CN112379472B - 一种低吸辐比的光学太阳反射镜及其制备方法 - Google Patents

一种低吸辐比的光学太阳反射镜及其制备方法 Download PDF

Info

Publication number
CN112379472B
CN112379472B CN202011269856.0A CN202011269856A CN112379472B CN 112379472 B CN112379472 B CN 112379472B CN 202011269856 A CN202011269856 A CN 202011269856A CN 112379472 B CN112379472 B CN 112379472B
Authority
CN
China
Prior art keywords
layer
glass substrate
optical solar
film
metal reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011269856.0A
Other languages
English (en)
Other versions
CN112379472A (zh
Inventor
郭腾
倪俊
景加荣
李灿伦
李辉
乔宏
靳兆峰
范孝鹏
范秋林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Equipment
Original Assignee
Shanghai Institute of Satellite Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Equipment filed Critical Shanghai Institute of Satellite Equipment
Priority to CN202011269856.0A priority Critical patent/CN112379472B/zh
Publication of CN112379472A publication Critical patent/CN112379472A/zh
Application granted granted Critical
Publication of CN112379472B publication Critical patent/CN112379472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明涉及一种低吸辐比的光学太阳反射镜,属于航天器热控薄膜技术领域。本发明公开了一种低吸辐比的光学太阳反射镜及其制备方法。在本案中,采用了厚度0.05‑0.20mm的铈玻璃或者石英玻璃基片制备光学太阳反射镜,其中厚度0.10mm甚至更薄的铈玻璃基片不止实现了轻量化,同时通过增强增韧,玻璃基片具有一定柔性,可解决曲面散热面热控实施的问题,并通过基片加热、离子轰击、辅助沉积、高温退火等一系列改进方法,研制出一种低吸辐比的光学太阳反射镜,充分适应航天器研制走向低成本、短周期、高集成、高可靠之路的发展趋势。

Description

一种低吸辐比的光学太阳反射镜及其制备方法
技术领域
本发明属于航天器热控薄膜技术领域,涉及一种低吸辐比的光学太阳反射镜及其制备方法。
背景技术
光学太阳反射镜(以下简称“OSR”)又称为二次表面镜,是由高发射率的第一表面和对太阳光谱有高反射率的第二表面组成。通常,OSR的第一表面是发射率大于0.8的玻璃基材,且一般为了起到防静电积累的作用,会在第一表面上镀有透明导电薄膜,多为氧化铟锡薄膜;OSR的第二表面是金属膜层,由高反射层和保护层组成,高反射层通常为银或铝层,背后的保护层为高温镍基合金膜。OSR因具有低吸辐比(太阳吸收比/半球发射率)、抗带电粒子辐射、抗紫外辐照、耐冷热交变和真空挥发物少等多重突出优点,成为一种理想的航天器用被动热控涂层材料,应用于航天器各个部位,为航天器相关部位或整星提供热控制。
OSR根据玻璃基片的厚度不同,可分为0.2mm、0.15mm、0.09mm、0.07mm。根据玻璃基片的尺寸不同,可分为40mm×40mm、40mm×20mm和20mm×20mm。根据玻璃基片的种类不同,可分为石英玻璃型二次表面镜和铈玻璃型二次表面镜。根据高反射膜层的不同,可分为镀银型二次表面镜和镀铝型二次表面镜。根据防静电层的使用情况,可分为非防静电型二次表面镜和防静电型二次表面镜。
随着空间探测技术的发展,航天器研制必然走向高可靠、高集成、低成本之路,热控薄膜材料也应顺应发展趋势,进一步提高产品性能指标,进一步提高空间稳定性,进一步降低自身重量,以延长航天器在轨寿命,保证航天器运行稳定,推动航天器轻量化,节约航天器研制成本。
基于此,如何在现有膜层结构的基础上,降低OSR产品的吸辐比,提高膜层质量,同时推动航天器轻量化以满足航天器研制的发展趋势是亟需解决的技术难题。
发明内容
为了实现上述目的,本发明提出了一种低吸辐比的光学太阳反射镜及其制备方法,旨在基于现有膜层结构的基础上,降低OSR产品的吸辐比,提高功能膜层质量,同时推动航天器轻量化。
为了实现上述目的,本发明提出了一种低吸辐比的光学太阳反射镜,所述光学太阳反射镜包括发射层以及位于所述发射层表面的透明导电层以及金属反射层;
其中,所述透明导电层位于所述发射层的一侧表面,所述金属反射层位于所述发射层的另一侧表面;
光学太阳反射镜还包括防氧化保护层,所述防氧化保护层位于所述金属反射层的另一侧表面;
所述透明导电层与发射层间具有第一原子混合层;所述金属反射层与发射层间具有第二原子混合层;
所述光学太阳反射镜的吸辐比≤0.09,表面电阻≤5kΩ/sq。
在本发明所述的光学太阳反射镜中,所述透明导电层具有一定的导电性,能够防止空间环境的充放电效应,且在可见光区间具有较高的透过率,可以避免防静电层带来的太阳吸收比的增加。
所述发射层具有≥0.80的发射率,可透过超过90%的紫外光、可见光,耐高低温冲击;
所述金属反射层在可见光区和红外光区均有较大反射率,在波长大于230nm反射率保持恒定且反射率大于97%;
所述防氧化保护层主要保护长时间暴露在空气中易缓慢氧化的金属反射层。
进一步地,所述透明导电层采用ITO薄膜,膜层厚度小于50nm。所述ITO是指氧化铟锡,所述透明导电层通过磁控溅射的方法制备获得,例如:在作为发射层的玻璃基片上沉积氧化铟锡获得。
进一步地,所述发射层采用铈玻璃或石英玻璃,厚度在0.05-0.20mm,其中厚度0.10mm甚至更薄的铈玻璃具有一定柔性,可弯曲,弯曲角度超过90°。
进一步地,所述金属反射层采用高反射金属,膜层厚度小于等于200nm。所述的高反射金属是指反射率高的金属,例如:铝或银。
进一步地,所述防氧化保护层采用高温镍基合金,所述防氧化保护层的膜层厚度与金属反射层相当,其膜层厚度小于等于200nm。所述的高温镍基合金是指镍铬合金材料,其合金成分优选为80wt%Ni+20wt%Cr。
此外,本发明的另一目的在于提供一种制备上述低吸辐比的光学太阳反射镜的制备方法,其包括如下步骤:
步骤S0:对玻璃基片进行预处理,以消除玻璃基片自身应力;
步骤S1:对步骤S0所获得的玻璃基片进行离子轰击,以提高玻璃基片表面粗糙度;
步骤S2:对步骤S1所获得的玻璃基片采用磁控溅射方法沉积膜层,在沉积膜层的同时,进行辅助沉积,以提高表面原子或分子活性;
步骤S3:对步骤S2所获得的具有沉积膜层的玻璃基片进行高温退火,以获得最终的光学太阳反射镜。
上述制备方法中,首先是在玻璃基片的一侧分别沉积金属反射层和防氧化保护层,在玻璃基片的另一侧沉积透明导电层。
进一步地,在所述步骤S0中,包括如下步骤:
步骤S01:先将玻璃基片依次放入丙酮、无水乙醇、去离子水中分别超声波清洗5min、15min、15min,然后放入80℃的烘箱中干燥10min,得到洁净的玻璃基片;
步骤S02:将洁净的玻璃基片放入镀膜机中抽真空,当本底压力低于8×10-4Pa,对玻璃基片进行预先加热保温,加热温度为300~400℃,保温时间为30~60min。
上述方案中,采用超声波清洗技术清洗玻璃基片,以去除玻璃基片在制造过程中残留的油脂、污渍、杂质等。
对玻璃基片进行预先加热保温所起的作用为:通过提高玻璃基片的温度,消除基片本身制造过程中的应力,减小沉积膜层(即透明导电层以及金属反射层)与玻璃基片因晶格失配、热膨胀系数差异而产生的内应力,并有利于沉积原子或者分子在玻璃基片表面扩散、迁移,由此提高膜层致密性、均匀性。
进一步地,在所述步骤S1中,对所述玻璃基片进行离子轰击时,离子源功率为500~700W;
在所述步骤S2中,对所述玻璃基片进行辅助沉积时,离子源功率为200~400W。
对所述玻璃基片进行离子轰击及辅助沉积,以此改变表面原子或分子活性,离子轰击可同时提高表面粗糙度,从而有利于膜基界面原子混合,由此提高膜层附着力。
需要说明的是,在步骤S2中,磁控溅射沉积膜层时,在玻璃基片一侧依次沉积金属反射层、防氧化保护层后,再在玻璃基片另一侧沉积透明导电层。其中,在沉积金属反射层以及透明导电层时,可以对其进行辅助沉积。
在本发明所述的技术方案中,金属反射层为功能层,其用于保证最终产品的低吸辐比。同时,由于金属反射层暴露在大气中,易发生氧化变色,因此在金属反射层外侧沉积一层防氧化保护层,以防止其氧化变色。
防氧化保护层的厚度根据具体实施方式的需要进行设置,以防止其氧化变色,并且设置其膜层层状连续生长,以完全覆盖金属反射层。
此外,透明导电层起到防静电作用,因此,其用于保证最终产品的表面电阻。
考虑到导电性能与其表面状态和微观结构有密切关系,因此,本发明采用高温退火工艺,以去除膜基界面的内应力,使膜层中过量的氧及残留的其它杂质气体原子或分子释放到退火环境中,从而有利于提高导电性能。
此外,高温退火工艺还有利于膜层结晶及择优生长,提高膜层透过率和致密性,有利于进一步提高OSR产品性能,最终得到改进后的OSR产品膜层结构。
需要说明的是,本发明中的第一、第二原子混合层属于膜基界面极薄的一层,是离子轰击和辅助沉积共同作用的结果。
进一步地,在所述步骤S3中,进行高温退火处理时,退火温度为350~550℃,保温时间为20~60min,自然冷却至室温。
与现有OSR产品及制备技术相比,本发明具有如下的有益效果:
第一,与现有OSR产品相比,本发明的光学太阳反射镜具有更低的吸辐比,更轻的重量。
第二,与现有湿化学法相比,本发明具有更好的工艺稳定性和重复性,与现有磁控溅射技术相比,本发明的制备工艺又做出了一些改进,得到的光学太阳反射镜具有更高的膜层质量。
具体来说,本发明中所改进的工艺包括以下几个方面:
一、本发明对玻璃基片进行了预处理,尤其是通过对玻璃基片的加热,消除了玻璃基片本身制造过程中的应力,减小膜层与玻璃基片因晶格失配、热膨胀系数差异而产生的内应力并有利于沉积原子或者分子在基片表面扩散、迁移,提高膜层致密性、均匀性;
二、本发明采用了离子轰击及辅助沉积,在此过程中,通过在金属反射层、透明导电层沉积之前进行离子轰击,在沉积时进行辅助沉积,均提高了表面原子或者分子活性,离子轰击同时可提高表面粗糙度,有利于膜基界面原子混合,显著提高膜层附着力,有效缓解减薄、强韧化处理的玻璃基片上直接沉积膜层产生内应力,从而避免由此导致的膜层附着力变差、开裂、脱落等问题;
三、本发明采用了高温退火,通过对步骤S2所获得的沉积膜层进行高温退火,使膜层中过量的氧及残留的其它杂质气体原子或分子释放到退火环境中,从而有利于提高导电性能。同时,高温退火有利于膜层结晶及择优生长,有利于进一步提高膜层透过率和致密性。
此外,本发明所述的低吸辐比的光学太阳反射镜产品性能满足标准要求,膜层致密性、均匀性得到优化,膜层附着力良好,膜层质量进一步提高,并且可同时满足航天器平面、曲面的热控实施要求,实现了热控制系统轻量化的目的,适应航天器研制的发展趋势。
需要指出的是,单单只是用了柔性玻璃基片或者用了相同的磁控溅射技术并不能达到本案所限定的低吸辐比的性能,玻璃基片选用、膜层设计和制备方法并不是独立存在的,尤其是制备方法中的各个步骤均为实现低吸辐比的光学太阳反射镜的条件之一,难以仅通过一种方法或者一个步骤实现。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1示意性地显示了对比例2的膜系结构;
图2示意性地显示了实施例1的低吸辐比的光学太阳反射镜的膜系结构;
图3示意性地显示了实施例1的低吸辐比的光学太阳反射镜;
图4示意性地显示了实施例2中采用的柔性铈玻璃基片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及的一种低吸辐比的光学太阳反射镜的膜系结构如图2所示,其包括由上至下依次设置的透明导电层1、发射层2、金属反射层3以及防氧化保护层4。透明导电层1采用ITO薄膜,膜层厚度20-40nm。发射层2采用石英玻璃,厚度0.20mm。金属反射层3采用高反射金属银,防氧化保护层4采用高温镍铬合金,膜层厚度与金属反射层3的厚度相当,为50-100nm。
实施例1的低吸辐比的光学太阳反射镜的制备方法包括如下步骤:
A、先将玻璃基片依次放入丙酮、无水乙醇、去离子水中分别超声波清洗5min、15min、15min,然后放入80℃的烘箱中干燥10min,得到洁净的玻璃基片;
B、将洁净的玻璃基片放入镀膜机中抽真空,当本底压力低于8×10-4Pa,预先加热玻璃基片到400℃并保温45min;
C、保温45min时间后,进行膜层沉积,膜层沉积采用磁控溅射技术,首先依次沉积金属反射层3以及防氧化保护层4,随后翻面沉积透明导电层1,在沉积金属反射层3以及透明导电层1时进行辅助沉积,并且在金属反射层3、透明导电层1沉积之前对玻璃基片进行离子轰击;离子轰击时离子源功率为650W,辅助沉积时离子源功率为300W;
D、膜层沉积结束后,进行高温退火处理,退火温度为500℃,保温时间为60min,最后自然冷却至室温。
本实施例制备的光学太阳反射镜吸辐比为0.09,表面电阻为2.9kΩ/sq,膜系结构参考图2,其产品样貌形态参考图3。
实施例2
本实施例涉及的一种低吸辐比的光学太阳反射镜的膜系结构如图2所示,其包括由上至下依次设置的透明导电层1、发射层2、金属反射层3以及防氧化保护层4。透明导电层1采用ITO薄膜,膜层厚度5-20nm。发射层2采用掺铈玻璃,厚度0.09mm,具有一定柔性,如图4所示,可弯曲90°。金属反射层3采用高反射金属银,防氧化保护层4采用高温镍铬合金,膜层厚度与金属反射层3的厚度相当,为100-150nm。
本实施例的低吸辐比的光学太阳反射镜的制备方法包括如下步骤:A、先将发射层2所采用的掺铈玻璃的玻璃基片依次放入丙酮、无水乙醇、去离子水中分别超声波清洗5min、15min、15min,然后放入80℃的烘箱中干燥10min,得到洁净的玻璃基片;
B、将洁净的玻璃基片放入镀膜机中抽真空,当本底压力低于5×10-4Pa,预先加热玻璃基片到300℃并保温35min;
保温35min后,进行膜层沉积,膜层沉积采用磁控溅射技术,首先依次沉积金属反射层3以及防氧化保护层4,随后翻面沉积透明导电层1,在沉积金属反射层3以及透明导电层1时进行辅助沉积,并且在金属反射层3、透明导电层1沉积之前进行离子轰击,其中,离子轰击时离子源功率为500W,辅助沉积时离子源功率为200W;
D、膜层沉积结束后,进行高温退火处理,退火温度为350℃,保温时间为40min,最后自然冷却至室温。
本实施例制备的光学太阳反射镜的吸辐比为0.07,表面电阻为3.5kΩ/sq,膜系结构参考图2,其产品样貌形态参考图3。
其中,如图2所示,发射层2所采用的玻璃基片分别与透明导电层1以及金属反射层3间发生原子混合,从而形成第一原子混合层51以及第二原子混合层52。其中,第一原子混合层51中的透明导电层1与发射层2的表面原子或分子相互交错混合,第二原子混合层52中金属反射层3与发射层2的表面原子或分子相互交错混合。第一原子混合层51以及第二原子混合层52是离子轰击和辅助沉积共同作用的结果。
另外,图4示意性地显示了实施例2中采用的柔性铈玻璃基片,其厚度小于0.10mm,或者在一些优选的实施方式中,其厚度可以小至0.05mm,与现有技术中的0.15mm厚度相比,本发明的玻璃基片厚度降低了67%,密度相当的情况下,OSR产品减重超过50%,且从图4可以看出,本发明采用的柔性铈玻璃基片可弯曲,弯曲角度超过90°。
对比例1
对比例1与实施例1的设置基本相同,其区别在于,本底压力低于8×10-4Pa时,常温下直接进行膜层沉积(即与实施例1的步骤B有所不同),由此使得对比例1所获得的吸辐比为0.13,表面电阻为173kΩ/sq。
对比例2
对比例2与实施例2的设置基本相同,其区别在于,膜层沉积前,未对玻璃基片进行离子轰击,膜层沉积时,未使用离子源辅助沉积(即与实施例2的步骤C有所不同),由此使得对比例2所获得的吸辐比为0.10,表面电阻为9.6kΩ/sq。
此外,结合图1和图2可以看出,未采用本发明所述的制备方法所获得的对比例2,其膜系结构中未具有第一原子混合层51以及第二原子混合层52,因而,其膜基界面结合效果较差,并且也影响了其最终所获得的产品的吸辐比以及表面电阻。
对比例3
对比例3与实施例2的设置基本相同,其区别在于,未进行高温退火(即与实施例2的步骤D有所不同),由此使得对比例3所获得的吸辐比为0.12,表面电阻为21kΩ/sq。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (7)

1.一种低吸辐比的光学太阳反射镜的制备方法,其特征在于,包括如下步骤:
步骤S0:对玻璃基片进行预处理,以消除玻璃基片自身应力;
步骤S1:对步骤S0所获得的玻璃基片进行离子轰击,以提高玻璃基片表面粗糙度;
步骤S2:对步骤S1所获得的玻璃基片采用磁控溅射方法沉积膜层,在沉积膜层的同时,进行辅助沉积,以提高表面原子或分子活性;
步骤S3:对步骤S2所获得的具有沉积膜层的玻璃基片进行高温退火,以获得最终的光学太阳反射镜;
步骤S2中,磁控溅射沉积膜层时,在玻璃基片一侧依次沉积金属反射层、防氧化保护层后,再在玻璃基片另一侧沉积透明导电层;其中,在沉积金属反射层以及透明导电层时,对其进行辅助沉积;
在所述步骤S0中,包括如下步骤:
步骤S01:先将玻璃基片依次放入丙酮、无水乙醇、去离子水中分别超声波清洗5min、15min、15min,然后放入80℃的烘箱中干燥10min,得到洁净的玻璃基片;
步骤S02:将洁净的玻璃基片放入镀膜机中抽真空,当本底压力低于8×10-4Pa,对玻璃基片进行预先加热保温,加热温度为300~400℃,保温时间为30~60min;
在所述步骤S1中,对所述玻璃基片进行离子轰击时,离子源功率为500~700W;
在所述步骤S2中,对所述玻璃基片进行辅助沉积时,离子源功率为200~400W;
所述光学太阳反射镜的吸辐比≤0.09,表面电阻≤5kΩ/sq。
2.根据权利要求1所述的制备方法,其特征在于:在所述步骤S3中,进行高温退火处理时,退火温度为350~550℃,保温时间为20~60min,自然冷却至室温。
3.一种如权利要求1所述制备方法制得的低吸辐比的光学太阳反射镜,其特征在于,所述光学太阳反射镜包括发射层以及位于所述发射层表面的透明导电层和金属反射层;
其中,所述透明导电层位于所述发射层的一侧表面,所述金属反射层位于所述发射层的另一侧表面;
光学太阳反射镜还包括防氧化保护层,所述防氧化保护层位于所述金属反射层的另一侧表面;
所述透明导电层与发射层间具有第一原子混合层;所述金属反射层与发射层间具有第二原子混合层;
所述光学太阳反射镜的吸辐比≤0.09,表面电阻≤5kΩ/sq;
所述第一原子混合层中透明导电层与发射层表面原子或分子相互交错混合;所述第二原子混合层中金属反射层与发射层表面原子或分子相互交错混合。
4.根据权利要求3所述的低吸辐比的光学太阳反射镜,其特征在于:所述透明导电层采用ITO薄膜,所述ITO薄膜的膜层厚度小于50nm。
5.根据权利要求3所述的低吸辐比的光学太阳反射镜,其特征在于:所述发射层采用铈玻璃或石英玻璃,所采用的铈玻璃或石英玻璃的厚度在0.05-0.20mm。
6.根据权利要求3所述的低吸辐比的光学太阳反射镜,其特征在于:所述金属反射层采用高反射金属,所述金属反射层的厚度小于等于200nm。
7.根据权利要求3所述的低吸辐比的光学太阳反射镜,其特征在于:所述防氧化保护层采用高温镍基合金,所述防氧化保护层的厚度小于等于200nm。
CN202011269856.0A 2020-11-13 2020-11-13 一种低吸辐比的光学太阳反射镜及其制备方法 Active CN112379472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011269856.0A CN112379472B (zh) 2020-11-13 2020-11-13 一种低吸辐比的光学太阳反射镜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011269856.0A CN112379472B (zh) 2020-11-13 2020-11-13 一种低吸辐比的光学太阳反射镜及其制备方法

Publications (2)

Publication Number Publication Date
CN112379472A CN112379472A (zh) 2021-02-19
CN112379472B true CN112379472B (zh) 2022-08-16

Family

ID=74582225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011269856.0A Active CN112379472B (zh) 2020-11-13 2020-11-13 一种低吸辐比的光学太阳反射镜及其制备方法

Country Status (1)

Country Link
CN (1) CN112379472B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864315A (zh) * 2014-03-12 2014-06-18 江苏汇景薄膜科技有限公司 一种银钛复合功能层低辐射节能玻璃及其制备方法
CN105292522A (zh) * 2015-11-09 2016-02-03 上海卫星装备研究所 航天器高温隔热屏安装装置及方法
CN105481267A (zh) * 2015-11-26 2016-04-13 黑龙江健中特种玻璃有限公司 可后续加工的高透单银低辐射镀膜玻璃及其生产工艺

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783373A (en) * 1986-04-18 1988-11-08 Optical Coating Laboratory, Inc. Article with thin film coating having an enhanced emissivity and reduced absorption of radiant energy
GB9525111D0 (en) * 1995-12-08 1996-02-07 Pilkington Plc Glass and glass products
DE19824364A1 (de) * 1998-05-30 1999-12-02 Bosch Gmbh Robert Verfahren zum Aufbringen eines Verschleißschutz-Schichtsystems mit optischen Eigenschaften auf Oberflächen
US6997981B1 (en) * 2002-05-20 2006-02-14 Jds Uniphase Corporation Thermal control interface coatings and pigments
CN100558666C (zh) * 2006-07-20 2009-11-11 杭州钱塘江特种玻璃技术有限公司 一种屏蔽电磁波辐射的自清洁家电玻璃及其制备方法
EP1972970A1 (fr) * 2007-02-26 2008-09-24 AGC Flat Glass Europe SA Miroir a reflexion élevée
CN101470266A (zh) * 2007-12-28 2009-07-01 中国航天科技集团公司第五研究院第五一〇研究所 一种超宽光谱分色镜的制备方法
WO2011149694A1 (en) * 2010-05-26 2011-12-01 Corning Incorporated Ion-exchanging an ar coated glass and process
CN102134428B (zh) * 2010-12-31 2012-09-19 西安经建油漆股份有限公司 太阳能吸收涂料
CN102677002A (zh) * 2012-05-31 2012-09-19 宫杰 一种航空有机玻璃的真空镀膜制备方法及其制备
JP6539429B2 (ja) * 2013-08-28 2019-07-03 三菱重工業株式会社 可撓性熱制御材料及び推進薬タンク
CN104976803A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
CN103985479B (zh) * 2014-04-28 2018-03-30 赵遵成 一种高温超导涂层导体带材的制备方法
CN104090312B (zh) * 2014-07-30 2016-01-13 中国船舶重工集团公司第七一七研究所 一种高附着力红外金属反射膜及其制备方法
CN104593734A (zh) * 2014-12-31 2015-05-06 西南技术物理研究所 近中红外光学波段大角度入射多波段高反射膜的制备方法
JP6799282B2 (ja) * 2015-07-27 2020-12-16 コニカミノルタ株式会社 銀反射鏡並びにその製造方法及び検査方法
GB201517128D0 (en) * 2015-09-28 2015-11-11 Enbio Ltd Abrasive blast modification of surfaces
CN106336128A (zh) * 2016-08-19 2017-01-18 上海裕达实业有限公司 柔性的osr二次表面镜热控涂层及其制备方法和用途
JP2018095488A (ja) * 2016-12-08 2018-06-21 デクセリアルズ株式会社 宇宙用放熱素子及びその設計方法と製造方法
GB2561865A (en) * 2017-04-25 2018-10-31 Univ Of The West Of Scotland Apparatus and methods for depositing durable optical coatings
US11753712B2 (en) * 2017-09-08 2023-09-12 Essilor International Durable electrochromic device including tungsten oxide film prepared in high ion bombardment and low pressure deposition environment, and/or methods of making the same
CN107400862B (zh) * 2017-09-20 2020-05-05 武汉华星光电技术有限公司 靶材固定装置及靶材固定方法
CN108265269B (zh) * 2018-02-11 2020-05-05 中国科学院上海光学精密机械研究所 提升多层激光薄膜元件环境稳定性的镀膜方法
CN109243678A (zh) * 2018-08-23 2019-01-18 北京载诚科技有限公司 一种复合透明导电膜
CN109625343B (zh) * 2018-12-10 2022-03-29 上海卫星装备研究所 边缘补偿式外热流模拟装置
CN109518128A (zh) * 2018-12-29 2019-03-26 安徽立光电子材料股份有限公司 一种金属复合膜及其制作工艺
CN110527962B (zh) * 2019-05-30 2021-10-08 兰州空间技术物理研究所 一种低应力耐湿热复合热控薄膜及其制备方法
CN111041413B (zh) * 2019-12-11 2022-02-11 中国工程物理研究院激光聚变研究中心 一种提高大口径反射镜镀膜面形精度的方法
CN111593314B (zh) * 2020-05-25 2022-04-19 宁波大榭开发区佳洁锌铸件有限公司 一种真空镀膜工艺及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864315A (zh) * 2014-03-12 2014-06-18 江苏汇景薄膜科技有限公司 一种银钛复合功能层低辐射节能玻璃及其制备方法
CN105292522A (zh) * 2015-11-09 2016-02-03 上海卫星装备研究所 航天器高温隔热屏安装装置及方法
CN105481267A (zh) * 2015-11-26 2016-04-13 黑龙江健中特种玻璃有限公司 可后续加工的高透单银低辐射镀膜玻璃及其生产工艺

Also Published As

Publication number Publication date
CN112379472A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
JP2775629B2 (ja) 銀コーチングを備えた強化および/または屈曲ガラスシートの製造方法、その方法により製造されたガラスシートならびにその応用
JP5330400B2 (ja) 改良された抵抗率を有する層で被覆したガラス基板
EP3179282A1 (en) Infrared reflecting substrate
US20130342900A1 (en) Reflection layer system for solar applications and method for the production thereof
JP2000233947A5 (zh)
JPH0715143B2 (ja) 高透過率、低輻射率の耐熱性の窓又はウインドシールド
WO2016021543A1 (ja) 赤外線反射フィルム
JP2000356706A (ja) 光吸収性反射防止体とその製造方法
US9888566B2 (en) Enhanced bus bar system for aircraft transparencies
JP2012533514A (ja) 低放射ガラス及びその製造方法
KR101302259B1 (ko) 내구성이 우수한 저방사 유리
CN112379472B (zh) 一种低吸辐比的光学太阳反射镜及其制备方法
CN103288362A (zh) 一种高透过率高性能低辐射玻璃的工艺
JPH09156964A (ja) 光吸収性反射防止体
US11391872B2 (en) Infrared reflective and electrical conductive composite film and manufacturing method thereof
CN101728008A (zh) 形成透明金属氧化物薄膜的方法
US20030104185A1 (en) Method for producing a multi-functional, multi-ply layer on a transparent plastic substrate and a multi-functional multi-ply layer produced according to said method
CN111204987B (zh) 一种玻璃型热控涂层及其制备方法
JP2001164382A (ja) 導電性光選択透過シート
CN112853294B (zh) 一种微波透明热控薄膜及其制备方法
JP2003034552A (ja) 基体表面の保護方法、機能性薄膜の保護方法および保護膜付き導電性反射防止物品
JP2867568B2 (ja) 機能性多層薄膜およびその製造方法
WO2021024945A1 (ja) 透明導電性フィルム
WO2021024944A1 (ja) 透明導電性フィルム
JPH05346575A (ja) 液晶表示素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant