酰-L-半胱氨酸和氯化铜混合合成及烧结,生产出具有硫掺杂的铜约束的石墨烯/碳纳米管复合材料,包括下述步骤:
(1)分别称取1g氧化石墨烯、3g多壁氧化碳纳米管、10g 硫前驱体和0.1g氯化铜,将各组分在30ml醇类溶剂中混合,得混合物;
(2)将混合物连续搅拌至均匀,在80℃加热6-8小时,得到半固体粉末;
(3)将所得的半固体粉末在氩气气氛下于管式炉中以800℃热处理1~3h,升温速率为1~5℃/min,得到硫掺杂的铜约束的石墨烯/碳纳米管复合材料。
本发明通过将多壁氧化碳纳米管(oCNT) 、氧化石墨烯、N-乙酰-L-半胱氨酸和氯化铜混合合成及烧结,能够有效提高电极材料的存储能力和电化学导电率。石墨烯/碳纳米管网络内部铜纳米颗粒的存在可以提高复合材料的电化学导电性,防止枝晶形成,作为锂离子电池的负极具有出色的电容性能。
其中,所用硫前驱体为N-乙酰-L-半胱氨酸、硫代乙酰胺、硫脲任意一种。
所述的氧化石墨烯的制备方法采用Hammers法。
步骤(1)中,所述的醇类溶剂为异丙醇、乙醇、甲醇中的至少一种。
本发明通过多壁氧化碳纳米管(oCNT) 、氧化石墨烯、N-乙酰-L-半胱氨酸和氯化铜的混合合成,能够有效提高电极材料的存储能力和电化学导电率。石墨烯/碳纳米管网络内部铜纳米颗粒的存在可以提高复合材料的电化学导电性,防止枝晶形成,作为锂离子电池的负极具有出色的电容性能。
附图说明
图1为实施例石墨烯/碳纳米管复合材料的示意图。
具体实施方式
实施例1:
一种锂离子电池负极复合材料,锂离子电池负极材料为石墨烯/碳纳米管复合材料,通过多壁氧化碳纳米管(oCNT) 、氧化石墨烯、N-乙酰-L-半胱氨酸和氯化铜混合合成及烧结,生产出具有硫掺杂的铜约束的石墨烯/碳纳米管复合材料,按下述步骤制备:
(1)分别称取1g氧化石墨烯、3g多壁氧化碳纳米管、10g 硫前驱体N-乙酰-L-半胱氨酸和0.1g氯化铜,将各组分在30ml异丙醇溶液中混合,得混合物;
(2)将混合物连续搅拌至均匀,在80℃加热6-8小时,得到半固体粉末;
(3)将所得的半固体粉末在氩气气氛下于管式炉中以800℃热处理1h,升温速率为5℃/min,得到硫掺杂的铜约束的石墨烯/碳纳米管复合材料。该石墨烯/碳纳米管复合材料的示意图如图1所示。
本发明有益效果:表现出 95.6%的首次库伦效率和 462.5 mAh g-1容量,500 次循环容量保持率为 99.8%,展现了良好的工业化应用前景。
实施例2:
一种锂离子电池负极复合材料,与实施例1近似,按下述步骤制备:
(1)分别称取1g氧化石墨烯,3g多壁氧化碳纳米管,10g N-乙酰-L-半胱氨酸和0.1g氯化铜,将各组分在30ml异丙醇溶液中混合,得混合物;
(2)将混合物连续搅拌至均匀,在80℃加热8小时,得到半固体粉末;
(3)将所得的半固体粉末在氩气气氛下于管式炉中以800℃热处理2h,升温速率为5℃/min;
本发明有益效果:表现出 94.2%的首次库伦效率和 455.2 mAh g-1容量,500 次循环容量保持率为99.6%,展现了良好的工业化应用前景。
实施例3:
一种锂离子电池负极复合材料,与实施例1近似,按下述步骤制备:
(1)分别称取1g氧化石墨烯,3g多壁氧化碳纳米管,4.5g 硫脲和0.1g氯化铜,将各组分在30ml异丙醇溶液中混合,得混合物;
(2)将混合物连续搅拌至均匀,在80℃加热6小时;
(3)将所得的半固体粉末在氩气气氛下于管式炉中以800℃热处理3h,升温速率为5℃/min。
本发明有益效果:表现出 93.7%的首次库伦效率和 453.8 mAh g-1容量,500 次循环容量保持率为 99.5%,展现了良好的工业化应用前景。
上述的实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。
Claims (4)
1.一种锂离子电池负极复合材料的制备方法,锂离子电池负极材料为石墨烯/碳纳米管复合材料,其特征在于通过多壁氧化碳纳米管(oCNT) 、氧化石墨烯、N-乙酰-L-半胱氨酸和氯化铜混合合成及烧结,生产出具有硫掺杂的铜约束的石墨烯/碳纳米管复合材料,包括下述步骤:
(1) 分别称取1g氧化石墨烯、3g多壁氧化碳纳米管、10g 硫前驱体和0.1g氯化铜,将各组分在30ml醇类溶剂中混合,得混合物;
(2)将混合物连续搅拌至均匀,在80℃加热6-8小时,得到半固体粉末;
(3) 将所得的半固体粉末在氩气气氛下于管式炉中以800℃热处理1~3h,升温速率为1~5℃/min,得到硫掺杂的铜约束的石墨烯/碳纳米管复合材料。
2.根据权利要求1所述锂离子电池负极复合材料的制备方法,其特征在于,所用硫前驱体为N-乙酰-L-半胱氨酸、硫代乙酰胺或硫脲中任意一种。
3.根据权利要求1所述锂离子电池负极复合 材料的制备方法,其特征在于,氧化石墨烯的制备方法采用Hammers法。
4.根据权利要求1所述锂离子电池负极复合材料的制备方法,其特征在于,步骤(1)中所述醇类溶剂为异丙醇、乙醇、甲醇中的至少一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011385973.3A CN112436129B (zh) | 2020-12-01 | 2020-12-01 | 一种锂离子电池负极复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011385973.3A CN112436129B (zh) | 2020-12-01 | 2020-12-01 | 一种锂离子电池负极复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112436129A CN112436129A (zh) | 2021-03-02 |
CN112436129B true CN112436129B (zh) | 2022-09-02 |
Family
ID=74697587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011385973.3A Active CN112436129B (zh) | 2020-12-01 | 2020-12-01 | 一种锂离子电池负极复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112436129B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258209A (zh) * | 2017-12-27 | 2018-07-06 | 温州大学 | 一种碳化物/碳纳米管/石墨烯载硫复合材料及其制备方法与应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TR201605860T1 (tr) * | 2013-11-05 | 2016-11-21 | Univ California | Metal oksi̇t kenetli̇ grafen ve karbon nanotüp i̇çeren hi̇bri̇d köpük. |
CN106159231A (zh) * | 2016-08-15 | 2016-11-23 | 中南大学 | 一种水热法制备三维硫/石墨烯/碳纳米管(S/GN/CNTs)复合物的方法及其用于锂硫电池阴极材料 |
CN108950595B (zh) * | 2018-07-30 | 2020-07-03 | 江南大学 | 一种电催化水解的多级复合材料的制备方法及其产品、应用 |
CN111276678B (zh) * | 2020-01-19 | 2021-09-28 | 上海应用技术大学 | 单层石墨烯包覆FeS2/碳纳米管材料的制备方法及应用 |
-
2020
- 2020-12-01 CN CN202011385973.3A patent/CN112436129B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258209A (zh) * | 2017-12-27 | 2018-07-06 | 温州大学 | 一种碳化物/碳纳米管/石墨烯载硫复合材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112436129A (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104966824A (zh) | 一种基于壳聚糖及其衍生物氮掺杂多孔碳球-氧化钴纳米复合负极材料及其制备方法 | |
CN108878851B (zh) | 一维多孔菱形空管状的α-硫化锰/硫化钼@碳复合材料的制备方法及其应用 | |
Zhang et al. | Facile synthesis of hollow Cu 3 P for sodium-ion batteries anode | |
Kumar et al. | Three-dimensional graphene-decorated copper-phosphide (Cu3P@ 3DG) heterostructure as an effective electrode for a supercapacitor | |
CN112499617B (zh) | 一种n和s共掺杂的空心碳纳米立方体的制备方法及钾离子电池 | |
CN105702958B (zh) | 一种二氧化锡量子点溶液及其复合材料的制备方法与应用 | |
CN110957490A (zh) | 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法 | |
Wu et al. | High-performance aqueous battery with double hierarchical nanoarrays | |
Zhipeng et al. | Hierarchical porous carbon toward effective cathode in advanced zinc-cerium redox flow battery | |
Zheng et al. | A Fe 2 O 3–Fe 3 C heterostructure encapsulated into a carbon matrix for the anode of lithium-ion batteries | |
Zhu et al. | Hollow multishelled structural NiO as a “shelter” for high-performance Li–S batteries | |
CN104577126A (zh) | 一种形貌均匀的MWCNT@a-C@Co9S8复合电极材料的制备方法及在锂电中的应用 | |
CN113644269B (zh) | 氮掺杂硬碳材料的制备方法及其产品和应用 | |
He et al. | Recent progress and future prospect of novel multi-ion storage devices | |
CN108023085B (zh) | 一种碳包覆二氧化锡纳米颗粒的制备方法 | |
Gull et al. | Carbon armor for zinc anodes: Mitigating dendrite formations and unwanted side reactions in zinc-ion batteries | |
Wu et al. | Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries | |
CN112436129B (zh) | 一种锂离子电池负极复合材料的制备方法 | |
CN112125339B (zh) | 单一晶面的氧化钨与碳纳米片复合储钠材料的形成方法 | |
CN108039460B (zh) | 一种三维树枝状氮掺杂石墨烯纳米管及其制备方法 | |
CN116161698A (zh) | 一种锌基电池正极材料及其制备方法和使用方法 | |
CN113636554B (zh) | 一种碳化钛-碳核壳阵列负载垂直石墨烯/二氧化锰复合材料及其制备方法和应用 | |
CN115101725A (zh) | 一种硅纳米线电极的制备方法及其在锂离子电池中的应用 | |
CN112242511B (zh) | 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用 | |
CN108878889A (zh) | 自支撑打孔还原氧化石墨烯材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |