CN112390293B - 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用 - Google Patents

超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112390293B
CN112390293B CN202011329845.7A CN202011329845A CN112390293B CN 112390293 B CN112390293 B CN 112390293B CN 202011329845 A CN202011329845 A CN 202011329845A CN 112390293 B CN112390293 B CN 112390293B
Authority
CN
China
Prior art keywords
dimensional
ldh
composite material
nano composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011329845.7A
Other languages
English (en)
Other versions
CN112390293A (zh
Inventor
庄赞勇
周林鑫
庄国鑫
于岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011329845.7A priority Critical patent/CN112390293B/zh
Publication of CN112390293A publication Critical patent/CN112390293A/zh
Application granted granted Critical
Publication of CN112390293B publication Critical patent/CN112390293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一步合成超薄二维(2D)Mn3O4和二维层状双金属氢氧化物(LDH)纳米材料的有序自组装方法,利用水热法一步制备出的2D四氧化三锰(Mn3O4)分散在2D Ni‑Mn LDH上并自组装成微花的纳米复合材料(2D Mn3O4/2D Ni‑Mn LDH),其中2D Mn3O4的厚度在3.75‑4 nm之间,2D Ni‑Mn LDH的厚度约为2 nm;组合后的微花直径约为6 um。本发明制得的2D/2D纳米复合材料可以在光敏剂的条件下,高效选择性光催化二氧化碳还原成一氧化碳。本发明制备工艺简单,周期短,成本低廉,可大规模工业化生产,具有良好的经济效益和环境效益。

Description

超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制 备方法和应用
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种基于Ni-Mn LDH纳米材料的超薄二维Mn3O4和二维Ni-Mn LDH纳米复合材料及其制备方法和应用。
背景技术
二维(2D)超薄LDH纳米材料由于其具有原子级的厚度(<5 nm)和大的横径比,因此具有高的比表面积、更多暴露的活性位点和高效的电子转移能力,是一种理想的催化材料。由于二维超薄纳米材料具有较高的表面能,因此极易发生团聚和褶皱,引起暴露表面积和活性位点的进一步降低和减少等现象,导致其催化活性的降低和不稳定。目前在二维超薄纳米材料的合成和抑制其团聚的过程,往往需要加入表面活性剂,这会导致表面活性剂吸附在2D材料的表面,进而导致活性位点被包覆,降低了活性位点与反应物之间的有效接触,不利于催化反应的进行。为此,寻找一种无表面活性剂合成2D纳米材料并能够防止其团聚的方法,成为目前的研究热点。
此外,在光催化领域中,光生电子-空穴对的快速复合是制约其工业化应用的主要问题之一。构建2D/2D异质结能够提高可见光的利用率(占太阳光中45%的能量),其形成的内建电场能够有效提高光生载流子的分离效率。2D/2D异质结具有高度耦合和更大的面接触,有利于光生电子-空穴对在界面的快速转移。但是目前2D/2D纳米复合材料是将两种不同的2D纳米材料通过静电自组装或者以表面活性剂为桥连剂直接进行混合,其组装过程不可控,因此制备高度分散的2D/2D纳米复合材料仍存在很多难点。为解决这一难点,设计一种简单的工艺,实现原位同步合成均匀分散的超薄2D/2D纳米材料的制备方法具有重要意义。
发明内容
本发明的目的在于针对现有2D/2D纳米复合材料制备方法、2D纳米片易于团聚、还原活性低的不足,提供了一种工艺简单,制备还原活性高的2D/2D纳米复合材料的绿色合成方法。本发明通过一步水热合成,自组装形成形貌均一、尺寸可控、还原活性高的2D Mn3O4/2D Ni-Mn LDH纳米复合材料,其中2D Mn3O4的厚度在3.75-4 nm之间,2D Ni-Mn LDH的厚度约为2 nm;组合后的微花直径约为6 um。而且所制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料能够高效选择性光催化还原CO2为CO,成本低廉,方法简单,提供了形貌尺寸可控的制备方法,具有良好的经济效益和环境效益,而且还可以进行大规模生产应用。
为实现上述目的,本发明采用如下技术方案:
一步合成超薄二维Mn3O4和二维Ni-Mn LDH纳米材料的有序自组装方法,包括以下原料:甲酸锰(Mn(HCOO)2)、六水合氯化镍(NiCl2·6H2O)、甲醇(CH3OH)。
一步合成超薄二维Mn3O4和二维LDH纳米材料的有序自组装方法:将甲酸锰和六水合氯化镍加入到甲醇中,充分混合溶解,然后将混合溶液转移至聚四氟乙烯衬里的不锈钢高压釜中恒温反应;反应结束后,经冷却、离心分离、洗涤、干燥直至水分完全挥发,获得固态粉末状尺寸均匀高度分散的2D Mn3O4/2D Ni-Mn LDH自组装成微球的纳米复合材料。
所述尺寸均匀高度分散的2D Mn3O4/2D Ni-Mn LDH纳米复合材料的制备方法具体包括以下步骤:
(1)将二价锰盐和二价镍盐加入到醇中,充分混合溶解,制成均匀分散的反应前驱液;
(2)然后将反应前驱液转移至聚四氟乙烯衬里的不锈钢高压釜中恒温反应;
(3)反应结束后,经冷却、离心分离、洗涤、干燥直至水分完全挥发,获得固态粉末状2D Mn3O4/2D Ni-Mn LDH纳米复合材料。
进一步地,步骤(1)所述的二价锰盐为甲酸锰Mn(HCOO)2;所述的二价镍盐为六水合氯化镍NiCl2·6H2O;醇为甲醇CH3OH。
进一步地,步骤(1)中二价锰盐与二价镍盐的摩尔比为20:3 – 5:2,醇的用量为60mL,此反应为一个相变过程,在锰镍摩尔比为20:3~5:2的范围内其是一个混合物相。在反应初期,先生成Mn3O4,随着反应的进行,Mn3O4将会转化为Mn-LDH,但当镍含量太低时,其不会向Mn-LDH转化,而当镍含量太高时,会导致其完全转化为Ni-Mn LDH,而非形成2D/2D的复合结构。
进一步地,步骤(1)所述的混合溶解具体为:磁力搅拌;搅拌速度为300-800rpm;搅拌时间为15 - 30min。
进一步地,步骤(2)所述的恒温反应具体为:在180 ℃恒温反应4 - 36 h。
进一步地,步骤(3)所述的冷却具体为:自然冷却到室温。
进一步地,步骤(3)所述的洗涤具体为:用去离子水和乙醇分别洗涤3次。
进一步地,步骤(3)所述的干燥具体为:干燥方式为真空-53℃冷冻干燥;干燥时间为8 - 12 h
其中长约70 - 150 nm、宽约30 - 60 nm、厚度约3.75 - 4.0 nm的2D Mn3O4,均匀分散在厚度约为2 nm,边长为 4 - 8 um的2D Ni-Mn LDH纳米片上,如图1所示。
本发明的有益效果在于:
(1)本发明采用一步水热合成法,实现原位同步制备了均匀高度分散的2D Mn3O4/2D Ni-Mn LDH纳米复合材料,提供了一种新的关于二维-二维纳米材料复合的方法,为2D/2D超薄纳米片的复合组装提供了新思路。
(2)本发明制备的2D Mn3O4/2D Ni-Mn LDH纳米复合材料能够形成自支撑结构的花状微球,能够有效的避免纳米片的团聚和表面活性剂的使用。
(3)本发明制备的2D Mn3O4/2D Ni-Mn LDH纳米复合材料,2D Mn3O4和2D Ni-MnLDH之间能够高效协同,显著抑制光生电子-空穴对的复合,促进电子的转移,实现高效选择性光催化还原二氧化碳。
(4)本发明的制备方法所需要原材料和设备简单易取,流程工艺简单、易操作和安全,成本相对低廉,可大规模工业化生产;与其他过渡金属元素相比对环境污染小,具有高的选择性和效率,是一种生态环境友好型材料,具有很好的推广应用价值。
附图说明
图1是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料的扫描电子显微镜(SEM)图;
图2是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料的透射电子显微镜(TEM)图;
图3是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料、对比例1制得的OVs-Mn3O4和比例2制得的/Ni-Mn LDH纳米片的X射线衍射(XRD)图;
图4是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料的原子力显微镜(AFM)图;
图5是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料、对比例1制得的OVs-Mn3O4、对比例2制得的Ni-Mn LDH纳米片和市售Mn3O4的N2吸附-脱附等温线(BET)图;
图6是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料、对比例1制得的OVs-Mn3O4、对比例2制得的Ni-Mn LDH纳米片和市售Mn3O4的荧光吸收谱图;
图7是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料进行循环反应时,一氧化碳产量示意图;
图8是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料、对比例1制得的OVs-Mn3O4、对比例2制得的Ni-Mn LDH纳米片和市售Mn3O4,一氧化碳产量随反应时间变化示意图;
图9是本发明实施例1,锰镍摩尔比为10 : 3,增加恒温反应时间至4 h制得的2DMn3O4/2D Ni-Mn LDH纳米复合材料的SEM图;
图10是本发明实施例1,锰镍摩尔比为10 : 3,增加恒温反应时间至6 h制得的2DMn3O4/2D Ni-Mn LDH纳米复合材料的SEM图;
图11是本发明实施例1,锰镍摩尔比为10 : 3,增加恒温反应时间至36 h制得的2DMn3O4/2D Ni-Mn LDH纳米复合材料的SEM图;
图12是本发明实施例1,改变锰镍摩尔比至20: 3制得的2D Mn3O4/2D Ni-Mn LDH纳米复合的SEM图;
图13是本发明实施例1,改变锰镍摩尔比至20:3制得的2D Mn3O4/2D Ni-Mn LDH纳米复合的TEM图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图即实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以结合。
实施例1
Mn3O4/Ni-Mn LDH纳米复合材料的制备:
(1)用电子天平称取1 mmol甲酸锰Mn(HCOO)2和0.3 mmol六水合氯化镍NiCl2·6H2O,用量筒量取60ml甲醇,将三者混合;
(2)然后将混合液转移至聚四氟乙烯衬里的不锈钢高压釜中,并在180 ℃下恒温反应18 h,反应结束后自然冷却至室温;
(3)用离心机离心分离样品得到固态粉末,转速为6000 rpm;并用乙醇和去离子水分别洗涤三次;
(4)通过冷冻干燥过夜至水分完全挥发,获得2D Mn3O4/2D Ni-Mn LDH纳米复合材料。图2可以看出,叶子形状的是2D Mn3O4,花状微球的骨架是2D Ni-Mn LDH纳米片,2DMn3O4尺寸均匀且高度分散在2D Ni-Mn LDH纳米片上。从图4也可以看出,2D Mn3O4分布在2DNi-Mn LDH纳米片上,且2D Mn3O4的厚度为3.75nm。
对比例1
OVs-Mn3O4的制备:
(1)用电子天平称取1 mmol甲酸锰Mn(HCOO)2,用量筒量取60 ml甲醇,将二者混合;
(2)然后将混合液转移至聚四氟乙烯衬里的不锈钢高压釜中,并在180 ℃下恒温反应18 h,反应结束后自然冷却至室温;
(3)用离心机离心分离样品得到固态粉末,转速为6000 rpm;并用乙醇和去离子水分别洗涤三次;
(4)通过冷冻干燥过夜至水分完全挥发,获得OVs-Mn3O4纳米材料。
对比例2
Ni-Mn LDH纳米片的制备
(1)然后用电子天平称取1 mmol甲酸锰Mn(HCOO)2和0.7 mmol六水合氯化镍NiCl2·6H2O,用量筒量取60 ml甲醇,将三者混合;
(2)然后将混合液转移至聚四氟乙烯衬里的不锈钢高压釜中,并在180 ℃下恒温反应18 h,反应结束后自然冷却至室温;
(3)用离心机离心分离样品得到固态粉末,转速为6000 rpm;并用乙醇、去离子水洗涤三次;
(4)通过冷冻干燥过夜至水分完全挥发,获得Ni-Mn LDH纳米复合材料。
可见光照射下二氧化碳还原实验测试:
应用实施例1
将实施例1中得到的2D Mn3O4/2D Ni-Mn LDH纳米复合材料用于二氧化碳还原,具体步骤如下:
(1)取4.5 mg的2D Mn3O4/2D Ni-Mn LDH催化剂、8.5 mg六水合三联吡啶氯化钌加入到含有1 mL去离子水、3 mL 乙腈、1 mL三乙醇胺混合液的石英反应器中;
(2)将整个石英反应器进行脱气;
(3)用纯的二氧化碳对石英反应器重复充气3次;
(4)在25 ℃下,将石英反应器置于300 W的氙灯下照射;
(5)在一定时间后,取0.5 mL产生的气体,做气相色谱。
应用实施例2
将对比例1中得到的OVs-Mn3O4用于二氧化碳还原,具体步骤如下:
(1)取4.5 mg的OVs-Mn3O4催化剂、8.5 mg六水合三联吡啶氯化钌加入到含有1 mL去离子水、3 mL乙腈、1 mL三乙醇胺混合液的石英反应器中;
(2)将整个石英反应器进行脱气;
(3)用纯的二氧化碳对石英反应器重复充气3次;
(4)在25 ℃下,将石英反应器置于300 W的氙灯下照射;
(5)在一定时间后,取0.5 mL产生的气体,做气相色谱。
应用实施例3
将对比例2中得到的Ni-Mn LDH纳米片用于二氧化碳还原,具体步骤如下:
(1)取4.5 mg的Ni-Mn LDH催化剂、8.5 mg六水合三联吡啶氯化钌加入到含有1 mL去离子水、3 mL乙腈、1 mL三乙醇胺混合液的石英反应器中;
(2)将整个石英反应器进行脱气;
(3)用纯的二氧化碳对石英反应器重复充气3次;
(4)在25 ℃下,将石英反应器置于300 W的氙灯下照射;
(5)在一定时间后,取0.5 mL产生的气体,做气相色谱。
图5是本发明实施例1制得的2D Mn3O4/2D Ni-Mn LDH纳米复合材料、对比例1制得的OVs-Mn3O4、对比例2制得的Ni-Mn LDH纳米片和市售Mn3O4的BET图,可以看出2D Mn3O4/2DNi-Mn LDH纳米复合材料具有较大的比表面积,有利于其催化性能。市售Mn3O4对于催化二氧化碳还原不具备活性。OVs-Mn3O4对于催化二氧化碳还原有一定的活性,CO释放速率为1950μmol·g-1·h-1;但选择性较低,为43.80%。 Ni-Mn LDH纳米片对于催化二氧化碳还原有一定的活性,一氧化碳释放速率为1436 umol·g-1·h-1;但选择性较高,为98.94%。 而Mn3O4/Ni-Mn LDH的2D / 2D组装结构纳米片对于催化二氧化碳还原有较高的活性,其一氧化碳释放速率为3577 μmol·g-1·h-1,是OVs- Mn3O4释放CO速率的207%,是Ni-Mn LDH纳米片释放一氧化碳速率的249%。此外,它的选择性高达94.8%,接近Ni-Mn LDH纳米片的高选择性(98.94%)。从图7中可以看出本发明制备得到的2D Mn3O4/2D Ni-Mn LDH纳米复合材料具有优异的循环性能,在循环4次后依然保持优异的对二氧化碳催化还原性能。从图8中可以看出随着反应时间的增加,本发明制备得到的2D Mn3O4/2D Ni-Mn LDH纳米复合材料的CO的产率逐渐增加且增加明显,而其他三种材料的CO的产率虽然也稍有增加,但增加不明显,而且产率也一直低于本发明制备得到的2D Mn3O4/2D Ni-Mn LDH纳米复合材料。从图1、9、10、11中可以看出,在锰镍摩尔比为10:3时,在本发明限定的时间范围内均可以得到2D Mn3O4/2DNi-Mn LDH纳米复合材料。从图1、12中可以看出,在反应时间为18h时,在本发明限定的锰镍摩尔比范围内均可以得到2D Mn3O4/2D Ni-Mn LDH纳米复合材料。以上两点也说明了,在本发明限定的时间和锰镍摩尔比范围内,均可以得到2D Mn3O4/2D Ni-Mn LDH纳米复合材料。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进,均应包含在本发明的保护范围之内。

Claims (6)

1.一种超薄二维Mn3O4和二维Ni-Mn LDH纳米复合材料的制备方法,其特征在于:包括以下步骤:
(1)将二价锰盐和二价镍盐加入到醇中,充分混合溶解,制成均匀分散的反应前驱液;
(2)然后将反应前驱液转移至聚四氟乙烯衬里的不锈钢高压釜中恒温反应;
(3)反应结束后,经冷却、离心、洗涤、干燥直至水分完全挥发,获得固态粉末状2DMn3O4/2D Ni-Mn LDH纳米复合材料;
步骤(1)所述的锰盐为甲酸锰Mn(HCOO)2;二价镍盐为六水合氯化镍NiCl2·6H2O;醇为甲醇;步骤(1)中二价锰盐、二价镍盐的摩尔比为20:3 ~ 5:2,醇用量为60 mL,步骤(2)所述的恒温反应具体为:在180 ℃恒温反应4-36 h。
2.根据权利要求1所述的制备方法,其特征在于:超薄二维Mn3O4的厚度在3.75-4 nm之间;二维LDH纳米材料厚度小于5nm。
3.根据权利要求1所述的制备方法,其特征在于:步骤(1)所述的混合溶解具体为:在转速300-800rpm条件下,搅拌15-30min。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)所述的离心和洗涤具体为:在转速6000 rpm的离心机下离心,用乙醇和去离子水分别洗涤3次。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)所述的干燥具体为:干燥方式为真空-53℃冷冻干燥,干燥时间为8-12 h。
6.一种如权利要求1-5任一项所述制备方法制得的超薄二维Mn3O4和二维Ni-Mn LDH纳米复合材料在高效催化二氧化碳还原中的应用。
CN202011329845.7A 2020-11-24 2020-11-24 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用 Active CN112390293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011329845.7A CN112390293B (zh) 2020-11-24 2020-11-24 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011329845.7A CN112390293B (zh) 2020-11-24 2020-11-24 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112390293A CN112390293A (zh) 2021-02-23
CN112390293B true CN112390293B (zh) 2022-04-08

Family

ID=74607678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011329845.7A Active CN112390293B (zh) 2020-11-24 2020-11-24 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112390293B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849716B (zh) * 2022-05-18 2023-06-23 福州大学 一种基于NiZn-LDH的1D/2D复合材料及其制备方法和应用
CN115999549B (zh) * 2022-12-30 2024-06-28 福州大学 一种二维/二维硅酸钙/ldh复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036204A (zh) * 2015-07-17 2015-11-11 上海交通大学 由纳米薄片组装的镍铝氢氧化物多级微球及其制备方法
CN110028113A (zh) * 2019-04-18 2019-07-19 桂林理工大学 一种钴镍双金属氢氧化物纳米片的制备方法及其应用
KR20200042317A (ko) * 2018-10-15 2020-04-23 이화여자대학교 산학협력단 혼성화 나노복합체, 이의 제조 방법, 및 이를 포함하는 슈퍼커패시터 전극

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036204A (zh) * 2015-07-17 2015-11-11 上海交通大学 由纳米薄片组装的镍铝氢氧化物多级微球及其制备方法
KR20200042317A (ko) * 2018-10-15 2020-04-23 이화여자대학교 산학협력단 혼성화 나노복합체, 이의 제조 방법, 및 이를 포함하는 슈퍼커패시터 전극
CN110028113A (zh) * 2019-04-18 2019-07-19 桂林理工大学 一种钴镍双金属氢氧化物纳米片的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Coprecipitation Synthesis of NixMn1-x(OH)2 Mixed Hydroxides;Fu Zhou;《Chem. Mater》;20100209;第22卷(第3期);全文 *
Morphology and particle growth of a two-phase Ni/Mn precursor for high-capacity Li-rich cathode materials;Jianhong Liu;《J Appl Electrochem》;20131013;第44卷(第2期);第225-232页 *

Also Published As

Publication number Publication date
CN112390293A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Huang et al. Cycloaddition of CO 2 and epoxide catalyzed by amino-and hydroxyl-rich graphitic carbon nitride
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN112390293B (zh) 超薄二维四氧化三锰和二维Ni-Mn LDH纳米复合材料及其制备方法和应用
CN110743596A (zh) 钌纳米颗粒/三维多孔氮化碳复合材料及制备方法与用途
CN110523424B (zh) 一种基于Ru/NPC-CoxO制氢催化剂及制备方法
CN109012698A (zh) 一种纳米片组成的花状ZnO/CdS复合材料及其低温制备方法
WO2021104087A1 (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
CN110854392A (zh) 一种基于金属有机骨架的谷穗状碳材料及制备和应用
CN111229276B (zh) 一种双层复合型电解水阳极催化剂及其制备方法
CN110586183A (zh) 一种利用超临界二氧化碳制备TiO2/COF催化材料的方法
CN114849716B (zh) 一种基于NiZn-LDH的1D/2D复合材料及其制备方法和应用
CN113385206A (zh) 一种金属载体强相互作用下的高效产氢催化剂及制备方法
CN116371447A (zh) 一种双z型异质结光催化剂及其制备方法和应用
CN109174143B (zh) 一种钙钛矿基复合纳米光催化材料及制备方法与用途
CN112958096B (zh) 花球状镍铝水滑石/二氧化钛原位生长在片状二碳化三钛复合光催化剂的制备方法及应用
CN111167483A (zh) 一种MoSe2/ZnCdS纳米颗粒的制备方法及应用
CN112337491B (zh) 一种双功能光催化应用的磷化镍/氧化铟纳米复合材料制备方法及用途
CN112717958B (zh) 一种富含氧空位BiOBr/HNb3O8纳米片光催化剂的制备方法与用途
CN112735838B (zh) 一种氮磷共掺杂多孔碳p@zif-8及其制备方法和应用
CN109926070B (zh) 一种Mn0.5Cd0.5S/WO3/Au负载型光催化剂的制备方法
CN114950482B (zh) 一种金属修饰Zn2In2S5极化光催化材料及其制备方法和用途
CN115637456A (zh) 一种核壳结构Cu2O@(Co,Cu)(OH)2纳米立方体电催化剂及其制备和应用
CN110327913B (zh) 一种纳米片状氧化钨/氧化石墨烯核壳结构材料及其制备方法与应用
CN108786817B (zh) 甲苯水蒸气重整制备高纯度氢气的催化剂及其制备与应用
CN109772365B (zh) 一种硫化锌-硫化镉双层多孔纳米管复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant