CN112242511B - 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用 - Google Patents

一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112242511B
CN112242511B CN202011109257.2A CN202011109257A CN112242511B CN 112242511 B CN112242511 B CN 112242511B CN 202011109257 A CN202011109257 A CN 202011109257A CN 112242511 B CN112242511 B CN 112242511B
Authority
CN
China
Prior art keywords
cnt
manganese group
rgo
composite material
dimensional composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011109257.2A
Other languages
English (en)
Other versions
CN112242511A (zh
Inventor
黄鹏
胡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202011109257.2A priority Critical patent/CN112242511B/zh
Publication of CN112242511A publication Critical patent/CN112242511A/zh
Application granted granted Critical
Publication of CN112242511B publication Critical patent/CN112242511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用,该材料包括质量比为2:1:2的锰基团簇、碳纳米管和氧化石墨烯,将锰基团簇Mn12嵌入到3D导电网络CNT/RGO中,通过淬火将锰基团簇转化为MnO@C纳米球,最终形成所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。本发明的MnO@C/CNT/RGO材料合成简单,具有优良的机械强度和导电性,将其运用于钠离子电池负极材料中,在钠离子电池性能测试中有着优异的表现,具备良好的应用前景。

Description

一种基于锰基团簇衍生物的三维复合材料及其制备方法和 应用
技术领域
本发明属于钠离子电池技术领域,具体涉及一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用。
背景技术
随着可再生能源、分布式发电和智能电网的迅速发展,探索具有独特特征的新储能装置变得越来越重要。由于钠离子的天然丰富性和低成本,钠离子电池(SIB)作为锂离子电池(LIB)的有前途的替代品已引起了普遍关注。由于钠离子的半径比锂离子的半径/>大得多,SIBs电极材料的比容量较低,循环稳定性较差。因此,开发具有高可逆容量,稳定的结构稳定性和优异的倍率能力的电极材料是这些领域中的紧迫问题。在某种程度上,正极材料已经得到了很好的开发,这主要归功于其在LIB中的对应材料。相反,负极材料面临与体积变化,电子和离子的固有导电率低以及寿命不令人满意相关的严重问题。这些令人沮丧的问题严重阻碍了SIB的发展。
在过去的几年中,人们一直在努力探索适用于SIB的负极材料,并且已经取得了重大进展。提出了两种有效的途径,包括制造精细的纳米结构和制备多功能复合材料。一方面,有意设计和制备的纳米级材料通常具有分层结构,这有利于电解质的渗透。结果,钠离子的扩散路径大大减少,并且可以获得增强的电化学性能。另外,纳米级的分层结构还可以减轻充电/放电过程中的体积变化。另一方面,多功能复合材料可以结合组件的内在优势,同时解决与导电性和结构稳定性有关的问题。在各种负极材料中,过渡金属氧化物在SIB中起着重要的作用。为此,将金属氧化物限制或嵌入(杂原子掺杂的)碳质基质中形成分层的杂化体是一种普遍的方法,该杂化体可以适应大的体积变化,提高电导率并保持电极完整性。这些发现指导人们寻找其他合适的前体替代物,以发现一种新方法来合成复合材料,从而获得新颖的构型和出乎意料的性能。
锰基团簇是功能性金属材料,其金属节点通过给电子有机连接子相互连接,此类纳米系统中的电子通常与其金属中心的对称性、拓扑结构和连通性密切相关。为了同时实现出色的循环稳定性和速率能力,还没有探索将簇纳米化均匀分布在高效的3D互连体系结构中,该体系结构具有较大的表面积和高孔隙率,可用于钠离子电池。但目前关于该材料的复合形式及相关应用还未见报道。
发明内容
针对现有技术的不足,本发明提供一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用,通过使用锰基团簇作为前体来合成钠离子电池的高性能负极材料。
本发明是通过以下技术方案实现的:
一种基于锰基团簇衍生物的三维复合材料,包括质量比为2:1:2的锰基团簇、碳纳米管和氧化石墨烯,将锰基团簇Mn12嵌入到3D导电网络CNT/RGO中,通过淬火将锰基团簇转化为MnO@C纳米球,最终形成所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
一种基于锰基团簇衍生物的三维复合材料的制备方法,包括以下步骤:
步骤1)将100mg Mn12溶于100mL去离子水中,然后50mg的CNT和100mg的GO加入搅拌并在80℃加热直至变稠,通过在80℃下真空干燥12h获得中间产物Mn12/CNT/RGO;
步骤2)将中间产物Mn12/CNT/RGO在Ar气氛下于500℃进一步退火6h,即得到所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
一种基于锰基团簇衍生物的三维复合材料在制备钠离子电池中的应用。
优选地,所述基于锰基团簇衍生物的三维复合材料作为钠离子电池的负极材料。
本发明的有益效果如下:
本发明的基于锰基团簇衍生物的三维复合材料(MnO@C/CNT/RGO),具有丰富的开孔和大表面积,可为快速电荷传输提供有效的通道,并允许电极和电解质完全接触,从而改善电化学活性的SIB。坚固的3D架构提供了可观的应力缓冲空间,可承受体积膨胀,并确保了电化学过程中坚固的结构稳定性。即使在800mA/g的高电流密度下,MnO@C/CNT/RGO复合材料也显示出153mA·h/g的高比容量。MnO@C/CNT/RGO材料合成简单,具有优良的机械强度和导电性,将其运用于钠离子电池负极材料中,在钠离子电池性能测试中有着优异的表现,具备良好的应用前景。
附图说明
图1为制备MnO@C/CNT/RGO的流程示意图;
图2为实施例1制得的MnO@C/CNT/RGO的X-射线粉末衍射图;
图3为实施例1制得的MnO@C/CNT/RGO的扫描电镜图;
图4为使用实施例1制得的MnO@C/CNT/RGO组装钠离子电池在800mA/g电流密度下循环1800次的电池循环曲线图。
具体实施方式
下面将结合附图与具体实施例对本发明的技术方案进行清楚、完整地描述,显然,以下实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于锰基团簇衍生物的三维复合材料,包括质量比为2:1:2的锰基团簇(Mn12)、碳纳米管(CNT)和氧化石墨烯(GO),将锰基团簇Mn12嵌入到3D导电网络CNT/RGO中,通过淬火将锰基团簇转化为MnO@C纳米球,最终形成所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
如图1所示,基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO的制备方法具体如下:
(1)将100mg Mn12溶于100mL去离子水中,然后50mg的CNT和100mg的GO加入搅拌并在80℃加热直至变稠,通过在80℃下真空干燥12h获得中间产物Mn12/CNT/RGO;
(2)将中间产物Mn12/CNT/RGO在Ar气氛下于500℃进一步退火6h,得到最终产物,即为所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
如图2所示,最终产物的X射线粉末衍射在35.1°、40.5°和58.7°处的明显衍射峰可以很好地指引到立方MnO(JCPDS-07-0230)的(111)、(200)和(220)晶面。这证明煅烧后在Mn12/CNT/RGO复合物中形成了MnO@C/CNT/RGO。
用扫描电子显微镜(SEM)研究MnO@C/CNT/RGO复合材料的形貌和结构,如图3所示,放大的SEM图像显示,具有均匀尺寸的MnO纳米颗粒均匀地嵌入3D交联的CNT/RGO纳米框架中。
测试例1
将实施例1制得的MnO@C/CNT/RGO与乙炔黑、聚偏氟乙烯(PVDF)以7:2:1的比例混合,使用N-甲基吡咯烷酮制备成电极材料浆液均匀涂抹在铜箔上,在100℃下真空干燥12h。使用新威纽扣电池进行电化学性能测试。该材料在测试的过程中表现出了良好电化学性能,具有较高的可逆容量和优良的循环稳定性。如图4所示,MnO@C/CNT/RGO在作为钠离子电池负极材料时表现出了良好的电化学性能,在800mA/g的电流密度下,在1800次循环后放电容量稳定在约153mA·h/g。这表明MnO@C/CNT/RGO在钠离子电池方面具有良好的应用潜力。
以上实施例描述了本发明的基本原理、主要特征及优点,本领域技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (4)

1.一种基于锰基团簇衍生物的三维复合材料,其特征在于,包括质量比为2:1:2的锰基团簇、碳纳米管和氧化石墨烯,将锰基团簇Mn12嵌入到3D导电网络CNT/RGO中,通过淬火将锰基团簇转化为MnO@C纳米球,最终形成所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
2.权利要求1所述的一种基于锰基团簇衍生物的三维复合材料的制备方法,其特征在于,包括以下步骤:
步骤1)将100mg Mn12溶于100mL去离子水中,然后50mg的CNT和100mg的GO加入搅拌并在80℃加热直至变稠,通过在80℃下真空干燥12h获得中间产物Mn12/CNT/RGO;
步骤2)将中间产物Mn12/CNT/RGO在Ar气氛下于500℃进一步退火6h,即得到所述基于锰基团簇衍生物的三维复合材料MnO@C/CNT/RGO。
3.权利要求1所述的一种基于锰基团簇衍生物的三维复合材料在制备钠离子电池中的应用。
4.根据权利要求3所述的应用,其特征在于,所述基于锰基团簇衍生物的三维复合材料作为钠离子电池的负极材料。
CN202011109257.2A 2020-10-16 2020-10-16 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用 Active CN112242511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011109257.2A CN112242511B (zh) 2020-10-16 2020-10-16 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011109257.2A CN112242511B (zh) 2020-10-16 2020-10-16 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112242511A CN112242511A (zh) 2021-01-19
CN112242511B true CN112242511B (zh) 2024-03-19

Family

ID=74169477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011109257.2A Active CN112242511B (zh) 2020-10-16 2020-10-16 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112242511B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579477A (zh) * 2022-12-07 2023-01-06 山东理工大学 一种石墨烯包裹的胶囊状氧化锰/碳负极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103332A2 (en) * 2011-10-03 2013-07-11 Ndsu Research Foundation Liquid silane-based compositions and methods of fabrication
KR20160014943A (ko) * 2014-07-30 2016-02-12 인하대학교 산학협력단 이산화루테늄/이산화망간/탄소 복합체를 이용한 리튬/공기 이차전지 공기전극의 제조방법 및 이에 따라 제조되는 공기전극.
CN106784658A (zh) * 2016-12-01 2017-05-31 中南大学 一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法
CN108878802A (zh) * 2018-05-22 2018-11-23 南京理工大学 一种团簇状锰掺杂磷酸铁锂电极材料及其制备方法
CN109942024A (zh) * 2019-03-07 2019-06-28 澳门大学 一种四氧化三锰-石墨烯片纳米复合物及其制备方法与应用
CN110611096A (zh) * 2019-09-19 2019-12-24 苏州科技大学 一种MnO/C复合材料及其制备方法和将其作为锂离子电池负极材料的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950849B2 (en) * 2011-06-30 2021-03-16 Cornell University Hybrid materials and nanocomposite materials, methods of making same, and uses thereof
US10535892B2 (en) * 2017-05-30 2020-01-14 Global Graphene Group, Inc. Shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103332A2 (en) * 2011-10-03 2013-07-11 Ndsu Research Foundation Liquid silane-based compositions and methods of fabrication
KR20160014943A (ko) * 2014-07-30 2016-02-12 인하대학교 산학협력단 이산화루테늄/이산화망간/탄소 복합체를 이용한 리튬/공기 이차전지 공기전극의 제조방법 및 이에 따라 제조되는 공기전극.
CN106784658A (zh) * 2016-12-01 2017-05-31 中南大学 一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法
CN108878802A (zh) * 2018-05-22 2018-11-23 南京理工大学 一种团簇状锰掺杂磷酸铁锂电极材料及其制备方法
CN109942024A (zh) * 2019-03-07 2019-06-28 澳门大学 一种四氧化三锰-石墨烯片纳米复合物及其制备方法与应用
CN110611096A (zh) * 2019-09-19 2019-12-24 苏州科技大学 一种MnO/C复合材料及其制备方法和将其作为锂离子电池负极材料的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ma Shaojun等.Mno nanoparticles embedded in acarbon matrix as high performance lithium-ion battery anodes:perparation,microstructure and electrochemistry.《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》.2016,第18卷(第28期),第19130-19136页. *

Also Published As

Publication number Publication date
CN112242511A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
Jagadale et al. Lithium ion capacitors (LICs): Development of the materials
Li et al. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries
Wang et al. Hierarchical NiMoO 4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage
Ding et al. TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries
Yang et al. NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries
Li et al. Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability
Guang et al. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for high-performance lithium-sulfur batteries
Liao et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries
CN112467111B (zh) 一种导电碳基底负载石墨烯气凝胶复合电极及其制备方法
Lou et al. Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries
Liang et al. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode
Zhong et al. Ultralong MnO@ C nanowires with internal voids anchored between graphene as a robust high performance anode for flexible Li-Ion battery
Gao et al. Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries
Li et al. An asymmetric supercapacitor based on a NiO/Co3O4@ NiCo cathode and an activated carbon anode
Zhao et al. V2O3/VN catalysts decorated free-standing multifunctional interlayer for high-performance Li-S battery
Zhang et al. Enabling 2.4-V aqueous supercapacitors through the rational design of an integrated electrode of hollow vanadium trioxide/carbon nanospheres
CN113023705A (zh) 一种富氢碳材料的制备方法及应用于锂-钠-钾储能
Wu et al. Scalable and general synthesis of spinel manganese-based cathodes with hierarchical yolk–shell structure and superior lithium storage properties
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
CN113178571B (zh) 一种层级多孔状Fe3Se4@NC@CNTs复合材料及其制备方法和应用
Luo et al. State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries
Geng et al. Modulating the kinetics of CoSe 2 yolk–shell spheres via nitrogen doping with high pseudocapacitance toward ultra-high-rate capability and high-energy density sodium-ion half/full batteries
Luo et al. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries
CN112242511B (zh) 一种基于锰基团簇衍生物的三维复合材料及其制备方法和应用
Liu et al. Synthesis of FeO-nanowires/NiCo2O4-nanosheets core/shell heterostructure as free-standing electrode with enhanced lithium storage properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant