CN112391612A - 成膜方法和成膜装置 - Google Patents

成膜方法和成膜装置 Download PDF

Info

Publication number
CN112391612A
CN112391612A CN202010788135.4A CN202010788135A CN112391612A CN 112391612 A CN112391612 A CN 112391612A CN 202010788135 A CN202010788135 A CN 202010788135A CN 112391612 A CN112391612 A CN 112391612A
Authority
CN
China
Prior art keywords
film
gas
silicon
nitriding
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010788135.4A
Other languages
English (en)
Inventor
羽根秀臣
小山峻史
大槻志门
向山廉
吹上纪明
小川淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN112391612A publication Critical patent/CN112391612A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本发明涉及成膜方法和成膜装置。[课题]当在表面露出有第1膜和第2膜的基板上成膜氮化硅膜时,抑制第1膜或第2膜的氮化,且能使第1膜上和第2膜上的各氮化硅的膜厚一致。[解决方案]实施如下工序:向在表面具备孵育时间彼此不同的第1膜和第2膜的基板供给等离子体化的氢气的工序;向基板供给由卤化硅构成的处理气体的工序;依次重复进行供给等离子体化的氢气的工序与供给处理气体的工序,形成覆盖第1膜和第2膜的硅的薄层的工序;向前述基板供给用于使硅的薄层氮化的第2氮化气体,形成氮化硅的薄层的工序;向基板供给原料气体和第1氮化气体,在氮化硅的薄层上成膜氮化硅膜的工序。

Description

成膜方法和成膜装置
技术领域
本公开涉及成膜方法和成膜装置。
背景技术
半导体制造工序中,有时进行在作为基板的半导体晶圆(以下,称为晶圆)上形成SiN(氮化硅)膜的成膜处理。有时在该晶圆的表面会露出后述的孵育时间分别不同的膜,但即使在上述情况下,也要求在该晶圆的面内各部以均匀性高的膜厚形成上述SiN膜。专利文献1中记载了如下方案:向表面露出有Si(硅)膜和SiO2(氧化硅)膜的晶圆供给并吸附NH3(氨),然后,使晶圆暴露于Ar(氩气)气体等离子体,使上述各膜氮化。然后,在该氮化后,将包含硅的原料气体和等离子体化的NH3气体交替地供给到晶圆,从而成膜SiN(氮化硅)膜。
现有技术文献
专利文献
专利文献1:日本特开2017-175106号公报
发明内容
发明要解决的问题
本公开提供一种技术:当在表面露出有第1膜和第2膜的基板上成膜氮化硅膜时,能使第1膜上和第2膜上的各氮化硅的膜厚一致。
用于解决问题的方案
本公开的成膜方法为在供给包含硅的原料气体和将前述硅进行氮化的第1氮化气体时,在表面具备开始生长氮化硅膜所需的孵育时间彼此不同的第1膜和第2膜的基板上成膜该氮化硅膜的成膜方法。
所述成膜方法具备如下工序:
向前述基板供给等离子体化的氢气的工序;
向前述基板供给由卤化硅构成的处理气体的工序;
交替地重复进行供给前述等离子体化的氢气的工序与供给前述处理气体的工序,形成覆盖前述第1膜和前述第2膜的硅的薄层的工序;
向前述基板供给用于使前述硅的薄层氮化的第2氮化气体,形成氮化硅的薄层的工序;和,
向前述基板供给前述原料气体和前述第1氮化气体,在前述氮化硅的薄层上成膜前述氮化硅膜的工序。
发明的效果
根据本公开,当在表面露出有第1膜和第2膜的基板上成膜氮化硅膜时,可以使第1膜上和第2膜上的各氮化硅的膜厚一致。
附图说明
图1为作为本公开的一实施方式的成膜装置的纵切侧视图。
图2为前述成膜装置的横切俯视图。
图3为前述喷头的纵切侧视图。
图4为设置于前述成膜装置的喷头的仰视图。
图5为由前述成膜装置处理的晶圆的纵切侧视图。
图6为前述晶圆的纵切侧视图。
图7为前述晶圆的纵切侧视图。
图8为前述晶圆的纵切侧视图。
图9为前述晶圆的纵切侧视图。
图10为示出由前述成膜装置实施的成膜方法的一实施方式的流程的流程图。
图11为示出前述晶圆的表面的变化的示意图。
图12为示出评价试验的结果的曲线图。
图13为示出评价试验的结果的曲线图。
图14为示出评价试验的结果的曲线图。
附图标记说明
B 晶圆
1 成膜装置
10 控制部
12 旋转台
2 喷头
3A~3C 等离子体形成单元
61 Si膜
62、64 SiO2膜、SiO2
63 W膜
66 Si的薄层
67 SiN的薄层
68 SiN膜
具体实施方式
关于本公开的一实施方式的成膜方法,首先说明其概要。该实施方式如下:进行在表面露出有Si(硅)膜、SiO2(氧化硅)膜、作为金属膜的W(钨)膜的晶圆B上形成SiN膜的处理。需要说明的是,W容易被氧化,以在该W膜的表面存在有氧原子的状态进行处理。
此处,对SiN膜的孵育时间事先进行说明。该SiN膜的孵育时间是指,供给包含硅的原料气体和用于将该硅进行氮化的氮化气体而成膜SiN膜时,开始供给这些气体之一者起直至开始成膜SiN膜所需的时间。更具体说明,通过分别供给原料气体、氮化气体,从而在SiN膜的基底的膜上,形成多个岛状的SiN的核。该SiN的核沿着基底膜的表面扩展并生长,彼此接触地形成薄层时,该薄层作为SiN膜生长(膜厚增加)。因此,上述膜的生长开始的时机为SiN的薄层形成的时机。作为SiN膜的基底,根据与该SiN膜接触的膜的种类不同,上述核的形成、生长所需的时间彼此不同。
而且,在各膜间SiN膜的孵育时间不同是指,在彼此相同的条件下在各膜间供给原料气体和氮化气体以成膜与各膜接触的SiN膜时,从开始供给这些气体直至形成上述薄层的时间彼此不同。进一步补充时,是指,除了进行原料气体的吸附和通过氮化气体对原料气体中的硅进行氮化以外,没有进行任何处理地进行比较,结果直至形成上述薄层的时间不同。即,不进行如本实施方式中进行的通过氢等离子体的还原、改性那样的处理而进行比较。需要说明的是,此处所谓氮化气体除未经等离子体化的氮化气体之外,还包含等离子体化的氮化气体。
向如此孵育时间彼此不同的各基底膜分别供给原料气体、氮化气体时,源自其孵育时间的差异,与各基底膜接触而分别形成的SiN膜的膜厚会产生波动。而且,对于上述本实施方式的晶圆B上所形成的W膜、SiO2膜和Si膜之间,SiN膜的孵育时间不同。具体而言,使W膜和SiO2膜为第1膜、Si膜为第2膜时,第1膜孵育时间长于第2膜的孵育时间。
因此,本实施方式中,为了抑制该孵育时间的差异的影响,使该SiN膜的膜厚一致而进行前处理。作为该前处理,首先,交替地重复向晶圆B供给六氯化二硅(Si2Cl6)气体和等离子体化的H2(氢)气体,形成覆盖上述各膜的Si的薄层,进一步将该薄层氮化,形成SiN的薄层。根据后述的理由,该氮化通过向晶圆B供给等离子体化的NH3气体(第2氮化气体)而进行。
然而,在进行了这样的前处理的基础上,进行使用了Si2Cl6气体、和等离子体化的NH3气体(第1氮化气体)的ALD(原子层沉积(AtomicLayerDeposition)),在上述SiN的薄层上成膜SiN膜。需要说明的是,对于Si2Cl6(六氯二硅烷(Hexachlorodisilane)),以后有时记作HCD。如上述,HCD气体为用于进行前处理的处理气体,且为用于成膜SiN膜的原料气体。另外,本说明书中,对于硅氮化物,无论化学计量比均记作SiN。因此,所谓SiN的记载中包含例如Si3N4。进而,上述基底膜是指,除晶圆B上所形成的膜之外,还包括晶圆B本身的情况。因此,例如对于上述Si膜,可以为硅晶圆上所形成的膜,也可以为硅晶圆本身。
以下,对作为实施上述成膜方法的装置的一实施方式的成膜装置1,参照图1的纵切侧视图和图2的横切俯视图进行说明。成膜装置1具备扁平的大致圆形的真空容器(处理容器)11,真空容器11由构成侧壁和底部的容器主体11A、和顶板11B构成。图中12为水平地设置于真空容器11内的圆形的旋转台。图中12A为支撑旋转台12的背面中央部的支撑部。图中13为旋转机构,借助支撑部12A使旋转台12沿其圆周方向俯视顺时针地旋转。需要说明的是,图中的X表示旋转台12的旋转轴。
在旋转台12的上表面,沿着旋转台12的圆周方向(旋转方向)设有6个圆形的凹部14,在各凹部14中收纳有晶圆B。亦即,以通过旋转台12的旋转而公转的方式,各晶圆B被载置于旋转台12。另外,图1中15为加热器,在真空容器11的底部以同心圆状设有多个,将载置于旋转台12的晶圆B加热。图2中16为在真空容器11的侧壁开口的晶圆B的输送口,通过未作图示的闸阀,开关自由地构成。通过未作图示的基板输送机构,晶圆B借助输送口16在真空容器11的外部与凹部14内之间被传递。
在旋转台12上,朝向旋转台12的旋转方向下游侧,沿着该旋转方向依次设有:喷头2、等离子体形成单元3A、等离子体形成单元3B和等离子体形成单元3C。作为第1气体供给部的喷头2向晶圆B供给上述SiN膜的成膜和前处理中分别使用的HCD气体。作为第2气体供给部的等离子体形成单元3A~3C为如下单元:将供给至旋转台12上的等离子体形成用气体等离子体化,对晶圆B进行等离子体处理,以可以分别形成H2气体单独的等离子体、NH3气体和H2气体的等离子体的方式构成。而且,在真空容器11中的旋转台12的外侧的下方且在第2等离子体形成单元3B的外侧,用于排气由等离子体形成单元3A~3C供给的等离子体形成用气体的排气口51开口。该排气口51与真空排气部50连接。
对于作为处理气体供给部且作为原料气体供给部的喷头2,也边参照作为纵切侧视图的图3和作为仰视图的图4边进行说明。喷头2在俯视下、形成为随着从旋转台12的中央侧向周缘侧,沿旋转台12的圆周方向扩展的扇状,该喷头2的下表面与旋转台12的上表面邻近地对置。在喷头2的下表面,气体排出口21、排气口22和吹扫气体排出口23开口。为了容易识别,图4中,对排气口22和吹扫气体排出口23标注多个点来表示。上述气体排出口21多个排列于比喷头2的下表面的周缘部还靠近内侧的扇状区域24。而且,该气体排出口21在旋转台12的旋转中向下方以喷淋状排出HCD气体,以对晶圆B的表面整体供给该HCD气体的方式开口。
在上述扇状区域24中,从旋转台12的中央侧向旋转台12的周缘侧设有3个区域24A、24B、24C。以可以向设置于各区域24A、区域24B、区域24C的气体排出口21各自独立地供给HCD气体的方式,在喷头2上设有彼此区分的气体流路25A、25B、25C。气体流路25A、25B、25C的各上游侧分别借助配管与HCD气体的供给源26连接,在各配管上,夹设有由阀和质量流量控制器构成的气体供给设备27。利用气体供给设备27,进行HCD气体向配管的下游侧的供给/切断和流量的调整。需要说明的是,后述的气体供给设备27以外的各气体供给设备也与该气体供给设备27同样地构成,进行气体向下游侧的供给/切断和流量的调整。
上述排气口22和吹扫气体排出口23以包围扇状区域24、且朝向旋转台12的上表面的方式,在喷头2的下表面的周缘部分别以环状开口,吹扫气体排出口23位于排气口22的外侧,以包围该排气口22的方式形成。旋转台12上的排气口22的内侧区域形成进行HCD对晶圆B表面的吸附的吸附区域R0。吹扫气体排出口23向旋转台12上排出作为吹扫气体的例如Ar(氩气)气体。
从气体排出口21排出HCD气体的过程中,同时进行从排气口22的排气和从吹扫气体排出口23的吹扫气体的排出。由此,图3中如箭头所示那样,朝向旋转台12排出的原料气体和吹扫气体在旋转台12的上表面朝向排气口22从该排气口22被排气。通过如此进行吹扫气体的排出和排气,从而作为第1区域的吸附区域R0的气氛从外部的气氛分离,可以向该吸附区域R0限定性地供给原料气体。即,可以抑制供给至吸附区域R0的HCD气体、与后述如通过等离子体形成单元3A~3C向吸附区域R0的外部供给的各气体混合,可以进行上述基于ALD的成膜处理。图3中28为借助配管用于进行从排气口22的排气的排气机构。图3中29为作为吹扫气体的Ar气体的供给源,借助配管将该Ar气体供给至吹扫气体排出口23。在该配管上夹设有气体供给设备20。
接着,对于等离子体形成单元3B,边参照图1、图2边进行说明。等离子体形成单元3B对向等离子体形成单元3B的下方排出的等离子体形成用气体(H2气体或H2气体与NH3气体的混合气体)供给微波,在旋转台12上产生等离子体。等离子体形成单元3B具备用于供给上述微波的天线31,该天线31包含电介质板32和金属制的导波管33。
电介质板32形成为随着从俯视旋转台12的中央侧朝向周缘侧扩展的大致扇状。在真空容器11的顶板11B,以对应于上述电介质板32的形状的方式,大致扇状的贯通口开口,该贯通口的下端部的内周面向贯通口的中心部侧稍突出,形成支撑部34。上述电介质板32从上侧阻塞该扇状的贯通口,与旋转台12对置,电介质板32的周缘部由支撑部34所支撑。
导波管33设置于电介质板32上,具备在顶板11B上延伸存在的内部空间35。图中36为构成导波管33的下部侧的槽板,具有多个槽孔36A,与电介质板32接触地设置。导波管33的旋转台12的中央侧的端部被阻塞,在旋转台12的周缘部侧的端部,例如连接有向导波管33供给约2.35GHz的微波的微波发生器37。该微波通过槽板36的槽孔36A到达电介质板32,向电介质板32的下方供给所供给的等离子体形成用气体,在该电介质板32的下方限定性地形成等离子体,对晶圆B进行处理。如此电介质板32的下方以等离子体形成区域构成,以R2表示。
而且,等离子体形成单元3B具有位于上述支撑部34的气体排出孔41、和气体排出孔42。气体排出孔41从旋转台12的中心部侧向外周部侧排出等离子体形成用气体,气体排出孔42从旋转台12的外周部侧向中心侧排出等离子体形成用气体。气体排出孔41和气体排出孔42借助具备气体供给设备45的配管系统分别连接于H2气体供给源43和NH3气体供给源44。需要说明的是,等离子体形成单元3A、3C与等离子体形成单元3B同样地构成,相当于等离子体形成单元3A、3C中的等离子体形成区域R2的区域分别作为等离子体形成区域R1、R3表示。等离子体形成区域R1~R3为第2区域,等离子体形成单元3A~3C构成氢气供给部且氮化气体供给部。
如图1所示那样,成膜装置1上设有由计算机构成的控制部10,控制部10中存储有程序。对于该程序,向成膜装置1的各部发送控制信号,控制各部的工作,以执行上述前处理和SiN膜的成膜处理的方式组入步骤组。具体而言,基于旋转机构13的旋转台12的转速、各气体供给设备的工作、基于各排气机构28、50的排气量、微波从微波发生器37向天线31的供给/切断、对加热器15的供电等由该程序所控制。对加热器15的供电的控制即为晶圆B的温度的控制,基于排气机构50的排气量的控制即为真空容器11内的压力的控制。该程序被存储于硬盘、光盘、DVD、存储卡等存储介质,安装于控制部10。
以下,对于由成膜装置1进行的前处理和SiN膜的成膜处理,边参照作为晶圆B的纵切侧视图的图5~图9、和作为成膜装置1的工作的流程图的图10边进行说明。图5示出对成膜装置1输送的晶圆B的一例,在该晶圆B上,形成有向上方依次层叠该Si膜61、SiO2膜62、W膜63、SiO2膜64的层叠体。在该层叠体中形成有凹部65,凹部65的侧面由SiO2膜62、W膜63、SiO2膜64构成,凹部65的底面由Si膜61构成。因此,如上述,Si膜、SiO2膜、W膜在晶圆B的表面分别露出。
在旋转台12的凹部14分别载置有6张该图5所示的晶圆B。然后,关闭设置于真空容器11的输送口16的闸阀,该真空容器11内形成气密,晶圆B利用加热器15加热至例如200℃~600℃、更具体而言例如550℃。然后,通过从排气口51的排气,使真空容器11内形成为例如53.3Pa~666.5Pa的真空气氛,且旋转台12以例如3rpm~60rpm进行旋转,各晶圆B公转。
利用等离子体形成单元3A~3C,在等离子体形成区域R1~R3中,进行H2气体的供给与微波的供给,分别形成H2气体的等离子体。另一方面,在喷头2中,分别地从气体排出口21排出HCD气体,从吹扫气体排出口23排出Ar气体,且从排气口22进行排气(图10中,步骤S1)。如此喷头2和等离子体形成单元3A~3C工作,从而向公转的各晶圆B交替地重复进行HCD气体的供给与等离子体化的H2气体的供给。
图11示意性示出如此进行前处理时认为在SiO2膜64的表面引起的反应,分别地,图中的71表示Si原子、72表示O原子、73表示HCD分子。晶圆B位于等离子体形成区域R1~R3,构成等离子体的H2气体的活性物质(H自由基等)与SiO2膜64的表面的O原子72反应。由此,该O原子72成为H2O,从SiO2膜64脱离,SiO2膜64的表面被还原(图11(a))。作为其结果,该SiO2膜64的表面成为Si原子71较多的状态。
然后,晶圆B位于吸附区域R0,向还原后的SiO2膜64的表面供给HCD分子73(图11(b))。认为如上述,通过由H自由基还原,SiO2膜64的表面被活化,成为供给的HCD分子73容易被吸附的状态,吸附效率良好地推进。以如此方式吸附了HCD分子73的状态将晶圆B再次位于等离子体形成区域R1~R3时,H2气体的活性物质与吸附后的HCD分子73中所含的Cl(氯)原子反应。由此,HCD分子73的Cl原子成为HCl(盐酸),从SiO2膜64脱离,成为在SiO2膜64的表面吸附有由HCD分子73产生的Si原子71的状态。
已经说明了SiO2膜64的表面的变化,SiO2膜62的表面也与SiO2膜同样地,表面的O原子72被去除且Si原子71被吸附。另外,Si膜61的表面由于由Si原子71构成,因而容易引起HCD分子73的吸附,因此,与SiO2膜62、64同样地,HCD分子73中所含的Si原子71被吸附。与SiO2膜62、64同样地,认为W膜63通过基于H自由基的表面的还原、活化而HCD分子73较多地被吸附。即,在Si膜61、SiO2膜62、64、W膜63的表面,分别效率良好地吸附有Si原子71。持续晶圆B的公转,且晶圆B在吸附区域R0与等离子体形成区域R1~R3之间重复移动,从而这样的Si原子71的吸附进行,以覆盖晶圆B整个表面的方式形成Si的薄层66(图6、图11(c))。
自从喷头2的HCD气体的供给和基于等离子体形成单元3A~3C的H2等离子体的形成开始起,使旋转台12旋转预先设定的次数、例如30次时,从喷头2的HCD气体的供给停止。如此HCD气体的供给停止,另一方面,向等离子体形成区域R1~R3供给H2气体和NH3气体,形成这些气体的等离子体(步骤S2)。然后,持续晶圆B的公转,各晶圆B在等离子体形成区域R1~R3中重复通过。由此,构成等离子体的NH3气体的活性物质(NH2自由基、NH自由基等)与Si的薄层66反应,该薄层66被氮化,成为SiN的薄层67(图7、图11(d))。需要说明的是,图11(d)中的74表示氮原子。
自H2气体和NH3气体的等离子体的形成开始起,使旋转台12预先设定的次数旋转时,再次开始HCD气体从喷头2向吸附区域R0的供给。另外,在等离子体形成区域R1、R2中,NH3气体的供给停止,另一方面,H2气体继续被供给,形成该H2气体的等离子体。等离子体形成区域R3中继续供给H2气体和NH3气体,形成这些气体的等离子体(步骤S3)。
然后,晶圆B继续公转,依次重复进行吸附区域R0中的HCD气体的供给、等离子体形成区域R1、R2中的等离子体化的H2气体的供给、等离子体形成区域R3中的等离子体化的H2气体和NH3气体的供给。吸附区域R0中吸附于晶圆B的HCD气体中的Si在等离子体形成区域R3中被氮化,成为SiN。然后,在等离子体形成区域R1、R2中,利用H2气体的等离子体,进行沉积后的SiN的改性。具体而言,进行对SiN中的悬挂键的H的键合和从沉积后的SiN去除Cl,从而成为致密且杂质含量少的SiN。
如上述,引起SiN的核的形成和生长,基底为与该核相同的SiN的薄层67,因此,该核的形成和生长较迅速地进行。然后,在Si膜61、SiO2膜62、64和W膜63的各膜上,形成这样的相同的SiN的薄层67,这些各膜的表面的状态一致。因此,在这些各膜上同样地引起核的形成和生长,成膜SiN的薄层(SiN膜68)。亦即,在Si膜61、SiO2膜62、64和W膜63的各膜上,如同统一孵育时间那样进行SiN膜68的成膜(图8)。
持续晶圆B的公转,SiN膜68的膜厚增加,且该SiN膜68的改性进行。如上述,在Si膜61、SiO2膜62、64、W膜63的各膜上,以同样的时机开始SiN膜68的成膜,因此,在这些各膜间该SiN膜68以均匀性高的膜厚生长。步骤S3中的HCD气体的供给和等离子体形成区域R1~R3中的各气体的等离子体化开始后,使旋转台12旋转预先设定的次数,形成期望膜厚的SiN膜67时,SiN膜68的成膜处理结束(图9)。亦即,各气体的供给、微波的供给、旋转台12的旋转分别停止,成膜处理结束。然后,晶圆B由基板输送机构从真空容器11搬出。
根据如此使用成膜装置1的处理,Si膜61、SiO2膜62、64和W膜63间的SiN膜68的孵育时间的差异的影响被抑制,可以使成膜开始的时机一致。作为其结果,可以以在各膜上成为均匀性高的膜厚的方式,成膜该SiN膜68。
需要说明的是,由Si的薄层66生成的SiN的薄层67、与SiN膜68的制造手法不同,因此,膜质有时变得不同,因此,Si的薄层66的厚度过度变大时,有对由晶圆B制造的制品的特性造成影响的担心。因此,在上述处理中,HCD气体的供给停止时的Si的薄层66的厚度H1(参照图6)优选小,例如优选设为1nm以下。
然而,也可以利用N2气体的等离子体进行以上述步骤S1形成的Si的薄层66的氮化。但是,关于由薄层66生成的SiN的薄层67的膜质,为了形成与SiN膜68的膜质等同的膜质,如上述,Si的薄层66的氮化优选利用NH3气体的等离子体进行。需要说明的是,通过供给未经等离子体化的N2气体、NH3气体,也可以进行Si的薄层66的氮化。如以上所述,关于Si的薄层66的氮化,不限定于使用NH3气体的等离子体。
另外,SiN的薄层67形成后的SiN膜68的形成不限定于用ALD进行,也可以用CVD(化学气相沉积,ChemicalVaporDeposition)进行。该SiN膜68的形成中,只要可以将原料气体中的硅进行氮化即可,也不限定于使用等离子体化的NH3气体,例如也可以使用未经等离子体化的NH3气体。
另外,形成Si的薄层66时,不限定于使用HCD气体,也可以使用由二氯硅烷(DCS)气体等硅的氯化物构成的气体。另外,也可以使用由硅、和例如碘等氯以外的卤素构成的卤化硅气体,形成Si的薄层66。但是,如上述,在1分子中包含大量的Si,可以使大量的Si效率良好地吸附于晶圆B,因此,优选使用HCD气体。另外,上述处理例中,作为用于形成Si的薄层66的处理气体和为了成膜SiN膜68而使用的包含硅的原料气体,使用的是,相同的HCD气体,但处理气体与原料气体可以为不同的气体。例如,可以使用HCD气体作为处理气体,可以使用DCS气体作为原料气体。
上述处理例中,在作为金属膜的W膜63上形成SiN膜,但不限定于W膜63,例如在Ti(钛)、Ni(镍)等的金属膜上形成SiN膜68的情况下,本手法也是有效的。亦即,作为成为SiN膜的基底的金属膜,不限定于W膜。需要说明的是,此次公开的实施方式在全部方面为示例,应认为没有限制。上述实施方式可以在不脱离所附的权利要求书和其主旨的情况下,以各种形态省略、置换、变更。
以下,对关于本技术进行的评价试验进行说明。
(评价试验1)
作为评价试验1,各准备多张由Si构成且表面裸露的状态的晶圆(裸晶圆)、和由Si构成且在表面形成有SiO2膜的晶圆(记作SiO2晶圆)。然后,对裸晶圆、SiO2晶圆分别进行包含上述实施方式中说明的步骤S1~S3的一系列的处理(前处理和SiN膜68的成膜处理)。该一系列的处理中的步骤S3的SiN膜68的成膜处理的时间设定为180秒或360秒。一系列的处理结束后,测定形成的SiN膜68的膜厚。
而且,作为比较试验1,向等离子体形成区域R1~R3供给N2气体代替进行上述步骤S1的处理,使该N2气体等离子体化,进行使裸晶圆、SiO2晶圆的表面分别氮化的处理。该氮化后,对各晶圆进行上述步骤S2和步骤S3,作为步骤S3的原料气体,使用DCS气体代替HCD气体。除这样的不同之处之外,比较试验1的处理与评价试验1的处理同样。
分别地,图12的图示出评价试验1的结果,图13的图示出比较试验1的结果。关于各图,横轴为步骤S3的SiN膜68的成膜时间(单位:秒),纵轴为SiN膜68的膜厚
Figure BDA0002622780130000131
各图中,标绘测定的SiN膜68的膜厚而表示,且分别示出连接关于裸晶圆标绘的各点的实线的直线、连接关于SiO2晶圆标绘的各点的实线的直线。进一步图中,关于将上述各实线的直线延伸至横轴的成膜时间成为0秒的位置或者纵轴的SiN膜68的膜厚成为
Figure BDA0002622780130000141
的位置的延长线,用虚线表示。需要说明的是,将膜的孵育时间作为以与该膜直接接触的方式成膜SiN膜时直至开始成膜所需的时间而定义,无论其定义如何,在该评价试验中,将观察上述虚线的延长线而膜厚为
Figure BDA0002622780130000142
时的成膜时间作为孵育时间。
关于评价试验1,SiN膜68的成膜时间为180秒、360秒时的任意者中,在SiO2晶圆与裸晶圆之间,在SiN膜68的膜厚中均基本未见差异。而且,关于SiO2晶圆的孵育时间为9.8秒,关于裸晶圆的孵育时间也大致为9.8秒。而且,成膜时间为9.8秒时的膜厚差(裸晶圆的SiN膜68的膜厚-SiO2晶圆的SiN68的膜厚)为
Figure BDA0002622780130000143
即、大致
Figure BDA0002622780130000144
亦即,SiO2晶圆、裸晶圆中的任意者中,确认了,步骤S3开始后、大致经过9.8秒时开始SiN膜68的成膜。
另一方面,关于比较试验1,SiN膜68的成膜时间为180秒、360秒时,在SiO2晶圆与裸晶圆之间,在SiN膜68的膜厚中分别可见较大的差异。而且,关于SiO2晶圆的孵育时间为大致0秒,关于裸晶圆,成膜时间为0秒时,SiN膜68的膜厚为
Figure BDA0002622780130000145
如此成为成膜时间为0秒,已经形成SiN膜68的结果认为是由于,被暴露于N2气体的等离子体,从而裸晶圆的表面被氮化,成为SiN。由这样的评价试验1和比较试验1的结果可以确认:根据上述实施方式所述的手法,在Si膜与SiO2膜之间,可以使膜厚一致。
(评价试验2)
作为评价试验2,与评价试验1同样地,在裸晶圆、SiO2晶圆进行分别包含上述步骤S1~S3的处理,取得SiN膜68的膜厚。然后,如图12中所说明那样,在图中标绘SiN膜68的膜厚,由连接各标绘的直线的延长线取得孵育时间。另外,算出膜厚差(裸晶圆的SiN膜68的膜厚-SiO2晶圆的SiN膜68的膜厚)。
作为比较试验2-1,不进行作为前处理的步骤S1、S2,仅实施步骤S3,对裸晶圆、SiO2晶圆分别进行处理。作为比较试验2-2,不进行步骤S1、S2,对公转的裸晶圆、SiO2晶圆从喷头2供给HCD气体后,进行步骤S3。作为比较试验2-3,不进行步骤S1、S2,在等离子体形成区域R1~R3形成H2气体的等离子体,使公转的裸晶圆、SiO2晶圆分别暴露于该H2等离子体后,进行步骤S3。需要说明的是,除这样的不同之处之外,比较试验2-1~2-3与评价试验2同样地进行处理。关于比较试验2-1~2-3中处理的各晶圆,与评价试验2同样地进行孵育时间的取得和上述膜厚差的算出。
图14的图示出评价试验2和比较试验2-1~2-3的结果。该图中,关于取得的孵育时间(单位:秒)进行标绘,分别地,关于裸晶圆标绘的点彼此用实线连接而表示,关于SiO2晶圆标绘的点彼此用虚线连接而表示。另外,根据条形图,示出上述膜厚差(单位:
Figure BDA0002622780130000151
)。
如图所示那样,与评价试验2相比,评价试验2-1~2-3中,Si晶圆与SiO2晶圆之间的孵育时间的差和膜厚差较大。因此表明,为了降低这些孵育时间的差和膜厚差,上述实施方式中说明的处理是有效的。另外,根据评价试验2、比较试验2-2、2-3的结果,HCD的供给和H2气体的等离子体的供给中、仅进行任一者的情况下,无法得到充分的效果,为了得到充分的效果,可知,如实施方式的步骤S1那样,必须进行这些处理的两者。

Claims (8)

1.一种成膜方法,其为在供给包含硅的原料气体和将所述硅进行氮化的第1氮化气体时,在表面具备直至氮化硅膜生长开始所需的孵育时间彼此不同的第1膜和第2膜的基板上,成膜该氮化硅膜的成膜方法,
所述成膜方法具备如下工序:
向所述基板供给等离子体化的氢气的工序;
向所述基板供给由卤化硅构成的处理气体的工序;
交替地重复进行供给所述等离子体化的氢气的工序与供给所述处理气体的工序,形成覆盖所述第1膜和所述第2膜的硅的薄层的工序;
向所述基板供给用于使所述硅的薄层氮化的第2氮化气体,形成氮化硅的薄层的工序;和,
向所述基板供给所述原料气体和所述第1氮化气体,在所述氮化硅的薄层上成膜所述氮化硅膜的工序。
2.根据权利要求1所述的成膜方法,其中,构成所述处理气体的卤化硅为硅的氯化物。
3.根据权利要求2所述的成膜方法,其中,所述硅的氯化物为六氯化二硅。
4.根据权利要求1~3中任一项所述的成膜方法,其中,所述第2氮化气体为等离子体化的氨气。
5.根据权利要求1~4中任一项所述的成膜方法,其中,所述第1膜为硅膜,所述第2膜包含氧化硅膜或者金属膜。
6.根据权利要求5所述的成膜方法,其中,所述第2膜包含金属膜,该金属膜为钨膜。
7.一种成膜装置,其为在供给包含硅的原料气体和将所述硅进行氮化的第1氮化气体时,在表面具备直至氮化硅膜生长开始所需的孵育时间彼此不同的第1膜和第2膜的基板上,成膜该氮化硅膜的成膜装置,
所述成膜装置具备:
旋转台,其载置所述基板并使其公转;
氢气供给部,其向所述旋转台上供给等离子体化的氢气;
处理气体供给部,其向所述旋转台上供给由卤化硅构成的处理气体;
氮化气体供给部,其向所述旋转台上分别供给第1氮化气体、第2氮化气体;
原料气体供给部,其向所述旋转台上供给所述原料气体;和,
控制部,其以进行如下步骤的方式构成,为了形成覆盖所述第1膜和所述第2膜的硅的薄层,向公转的所述基板交替地重复供给所述等离子体化的氢气和所述处理气体的步骤,为了将所述硅的薄层氮化而形成氮化硅的薄层,向公转的所述基板供给所述第2氮化气体的步骤,为了在所述氮化硅的薄层上成膜所述氮化硅膜,向公转的所述基板交替地重复供给所述原料气体和所述第1氮化气体的步骤。
8.根据权利要求7所述的成膜装置,其中,
设有如下气体供给部:
第1气体供给部,其向所述旋转台上的第1区域供给气体;和,
第2气体供给部,其向相对于所述旋转台上的所述第1区域、与该旋转台的旋转方向偏离、且气氛被分离的第2区域供给气体并将该气体等离子体化,
所述原料气体供给部和所述处理气体供给部为所述第1气体供给部,
所述第1氮化气体和所述第2氮化气体为等离子体化的氮化气体,所述氮化气体供给部和所述氢气供给部为所述第2气体供给部。
CN202010788135.4A 2019-08-19 2020-08-07 成膜方法和成膜装置 Pending CN112391612A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149953A JP7200880B2 (ja) 2019-08-19 2019-08-19 成膜方法及び成膜装置
JP2019-149953 2019-08-19

Publications (1)

Publication Number Publication Date
CN112391612A true CN112391612A (zh) 2021-02-23

Family

ID=74603033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010788135.4A Pending CN112391612A (zh) 2019-08-19 2020-08-07 成膜方法和成膜装置

Country Status (5)

Country Link
US (1) US20210054501A1 (zh)
JP (1) JP7200880B2 (zh)
KR (1) KR20210021918A (zh)
CN (1) CN112391612A (zh)
TW (1) TW202117850A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023118554A (ja) * 2022-02-15 2023-08-25 東京エレクトロン株式会社 シリコン窒化膜の形成方法及び成膜装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849704A (zh) * 2003-07-03 2006-10-18 微米技术有限公司 形成含氘化氮化硅的材料的方法
CN1966397A (zh) * 2006-11-23 2007-05-23 南京大学 气相自组装生长硅量子环纳米结构的制备方法
CN101136332A (zh) * 2006-09-01 2008-03-05 东京毅力科创株式会社 半导体处理用的氧化方法和装置
CN101632153A (zh) * 2007-01-19 2010-01-20 日新电机株式会社 硅薄膜形成方法
CN102804350A (zh) * 2010-03-15 2012-11-28 应用材料公司 用于覆盖高纵横比特征结构的氮化硅钝化层
JP2013122068A (ja) * 2011-12-09 2013-06-20 Ulvac Japan Ltd タングステン化合物膜の形成方法、及び半導体装置
CN103765558A (zh) * 2011-08-31 2014-04-30 东京毅力科创株式会社 成膜方法及存储介质
CN104831255A (zh) * 2014-02-10 2015-08-12 东京毅力科创株式会社 基板处理方法和基板处理装置
US20160079054A1 (en) * 2014-09-17 2016-03-17 Asm Ip Holding B.V. Deposition of SiN
JP2017139451A (ja) * 2016-02-01 2017-08-10 東京エレクトロン株式会社 窒化膜の形成方法
US20170271143A1 (en) * 2016-03-17 2017-09-21 Tokyo Electron Limited Film Forming Method and Film Forming Apparatus
JP2018011009A (ja) * 2016-07-15 2018-01-18 東京エレクトロン株式会社 窒化膜の成膜方法および成膜装置
US20180142350A1 (en) * 2016-11-21 2018-05-24 Tokyo Electron Limited Film formation processing method and film formation procesing apparatus
CN108505020A (zh) * 2017-02-28 2018-09-07 东京毅力科创株式会社 成膜装置
US20180366315A1 (en) * 2017-06-15 2018-12-20 Tokyo Electron Limited Film Forming Method, Film Forming Apparatus, and Storage Medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939333A (en) * 1996-05-30 1999-08-17 Micron Technology, Inc. Silicon nitride deposition method
WO2013161768A1 (ja) * 2012-04-23 2013-10-31 東京エレクトロン株式会社 成膜方法、成膜装置、及び、成膜システム
JP6267080B2 (ja) * 2013-10-07 2018-01-24 東京エレクトロン株式会社 シリコン窒化物膜の成膜方法および成膜装置
KR101967529B1 (ko) * 2017-06-12 2019-04-09 에스케이머티리얼즈 주식회사 실리콘 질화막의 제조 방법

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849704A (zh) * 2003-07-03 2006-10-18 微米技术有限公司 形成含氘化氮化硅的材料的方法
CN101136332A (zh) * 2006-09-01 2008-03-05 东京毅力科创株式会社 半导体处理用的氧化方法和装置
CN1966397A (zh) * 2006-11-23 2007-05-23 南京大学 气相自组装生长硅量子环纳米结构的制备方法
CN101632153A (zh) * 2007-01-19 2010-01-20 日新电机株式会社 硅薄膜形成方法
CN102804350A (zh) * 2010-03-15 2012-11-28 应用材料公司 用于覆盖高纵横比特征结构的氮化硅钝化层
CN103765558A (zh) * 2011-08-31 2014-04-30 东京毅力科创株式会社 成膜方法及存储介质
JP2013122068A (ja) * 2011-12-09 2013-06-20 Ulvac Japan Ltd タングステン化合物膜の形成方法、及び半導体装置
CN104831255A (zh) * 2014-02-10 2015-08-12 东京毅力科创株式会社 基板处理方法和基板处理装置
US20160079054A1 (en) * 2014-09-17 2016-03-17 Asm Ip Holding B.V. Deposition of SiN
JP2017139451A (ja) * 2016-02-01 2017-08-10 東京エレクトロン株式会社 窒化膜の形成方法
US20170271143A1 (en) * 2016-03-17 2017-09-21 Tokyo Electron Limited Film Forming Method and Film Forming Apparatus
TW201800594A (zh) * 2016-03-17 2018-01-01 東京威力科創股份有限公司 成膜方法及成膜裝置
JP2018011009A (ja) * 2016-07-15 2018-01-18 東京エレクトロン株式会社 窒化膜の成膜方法および成膜装置
US20180142350A1 (en) * 2016-11-21 2018-05-24 Tokyo Electron Limited Film formation processing method and film formation procesing apparatus
CN108505020A (zh) * 2017-02-28 2018-09-07 东京毅力科创株式会社 成膜装置
US20180366315A1 (en) * 2017-06-15 2018-12-20 Tokyo Electron Limited Film Forming Method, Film Forming Apparatus, and Storage Medium

Also Published As

Publication number Publication date
JP2021034428A (ja) 2021-03-01
JP7200880B2 (ja) 2023-01-10
TW202117850A (zh) 2021-05-01
US20210054501A1 (en) 2021-02-25
KR20210021918A (ko) 2021-03-02

Similar Documents

Publication Publication Date Title
US10312078B2 (en) Nitride film forming method and storage medium
JP6690496B2 (ja) 成膜方法及び成膜装置
TWI688669B (zh) 凹部之填埋方法
KR102400746B1 (ko) 성막 장치, 성막 장치의 클리닝 방법 및 기억 매체
US10900121B2 (en) Method of manufacturing semiconductor device and apparatus of manufacturing semiconductor device
US10438791B2 (en) Film forming method, film forming apparatus, and storage medium
TW201900919A (zh) 矽氮化膜之成膜方法及成膜裝置
US10535501B2 (en) Film forming apparatus, film forming method and non-transitory storage medium
US9922820B2 (en) Film forming method and film forming apparatus
CN112391612A (zh) 成膜方法和成膜装置
KR102641248B1 (ko) 성막 방법 및 성막 장치
JP7040257B2 (ja) 成膜装置、及び成膜方法
JP6988629B2 (ja) 成膜方法及び成膜装置
JP6544232B2 (ja) 成膜方法及び成膜装置
JP2021039975A (ja) 成膜装置及び成膜方法
JP6680190B2 (ja) 成膜装置
US20180237914A1 (en) Film forming apparatus
US11837465B2 (en) Deposition method
KR20230146453A (ko) 성막 방법 및 처리 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination