CN112375782B - 一种大豆蛋白激酶基因GmSTK_IRAK的应用 - Google Patents

一种大豆蛋白激酶基因GmSTK_IRAK的应用 Download PDF

Info

Publication number
CN112375782B
CN112375782B CN202011330937.7A CN202011330937A CN112375782B CN 112375782 B CN112375782 B CN 112375782B CN 202011330937 A CN202011330937 A CN 202011330937A CN 112375782 B CN112375782 B CN 112375782B
Authority
CN
China
Prior art keywords
irak
gmstk
gene
phosphorus
soybean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011330937.7A
Other languages
English (en)
Other versions
CN112375782A (zh
Inventor
张丹
杨宇明
张恒友
吕海燕
褚姗姗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202011330937.7A priority Critical patent/CN112375782B/zh
Publication of CN112375782A publication Critical patent/CN112375782A/zh
Priority to US17/223,782 priority patent/US20220162633A1/en
Application granted granted Critical
Publication of CN112375782B publication Critical patent/CN112375782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8265Transgene containment, e.g. gene dispersal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • C12Y207/11001Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种大豆蛋白激酶基因GmSTK_IRAK的应用,属于植物基因工程技术领域。本发明通过PCR克隆大豆GmSTK_IRAK基因,通过转基因和基因编辑技术获得超量表达GmSTK_IRAK和GmSTK_IRAK基因沉默转基因植株,GmSTK_IRAK超量表达的转基因大豆的磷吸收利用效率、生物量及产量均大幅度提高,基因沉默大豆植株磷吸收利用效率、生物量及产量降低。本发明所述大豆蛋白激酶基因GmSTK_IRAK可作为目的基因导入植物,调节转基因植物体内磷代谢平衡能力,对培育磷高效大豆新品种有重要意义。

Description

一种大豆蛋白激酶基因GmSTK_IRAK的应用
技术领域
本发明属于植物基因工程技术领域,尤其涉及一种大豆蛋白激酶基因GmSTK_IRAK的应用。
背景技术
大豆属于需磷量较大的作物,其籽粒磷含量远远高于水稻、小麦和玉米等作物(李喜焕等,2011),缺磷不仅影响大豆的生长发育,还显著影响根瘤的形成,并最终降低产量(王树起等,2010)。土壤缺磷已成为限制我国大豆产量的重要因素(刘海旭等,2017)。为解决我国大豆需磷量高和土壤有效磷低的矛盾,分离和鉴定新的耐低磷关键基因,利用基因工程手段导入低磷敏感品种,开展磷高效分子育种,可以提高大豆耐低磷能力与国际竞争力。
白介素-1受体相关激酶(Interleukin-1ReceptorAssociated Kinases,IRAK)是一类与信号转导相关的丝氨酸-苏氨酸蛋白激酶(Serine/Threonine kinases,STK),在人类与哺乳动物炎症反应的调节及对病原体的保护反应中发挥着重要作用(Oliveira etal.,2011;Singer et al.,2018)。在水稻中,GmSTK_IRAK的同源基因PSTOL1(58%)可作为早期根系生长的促进剂,使植物获得更多的磷和其他养分(Gamuyao et al.,2012)。在拟南芥中,GmSTK_IRAK的同源基因编码PR5K22(58%)and SNC4,被许多研究报道与植物抗逆境胁迫有关(Cheng et al.,2011;Zhang et al.,2014;Baek et al.,2019)。然而,GmSTK_IRAK基因在大豆中的研究迄今尚未见报道。
发明内容
有鉴于此,本发明的目的是针对大豆需磷量高和全球磷资源危机及土壤有效磷含量低的矛盾,提供基因GmSTK_IRAK调控大豆磷吸收利用效率的应用,用于提高农作物对磷的吸收利用,从而实现磷高效育种,提高大豆产量和竞争力。
为了实现上述发明目的,本发明提供了以下技术方案:
本发明提供了一种大豆蛋白激酶基因GmSTK_IRAK在调节大豆磷吸收利用效率中的应用。
优选的,所述大豆蛋白激酶基因GmSTK_IRAK的核苷酸序列如SEQ ID NO.1所示,大豆蛋白激酶基因GmSTK_IRAK编码的蛋白氨基酸序列如SEQ ID NO.2所示。
优选的,将所述GmSTK_IRAK基因在大豆植物中过量表达或沉默。
优选的,所述过量表达包括,将所述蛋白激酶基因GmSTK_IRAK通过重组质粒导入目的植物。
优选的,所述重组质粒为含有大豆蛋白激酶基因GmSTK_IRAK的植物过量表达载体。
优选的,所述植物过量表达载体为DTS6004。
优选的,所述沉默为通过基因编辑技术使GmSTK_IRAK基因在大豆中沉默,所述基因编辑技术为通过Cas9基因编辑技术对GmSTK_IRAK进行编辑,获得GmSTK_IRAK基因沉默转基因后代。
优选的,所述GmSTK_IRAK基因沉默转基因后代的核苷酸序列如SEQ ID NO.3和/或SEQ ID NO.4所示。
本发明还提供了一种含有大豆蛋白激酶基因GmSTK_IRAK的重组载体、细胞在提高大豆磷吸收利用效率中的应用。
本发明还提供了一种大豆蛋白激酶基因GmSTK_IRAK及其重组载体和细胞在大豆育种及栽培中的应用。
本发明有益效果:
本发明发现在大豆中GmSTK_IRAK的表达量与大豆磷吸收利用效率呈显著正相关。将GmSTK_IRAK基因在大豆中过量表达或沉默,可改变转基因大豆的根系构型,调节磷吸收利用效率、生物量和产量。可通过生物技术手段调节大豆蛋白激酶基因GmSTK_IRAK的表达量,从而培育磷高效吸收利用的大豆新品种,具有良好的应用前景。
附图说明
图1为GmSTK_IRAK基因的超表达载体图,其中载体用EPSPS基因作为转基因筛选标记,DTS6004-GmSTK_IRAK载体用35S启动子后接全长GmSTK_IRAK cDNA,用于转基因后可获得超表达GmSTK_IRAK的转基因植株;
图2为GmSTK_IRAK基因的沉默载体图,其中载体用Bar基因作为转基因筛选标记,用AtU6启动子后接Cas9的靶标序列和Cas9基因,用于转基因可以获得沉默GmSTK_IRAK的转基因植株。
图3阳性转基因大豆植株的验证结果。注:A和B分别转基因大豆中GmSTK_IRAK和EPSPS基因的的PCR验证,M为2000bp Marker,C为空白对照,+为质粒阳性对照,1-10代表独立转基因株系1-10号样品。
图4GmSTK_IRAK基因编辑类型。WT为野生型的靶标序列;KO-1,KO-2,KO-3代表三个不同的被编辑的转基因株系的序列。
图5GmSTK_IRAK转基因后代(T4)表型鉴定。NPCK1-1、NPCK1-2和NPCK1-3代表正常磷水平下的野生型对照;NPOE-1、NPOE-2和NPOE-3代表正常磷水平下不同的超表达转基因株系;LPCK1-1、LPCK1-2和LPCK1-3代表低磷水平下的野生型对照;LPOE-1、LPOE-2和LPOE-3代表低磷水平下不同的超表达转基因株系;NPCK2-1、NPCK2-2和NPCK2-3代表正常磷水平下的野生型对照;NPKO-1、NPKO-2和NPKO-3代表正常磷水平下不同的沉默转基因株系;LPCK2-1、LPCK2-2和LPCK2-3代表低磷水平下的野生型对照;LPKO-1、LPKO-2和LPKO-3代表低磷水平下不同的沉默转基因株系。
图6GmSTK_IRAK转基因后代(T4)根系构型。NP和LP分别代表正常磷水平和低磷水平;OE-CK和KO-CK分别代表野生型;OE-1、OE-2和OE-3代表不同的GmSTK_IRAK超表达转基因株系;KO-1、KO-2和KO-3代表不同的GmSTK_IRAK沉默转基因株系。
图7GmSTK_IRAK转基因后代(T4)磷效率(PAE)。NP和LP分别代表正常磷水平和低磷水平;OE-CK和KO-CK分别代表野生型;OE-1、OE-2和OE-3代表不同的GmSTK_IRAK超表达转基因株系;KO-1、KO-2和KO-3代表不同的GmSTK_IRAK沉默转基因株系;root和shoot分别代表根部和地上部。
图8GmSTK_IRAK转基因后代(T4)产量性状。NP和LP分别代表正常磷水平和低磷水平;OE-CK和KO-CK分别代表野生型;OE-1、OE-2和OE-3代表不同的GmSTK_IRAK超表达转基因株系;KO-1、KO-2和KO-3代表不同的GmSTK_IRAK沉默转基因株系
具体实施方式
本发明提供了一种大豆蛋白激酶基因GmSTK_IRAK在调节大豆磷吸收利用效率中的应用。优选的,所述大豆蛋白激酶基因GmSTK_IRAK的核苷酸序列如SEQ ID NO.1所示,大豆蛋白激酶基因GmSTK_IRAK编码的蛋白氨基酸序列如SEQ ID NO.2所示。
在本发明中,将大豆蛋白激酶基因GmSTK_IRAK应用于调节大豆磷吸收利用效率时,包括将携带有本发明GmSTK_IRAK的植物表达载体转化植物细胞或组织步骤,本发明对于转化的方法没有特殊限定,优选的为通过生物转化法转化植物细胞或组织。本发明对于生物转化法没有特殊限定,如可采用直接DNA转化、显微注射、电导、农杆菌介导等常规生物学方法转化植物细胞或组织。本发明对于植物表达载体的种类没有特殊限定,可利用任何一种可以引导外源基因在植物中表达的载体,如Ti质粒、Ri质粒、植物病毒载体等。在本发明具体实施例中,将所述GmSTK_IRAK基因在大豆植物中过量表达时,优选的为将所述蛋白激酶基因GmSTK_IRAK通过重组质粒导入目的植物,所述重组质粒优选为含有大豆蛋白激酶基因GmSTK_IRAK的植物过量表达载体,所述植物过量表达载体优选的为DTS6004。
使用本发明的GmSTK_IRAK基因构建植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型的启动子或诱导型启动子。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如可加入植物中表达的选择性标记基因(GUS基因、萤光素酶基因等)或具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)。从转基因植物的安全性考虑,也可不加入任何选择性标记基因,直接以表型筛选转化植株。
在本发明具体实施例中,将所述GmSTK_IRAK基因在大豆植物中沉默时,对于沉默的具体方式没有特殊限定,优选的为通过基因编辑技术使GmSTK_IRAK基因在大豆中沉默,更优选的为通过Cas9基因编辑技术对GmSTK_IRAK进行编辑,获得GmSTK_IRAK基因沉默转基因后代,所述GmSTK_IRAK基因沉默转基因后代的核苷酸序列优选的如SEQ ID NO.3和/或SEQ ID NO.4所示。
本发明还提供了一种含有大豆蛋白激酶基因GmSTK_IRAK的重组载体、细胞在提高大豆植物磷吸收利用效率中的应用。本发明对于重组载体、细胞的类型没有特殊限定,采用本领域常规重组载体、细胞均可,本发明所述含有大豆蛋白激酶基因GmSTK_IRAK的重组载体可转化宿主,被转化的宿主既可以是单子叶植物,也可以是双子叶植物。
本发明还提供了一种大豆蛋白激酶基因GmSTK_IRAK及其重组载体和细胞在大豆育种及栽培中的应用。
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。在以下的实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。所用到的引物,均在首次出现时标明,其后所用相同引物,均以首次标明的内容相同。下述实施例中所用方法如无特别说明,均为常规方法。
实施例1
大豆GmSTK_IRAK基因的克隆和植物表达载体的构建
(1)设计引物,提取RNA,反转录cDNA:
用植物总RNA提取试剂盒(DP432,天根)提取大豆威廉姆斯82叶片总RNA,经1%琼脂糖凝胶电泳检测RNA的完整性。
cDNA的合成参照TaKaRa Primer Script TMRT reagent kit with gDNA Eraser试剂盒说明操作。
(2)PCR扩增:
步骤一:按照以下组份顺序配制PCR反应液(50μl体系):10×PCR Buffer(25μl),ddH2O(9μl),dNTP(10μl),GmSTK_IRAK-F(1.5μl),GmSTK_IRAK-R(1.5μl),cDNA(2μl),KODFX酶(1μl);
设计引物为:
GmSTK_IRAK-F:
5’-CCTACCACATTAATTACTCACTCTTCACTCA-3’
GmSTK_IRAK-R:
5’-TCAACTTTAACGCTCATTCCTGCATTCAT-3’
步骤二:反应在BIO-RAD PTC-200型PCR仪上进行,设定反应程序为:94℃变性2min;再98℃10sec,55℃30sec,68℃30sec,共33个循环;然后68℃延伸7min;4℃保存;
步骤三:PCR产物回收后经连接PMD19-T载体(TaKaRa)、转化大肠杆菌DH5α、蓝白斑筛选、摇菌、测序,序列如SEQ ID NO.1所示。
(3)植物超表达载体的构建
设计同源重组接头引物,以上述(2)获得的含GmSTK_IRAK基因的T载体为模板,扩增出带重组接头的GmSTK_IRAK全长片段,通过无缝克隆技术将GmSTK_IRAK基因正向导入到大豆表达载体pCAMBIA3300中,构建成重组植物表达载体DTS6004-GmSTK_IRAK,如图1所示,其中载体用EPSPS基因作为转基因筛选标记,DTS6004-GmSTK_IRAK载体用35S启动子后接全长GmSTK_IRAK cDNA,用于转基因后可获得超表达GmSTK_IRAK的转基因植株。
DTS6004载体在T-DNA区域带有一个选择标记基因EPSPS,该基因编码5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS),该酶可以阻断草甘膦对生物合成途径的干扰,从而不被草甘膦杀灭。
无缝克隆所用的引物序列为:
上游引物:
5’-TTTGGAGAGAACACGTATGGCTGAGCTTCACTACCAAC-3’
下游引物:
5’-TCGGGGAAATTCGGGGTTAAGAAGCCTGCACCCCACTG-3’。
(4)植物沉默表达载体的构建
参考大豆基因组数据库中(https://www.soybase.org)大豆参考基因组中GmAAP基因信息,利用在线网站(http://crispr.hzau.edu.cn/CRISPR2/)设计该基因的目标靶点。靶点设计原则如下:1)敲除位点处于编码(CDS)区且尽量在蛋白前端或重要功能domain区;2)尽量涵盖更高比例的转录本;3)没有脱靶或脱靶位于基因间区;4)优选编辑效率较高的靶点;5)序列有较为平衡的GC含量且不易形成二级结构。靶标序列如下:
gRNA:GCAGTACCTGTGAAGCACAA,按照CRISPR/Cas9快速构建试剂盒VK005-04(购于唯尚立德生物公司)中的说明,将gRNA插入到基因编辑载体中构建出含有GmSTK_IRAK靶标序列的CRISPR/Cas9载体,如图2所示,其中载体用Bar基因作为转基因筛选标记,用AtU6启动子后接Cas9的靶标序列和Cas9基因,用于转基因可以获得沉默GmSTK_IRAK的转基因植株。
实施例2
GmSTK_IRAK基因超表达和沉默转基因大豆的培育
(1)种子的消毒与萌发
大豆种子的表面消毒采用氯气干法灭菌。挑选成熟饱满、无病斑、无硬实的干净种子,单层排列在90×15mm的培养皿中。将培养皿开盖放入干燥器中,干燥器内放置一个500ml的玻璃烧杯,用100ml量筒量取75ml的商用漂白水加入烧杯中,10ml量筒量取3ml 12MHCl,沿着杯壁缓缓加入。盖上干燥器的盖子,保证器皿密封,静置过夜,10~16h,灭菌完成后,将培养皿加盖转移到无菌超净台上,打开培养皿的盖子,强风吹25~40min除去残留氯气。将消毒后的种子种脐朝下播种在萌发培养基(GM)上,将培养皿叠放,用保鲜膜包好,放在生物培养箱中24℃,黑暗培养16~24h。
(2)农杆菌的准备
抽取重组载体DTS6004-GmSTK_IRAK质粒DNA,通过电转化的方法,将重组载体转入农杆菌菌株LBA4404中,贮藏于50%甘油中。转基因前2天,吸取50μl含载体的农杆菌甘油菌至5ml添加了抗生素(1/1000)的YEP液体培养基中,28℃,250rpm,振荡培养24~36h。吸取0.2~1ml饱和菌液至添加了抗生素(1/2000)的250ml YEP液体培养基中扩大培养,至OD650nm=0.8~1.0。将菌液分装到若干个50ml无菌离心管中,离心(4000rpm,10min,25℃),收集菌落,用25~50ml液体共培养基(LCCM)轻轻吹打,重悬沉淀后备用。YEP液体培养基:10g/L蛋白胨,5g/L酵母浸膏,5g/L氯化钠,pH 7.0;
LCCM培养液含1/10的B5大量、微量和维生素(Gamborg et al.,1968)、3%蔗糖、有机缓冲剂2(N-吗啉)乙醇磺酸(MES)3.9g/L,pH5.4,120℃灭菌20min,在无菌环境下加入赤霉素(GA3)0.25mg/L、6-苄基腺嘌呤(BAP)1.67mg/L、半胱氨酸(Cys)400mg/L、二硫苏糖醇(DTT)154.2mg/L、乙酰丁香酮(As)200μmol/L。
(3)外植体的准备与共培养
将吸胀的大豆种子置于无菌吸水纸上,沿着种脐用手术刀纵向切割种子,将子叶和下胚轴均匀分开两瓣,去除种皮后备用。将农杆菌重悬液倒入洁净的无菌培养皿中,放入50个外植体,室温侵染20~30min,期间经常搅动菌液,使外植体充分接触新鲜菌液。侵染结束后,将外植体取出,用无菌吸水纸吸干后置于放有无菌滤纸的共培养基(CM)上,每皿7~10个外植体,近轴面朝上,水平放置。将培养皿叠放,用保鲜膜封好后在Percival培养箱中,23℃,黑暗共培养3~5天。
CM培养基配方与LCCM相同,另加5g/L的琼脂(Difco Agar,Noble公司)。
(4)筛选与再生
共培养3~5天后,切去伸长的下胚轴留取约0.5cm,30~45°斜角插在加有筛选剂的芽诱导(SI)培养基上。用3M透气胶带封口并转移到培养室(24℃,18/6光照强度140μmoles/m2/sec),培养4周,每两周更换一次新鲜的SI培养基。丛生芽诱导筛选4周后,切除残余子叶,并转移到芽伸长(SE)培养基上,培养条件同丛生芽诱导过程,培养2~8周,每2周更换一次新鲜的SE培养基。将伸长3-4厘米的幼芽切下,在吲哚丁酸(IBA)中蘸30s~1min后插入生根培养基(RM)中。1~2周后待根长约2-3厘米时,将生根苗从培养基中取出,洗净根部残留的培养基,转入土中移至温室培养。培养条件为24℃,18/6光照强度140μmoles/m2/sec。
SI培养基含B5大量、微量和维生素、蔗糖30g/L、MES 0.59g/L、和琼脂8g/L(Sigma,USA),120℃灭菌20min后,在无菌条件下加入BAP 1.67mg/L、替卡西林(Tic)250mg/L、头孢霉素(Cef)100mg/L;
SE培养基含MS大量、微量和维生素(Murashige and Skoog,1962)、蔗糖30g/L、MES0.59g/L、琼脂(Sigma,USA)8g/L,pH5.8,120℃灭菌20min后,在无菌条件下加入GA 30.5mg/L、L-天冬酰胺(L-Asp)50mg/L、谷氨酰胺(Glu)50mg/L、吲哚乙酸(IAA)0.1mg/L、玉米素(ZR)1mg/L、Tic 250mg/L和Cef100mg/L;
RM培养基含MS大量、微量和维生素、蔗糖20g/L、MES 0.59g/L、琼脂(Sigma,USA)8g/L、IBA 0.1mg/L、L-Asp 50mg/L、Glu 50mg/L、Tic 250mg/L、Cef100mg/L。
实施例3
转基因材料验证
由于超表达转基因所用载体中有编码5-烯醇丙酮莽草酸-3-磷酸合成酶(EPSPS)基因,该酶可以阻断草甘膦对生物合成途径的干扰,从而不被草甘膦杀灭。鉴定用除草剂草甘膦,原液稀释1000倍后(浓度为200mg/L),对转基因幼苗进行喷洒,阴性植株枯萎死亡,阳性植株表现出明显抗性,保持良好生长。
取除草剂检测存活的阳性植株的叶片提取DNA(采用CTAB植物基因组DNA快速提取试剂盒:钟鼎公司,货号DN14-100T),利用PCR检测标记EPSPS基因进一步筛选阳性材料。EPSPS基因引物序列为:
上游引物:5’-AGGACGTCATCAATACGGGC-3’
下游引物:5’-ATCCACGCCATTGAGCTTGA-3’
最终获得10个T0代独立转基因株系。将收获的转基因材料T1代种子盆栽于灭过菌的混合营养土中(营养土:蛭石=2:1),放置于温室培养,培养条件为24℃,18/6光照强度140μmoles/m2/sec。等到V2期时(长出两个三出复叶时),取半个叶片液氮速冻后提取DNA,利用PCR扩增EPSPS基因片段进一步筛选阳性材料。根据图3B显示,转基因材料能够检测到EPSPS基因。
沉默转基因所用载体中有编码草丁膦乙酰CoA转移酶(PAT),可催化草丁膦的自由氨基乙酰化,从而使除草剂草丁膦失活。鉴定用除草剂Basta,原液稀释1000倍后(浓度为200mg/L),对转基因幼苗进行喷洒,阴性植株枯萎死亡,阳性植株表现出明显抗性,保持良好生长。取除草剂检测存活的阳性植株的叶片提取DNA(采用CTAB植物基因组DNA快速提取试剂盒:钟鼎公司,货号DN14-100T),利用PCR检测标记bar基因进一步筛选阳性材料。bar基因引物序列为:
上游引物5’-ATGAGCCCAGAACGACGC-3’
下游引物5’-ACGTCATGCCAGTTCCCGT-3’
编辑类型的检测以上述沉默植株的DNA为模板进行PCR扩增,对PCR产物测序,所用引物对为:
上游引物5’-GCAGCAAATCCAAATCTACGAC-3’
下游引物5’-CGGTCTTCTCCTTTCGTCATATA-3’,靶序列附近的序列变化如图4所示,其中KO-1所代表的被编辑的转基因株系所对应的GmSTK_IRAK基因沉默转基因后代的核苷酸序列如SEQ ID NO.3所示,其中KO-2和KO-3所代表的被编辑的转基因株系所对应的GmSTK_IRAK基因沉默转基因后代的核苷酸序列如SEQ ID NO.4所示。
实施例4
大豆耐低磷相关表型鉴定测定(根系构型,生物量,磷含量,磷效率,产量)
根构型的鉴定
步骤一:采用水培的方法,将T3代转基因种子和野生型种子种于蛭石中,萌发五天后分别移入1/2Hoagland营养液中,低磷处理组磷浓度为0.005μmol/L,对照组磷浓度为5μmol/L,低磷处理组缺少的钾用等量的氯化钾补充,其他营养元素不变。
步骤二:水培处理中每三天换一次营养液,处理10天后,如图5所示:过表达转基因株系与其野生型相比在低磷胁迫条件下表现出更好的长势;沉默转基因株系与其野生型相比在低磷胁迫条件下生长情况明显变差。
步骤三:处理10天后,取样用根系扫描仪进行根系构型分析。分析结果如图6所示:与野生型相比不管是在正常磷还是在低磷条件下,过表达转基因株系的总根长、根表面积和根尖数都显著增加;相反,沉默转基因株系的总根长、根表面积和根尖数都显著减少。
磷含量和磷吸收效率的测定
将根系构型分析后的样品(包括Root和Shoot)装入牛皮纸袋中放入烘箱,105℃杀青1h,然后60℃烘干后测定生物量用作磷吸收效率的计算。
步骤一:称取烘干、磨细的植物样品(过0.25-0.5mm筛)约0.1g,置于消煮管中(勿将样品粘附在瓶颈上)滴入少量水湿润样品,加浓硫酸5mL,摇匀(最好放置过夜)
步骤二:在电炉上先缓缓加热,待浓硫酸分解冒大量白烟时再升高温度。
步骤三:消煮至溶液呈均匀的棕黑色时,取下消煮管,稍冷后提起弯颈漏斗,滴加300g/L H2O210滴,并不断摇动消煮管。
步骤四:再加热(微沸)约5min,取下,稍冷后重复滴加30%H2O25~10滴,再消煮。
步骤五:消煮至溶液呈无色或清亮后,再加热5~10min(以赶尽剩余的H2O2),取下消煮管冷却,用少量水冲洗漏斗,洗液流入消煮管中。
步骤六:将消煮液无损地移入100ml容量瓶中,用水定容并摇匀。
步骤七:取5ml消解液用AA3连续流动分析仪进行磷浓度的测定。
步骤八:根据公式:磷吸收效率=磷浓度/样品质量×生物量,计算磷吸收效率。结果如图7所示:与野生型相比不管是在正常磷还是在低磷条件下过表达转基因株系根部的磷吸收效率都显著提升,地上部的磷吸收效率在低磷处理时显著提升;沉默转基因株系根部磷吸收效率显著下降,地上部磷吸收效率在正常磷条件下也显著下降。
产量的测定
待成熟后单株收获,晒干后脱粒,用万分之一天平称量籽粒重量作为单株产量。结果如图8所示:与野生型对照相比,在正常供磷条件下,过表达转基因株系的单株产量显著提高,而沉默转基因株系单株产量显著降低;在低磷条件下,与野生型对照相比,过表达转基因株系的单株产量显著提高,而沉默转基因株系单株产量显著降低。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 河南农业大学
<120> 一种大豆蛋白激酶基因GmSTK_IRAK的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1800
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgctgaatt ttcttaattt ttctcttcta ttgacgctgt tgtttcttct gtggaagcct 60
gcgataagca aaaacgggtg cacggataag tgtggacgcg ttcgcattca atttccattc 120
tacctcagaa ataatagcaa attgaatcac accaccaccg cctattcttc tgggttcgat 180
ctgctatgta cggatgcaga tgagactgtg ctggagctgc cttctgttcc aataaaactg 240
tttgtcaaaa gcatagatta caagttgcag caaatccaaa tctacgaccc tcaaaattgc 300
cttcccaggg aactcataaa actcggcaat tcctctgttg ctccatttaa attccaatca 360
tttggtggga ataatgtttc cttcttccgc tgcaactcaa tgtcatcatc atgcccaatt 420
ttgcaacttg gatatgatga aggtgacttt attgatcctg aaataatatc ttgcaccaag 480
gtgagtgatg ttttctccgt ccagtggcaa gtgaataatt acttggggaa cgcggtggtt 540
atggaatggt ccaagcctga ctgcagtacc tgtgaagcac aagggcataa atgtaaatac 600
aagaatggta ctcaaggtga aactgaatgt ttcatttgcc caacaaacag gatttcaaca 660
tcaagtgttg ttcttattgc tgcaggggga atagttggaa tgattctttt gctggtggtg 720
gtcaaggcgt tgttgcattt gtatgaccat tatatgacga aaggagaaga ccgggctcga 780
atggagaaat tcttggagga ttatagggca atgaagccta ctagattcac ttatgctgat 840
attaagagaa tcacaaatgg gtttagggaa agtttagggg aaggagctca tggagcagtc 900
ttcaaaggaa tgctctcccg agaaattctc gttgccgtga agatactcaa tgacacagtg 960
ggagatggaa aggatttcat aaacgaagtg ggaaccatgg gcaaaattca tcatgttaac 1020
gttgttcgct tgcttggatt ctgtgcagat ggattccacc gcgctctcgt ctatgatttc 1080
ttccctaacg gatcactgca gagattcttg gctccaccgg acaacaagga tgttttcctt 1140
ggttgggaga agttgcaaca aattgctctt ggtgttgcca aaggggttga gtatctccac 1200
cttggctgtg atcaaagaat aattcacttt gacatcaatc ctcacaatat tttaatagat 1260
gaccattttg ttccaaaaat cactgatttt ggacttgcca agttgtgtcc caaaaatcaa 1320
agtacagttt ctataactgc tgctagggga accttaggct acattgctcc tgaagttttc 1380
tcaagaaact ttggtaatgt ttcttataag tctgacattt atagttatgg aatgttgctc 1440
ttagagatgg tgggaggaag aaagaataca aatatgtcag cagaggaaag tttccaagtt 1500
ttgtaccctg aatggatcca taatttgctc aaaagcagag acgtgcaagt tactattgag 1560
gatgagggag atgttagaat tgccaagaaa cttgccattg taggactttg gtgcattgag 1620
tggaacccaa tagaccgtcc atccatgaaa actgtgatac aaatgcttga aggagatgga 1680
gacaagttaa ttgcaccacc tactcctttt gacaagacca gctcttctag aacaagtgta 1740
gttgctccaa caagacgcca gaattttgag ttggaaatta ttaatgaaat agaagaataa 1800
<210> 2
<211> 599
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Leu Asn Phe Leu Asn Phe Ser Leu Leu Leu Thr Leu Leu Phe Leu
1 5 10 15
Leu Trp Lys Pro Ala Ile Ser Lys Asn Gly Cys Thr Asp Lys Cys Gly
20 25 30
Arg Val Arg Ile Gln Phe Pro Phe Tyr Leu Arg Asn Asn Ser Lys Leu
35 40 45
Asn His Thr Thr Thr Ala Tyr Ser Ser Gly Phe Asp Leu Leu Cys Thr
50 55 60
Asp Ala Asp Glu Thr Val Leu Glu Leu Pro Ser Val Pro Ile Lys Leu
65 70 75 80
Phe Val Lys Ser Ile Asp Tyr Lys Leu Gln Gln Ile Gln Ile Tyr Asp
85 90 95
Pro Gln Asn Cys Leu Pro Arg Glu Leu Ile Lys Leu Gly Asn Ser Ser
100 105 110
Val Ala Pro Phe Lys Phe Gln Ser Phe Gly Gly Asn Asn Val Ser Phe
115 120 125
Phe Arg Cys Asn Ser Met Ser Ser Ser Cys Pro Ile Leu Gln Leu Gly
130 135 140
Tyr Asp Glu Gly Asp Phe Ile Asp Pro Glu Ile Ile Ser Cys Thr Lys
145 150 155 160
Val Ser Asp Val Phe Ser Val Gln Trp Gln Val Asn Asn Tyr Leu Gly
165 170 175
Asn Ala Val Val Met Glu Trp Ser Lys Pro Asp Cys Ser Thr Cys Glu
180 185 190
Ala Gln Gly His Lys Cys Lys Tyr Lys Asn Gly Thr Gln Gly Glu Thr
195 200 205
Glu Cys Phe Ile Cys Pro Thr Asn Arg Ile Ser Thr Ser Ser Val Val
210 215 220
Leu Ile Ala Ala Gly Gly Ile Val Gly Met Ile Leu Leu Leu Val Val
225 230 235 240
Val Lys Ala Leu Leu His Leu Tyr Asp His Tyr Met Thr Lys Gly Glu
245 250 255
Asp Arg Ala Arg Met Glu Lys Phe Leu Glu Asp Tyr Arg Ala Met Lys
260 265 270
Pro Thr Arg Phe Thr Tyr Ala Asp Ile Lys Arg Ile Thr Asn Gly Phe
275 280 285
Arg Glu Ser Leu Gly Glu Gly Ala His Gly Ala Val Phe Lys Gly Met
290 295 300
Leu Ser Arg Glu Ile Leu Val Ala Val Lys Ile Leu Asn Asp Thr Val
305 310 315 320
Gly Asp Gly Lys Asp Phe Ile Asn Glu Val Gly Thr Met Gly Lys Ile
325 330 335
His His Val Asn Val Val Arg Leu Leu Gly Phe Cys Ala Asp Gly Phe
340 345 350
His Arg Ala Leu Val Tyr Asp Phe Phe Pro Asn Gly Ser Leu Gln Arg
355 360 365
Phe Leu Ala Pro Pro Asp Asn Lys Asp Val Phe Leu Gly Trp Glu Lys
370 375 380
Leu Gln Gln Ile Ala Leu Gly Val Ala Lys Gly Val Glu Tyr Leu His
385 390 395 400
Leu Gly Cys Asp Gln Arg Ile Ile His Phe Asp Ile Asn Pro His Asn
405 410 415
Ile Leu Ile Asp Asp His Phe Val Pro Lys Ile Thr Asp Phe Gly Leu
420 425 430
Ala Lys Leu Cys Pro Lys Asn Gln Ser Thr Val Ser Ile Thr Ala Ala
435 440 445
Arg Gly Thr Leu Gly Tyr Ile Ala Pro Glu Val Phe Ser Arg Asn Phe
450 455 460
Gly Asn Val Ser Tyr Lys Ser Asp Ile Tyr Ser Tyr Gly Met Leu Leu
465 470 475 480
Leu Glu Met Val Gly Gly Arg Lys Asn Thr Asn Met Ser Ala Glu Glu
485 490 495
Ser Phe Gln Val Leu Tyr Pro Glu Trp Ile His Asn Leu Leu Lys Ser
500 505 510
Arg Asp Val Gln Val Thr Ile Glu Asp Glu Gly Asp Val Arg Ile Ala
515 520 525
Lys Lys Leu Ala Ile Val Gly Leu Trp Cys Ile Glu Trp Asn Pro Ile
530 535 540
Asp Arg Pro Ser Met Lys Thr Val Ile Gln Met Leu Glu Gly Asp Gly
545 550 555 560
Asp Lys Leu Ile Ala Pro Pro Thr Pro Phe Asp Lys Thr Ser Ser Ser
565 570 575
Arg Thr Ser Val Val Ala Pro Thr Arg Arg Gln Asn Phe Glu Leu Glu
580 585 590
Ile Ile Asn Glu Ile Glu Glu
595
<210> 3
<211> 1801
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgctgaatt ttcttaattt ttctcttcta ttgacgctgt tgtttcttct gtggaagcct 60
gcgataagca aaaacgggtg cacggataag tgtggacgcg ttcgcattca atttccattc 120
tacctcagaa ataatagcaa attgaatcac accaccaccg cctattcttc tgggttcgat 180
ctgctatgta cggatgcaga tgagactgtg ctggagctgc cttctgttcc aataaaactg 240
tttgtcaaaa gcatagatta caagttgcag caaatccaaa tctacgaccc tcaaaattgc 300
cttcccaggg aactcataaa actcggcaat tcctctgttg ctccatttaa attccaatca 360
tttggtggga ataatgtttc cttcttccgc tgcaactcaa tgtcatcatc atgcccaatt 420
ttgcaacttg gatatgatga aggtgacttt attgatcctg aaataatatc ttgcaccaag 480
gtgagtgatg ttttctccgt ccagtggcaa gtgaataatt acttggggaa cgcggtggtt 540
atggaatggt ccaagcctga ctgcagtacc tgtgaagcaa caagggcata aatgtaaata 600
caagaatggt actcaaggtg aaactgaatg tttcatttgc ccaacaaaca ggatttcaac 660
atcaagtgtt gttcttattg ctgcaggggg aatagttgga atgattcttt tgctggtggt 720
ggtcaaggcg ttgttgcatt tgtatgacca ttatatgacg aaaggagaag accgggctcg 780
aatggagaaa ttcttggagg attatagggc aatgaagcct actagattca cttatgctga 840
tattaagaga atcacaaatg ggtttaggga aagtttaggg gaaggagctc atggagcagt 900
cttcaaagga atgctctccc gagaaattct cgttgccgtg aagatactca atgacacagt 960
gggagatgga aaggatttca taaacgaagt gggaaccatg ggcaaaattc atcatgttaa 1020
cgttgttcgc ttgcttggat tctgtgcaga tggattccac cgcgctctcg tctatgattt 1080
cttccctaac ggatcactgc agagattctt ggctccaccg gacaacaagg atgttttcct 1140
tggttgggag aagttgcaac aaattgctct tggtgttgcc aaaggggttg agtatctcca 1200
ccttggctgt gatcaaagaa taattcactt tgacatcaat cctcacaata ttttaataga 1260
tgaccatttt gttccaaaaa tcactgattt tggacttgcc aagttgtgtc ccaaaaatca 1320
aagtacagtt tctataactg ctgctagggg aaccttaggc tacattgctc ctgaagtttt 1380
ctcaagaaac tttggtaatg tttcttataa gtctgacatt tatagttatg gaatgttgct 1440
cttagagatg gtgggaggaa gaaagaatac aaatatgtca gcagaggaaa gtttccaagt 1500
tttgtaccct gaatggatcc ataatttgct caaaagcaga gacgtgcaag ttactattga 1560
ggatgaggga gatgttagaa ttgccaagaa acttgccatt gtaggacttt ggtgcattga 1620
gtggaaccca atagaccgtc catccatgaa aactgtgata caaatgcttg aaggagatgg 1680
agacaagtta attgcaccac ctactccttt tgacaagacc agctcttcta gaacaagtgt 1740
agttgctcca acaagacgcc agaattttga gttggaaatt attaatgaaa tagaagaata 1800
a 1801
<210> 4
<211> 1798
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgctgaatt ttcttaattt ttctcttcta ttgacgctgt tgtttcttct gtggaagcct 60
gcgataagca aaaacgggtg cacggataag tgtggacgcg ttcgcattca atttccattc 120
tacctcagaa ataatagcaa attgaatcac accaccaccg cctattcttc tgggttcgat 180
ctgctatgta cggatgcaga tgagactgtg ctggagctgc cttctgttcc aataaaactg 240
tttgtcaaaa gcatagatta caagttgcag caaatccaaa tctacgaccc tcaaaattgc 300
cttcccaggg aactcataaa actcggcaat tcctctgttg ctccatttaa attccaatca 360
tttggtggga ataatgtttc cttcttccgc tgcaactcaa tgtcatcatc atgcccaatt 420
ttgcaacttg gatatgatga aggtgacttt attgatcctg aaataatatc ttgcaccaag 480
gtgagtgatg ttttctccgt ccagtggcaa gtgaataatt acttggggaa cgcggtggtt 540
atggaatggt ccaagcctga ctgcagtacc tgtgaagcaa gggcataaat gtaaatacaa 600
gaatggtact caaggtgaaa ctgaatgttt catttgccca acaaacagga tttcaacatc 660
aagtgttgtt cttattgctg cagggggaat agttggaatg attcttttgc tggtggtggt 720
caaggcgttg ttgcatttgt atgaccatta tatgacgaaa ggagaagacc gggctcgaat 780
ggagaaattc ttggaggatt atagggcaat gaagcctact agattcactt atgctgatat 840
taagagaatc acaaatgggt ttagggaaag tttaggggaa ggagctcatg gagcagtctt 900
caaaggaatg ctctcccgag aaattctcgt tgccgtgaag atactcaatg acacagtggg 960
agatggaaag gatttcataa acgaagtggg aaccatgggc aaaattcatc atgttaacgt 1020
tgttcgcttg cttggattct gtgcagatgg attccaccgc gctctcgtct atgatttctt 1080
ccctaacgga tcactgcaga gattcttggc tccaccggac aacaaggatg ttttccttgg 1140
ttgggagaag ttgcaacaaa ttgctcttgg tgttgccaaa ggggttgagt atctccacct 1200
tggctgtgat caaagaataa ttcactttga catcaatcct cacaatattt taatagatga 1260
ccattttgtt ccaaaaatca ctgattttgg acttgccaag ttgtgtccca aaaatcaaag 1320
tacagtttct ataactgctg ctaggggaac cttaggctac attgctcctg aagttttctc 1380
aagaaacttt ggtaatgttt cttataagtc tgacatttat agttatggaa tgttgctctt 1440
agagatggtg ggaggaagaa agaatacaaa tatgtcagca gaggaaagtt tccaagtttt 1500
gtaccctgaa tggatccata atttgctcaa aagcagagac gtgcaagtta ctattgagga 1560
tgagggagat gttagaattg ccaagaaact tgccattgta ggactttggt gcattgagtg 1620
gaacccaata gaccgtccat ccatgaaaac tgtgatacaa atgcttgaag gagatggaga 1680
caagttaatt gcaccaccta ctccttttga caagaccagc tcttctagaa caagtgtagt 1740
tgctccaaca agacgccaga attttgagtt ggaaattatt aatgaaatag aagaataa 1798

Claims (5)

1.大豆蛋白激酶基因GmSTK_IRAK在提高大豆磷吸收利用效率中的应用,其特征在于,所述大豆蛋白激酶基因GmSTK_IRAK的核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的应用,其特征在于,将所述GmSTK_IRAK基因在大豆植物中过量表达。
3.根据权利要求2所述的应用,其特征在于,所述过量表达包括,将所述蛋白激酶基因GmSTK_IRAK通过重组质粒导入目的植物,所述重组质粒为含有大豆蛋白激酶基因GmSTK_IRAK的植物过量表达载体。
4.含有大豆蛋白激酶基因GmSTK_IRAK的重组载体、细胞在提高大豆磷吸收利用效率中的应用,其特征在于,所述大豆蛋白激酶基因GmSTK_IRAK的核苷酸序列如SEQ ID NO.1所示。
5.大豆蛋白激酶基因GmSTK_IRAK及其重组载体和细胞在大豆育种及栽培中的应用,其特征在于,所述大豆蛋白激酶基因GmSTK_IRAK的核苷酸序列如SEQ ID NO.1所示。
CN202011330937.7A 2020-11-24 2020-11-24 一种大豆蛋白激酶基因GmSTK_IRAK的应用 Active CN112375782B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011330937.7A CN112375782B (zh) 2020-11-24 2020-11-24 一种大豆蛋白激酶基因GmSTK_IRAK的应用
US17/223,782 US20220162633A1 (en) 2020-11-24 2021-04-06 Use of soybean protein kinase gene gmstk_irak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011330937.7A CN112375782B (zh) 2020-11-24 2020-11-24 一种大豆蛋白激酶基因GmSTK_IRAK的应用

Publications (2)

Publication Number Publication Date
CN112375782A CN112375782A (zh) 2021-02-19
CN112375782B true CN112375782B (zh) 2021-09-21

Family

ID=74588144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011330937.7A Active CN112375782B (zh) 2020-11-24 2020-11-24 一种大豆蛋白激酶基因GmSTK_IRAK的应用

Country Status (2)

Country Link
US (1) US20220162633A1 (zh)
CN (1) CN112375782B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789308B (zh) * 2021-09-16 2023-11-03 浙江大学 一种表达载体及其在提高大豆生物量中的应用
CN113755510B (zh) * 2021-10-11 2023-05-12 南京农业大学 一种编码大豆FtsH金属蛋白酶基因GmFtsH25及其应用
CN114774462B (zh) * 2022-04-22 2023-06-09 南京农业大学 一种大豆双组分系统响应调节器基因GmRR1的应用
CN116286952B (zh) * 2023-03-08 2024-04-30 南京农业大学 大豆GmSAMMT基因在调控植物蛋白含量和/或产量中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921758A (zh) * 2010-08-20 2010-12-22 南京农业大学 大豆耐低磷基因GmAPt的分子标记方法
US9029636B2 (en) * 2008-02-05 2015-05-12 Monsanto Technology Llc Isolated novel nucleic acid and protein molecules from soy and methods of using those molecules to generate transgenic plants with enhanced agronomic traits
CN105821060A (zh) * 2016-05-03 2016-08-03 河南农业大学 大豆耐低磷相关基因GmACP2、编码蛋白及其应用
CN111808864A (zh) * 2020-04-30 2020-10-23 中北大学 GmMYB48基因在提高植物磷饥饿胁迫耐受的新应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029636B2 (en) * 2008-02-05 2015-05-12 Monsanto Technology Llc Isolated novel nucleic acid and protein molecules from soy and methods of using those molecules to generate transgenic plants with enhanced agronomic traits
CN101921758A (zh) * 2010-08-20 2010-12-22 南京农业大学 大豆耐低磷基因GmAPt的分子标记方法
CN105821060A (zh) * 2016-05-03 2016-08-03 河南农业大学 大豆耐低磷相关基因GmACP2、编码蛋白及其应用
CN111808864A (zh) * 2020-04-30 2020-10-23 中北大学 GmMYB48基因在提高植物磷饥饿胁迫耐受的新应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Predicted: Glycine max rust resistance kinase Lr10 (LOC100819302), mRNA;XM_003555008.3;《GenBank》;20180831;序列信息 *
大豆低磷适应策略研究进展;杨明号 等人;《山地农业生物学报》;20191231;第38卷(第1期);第68-73页 *

Also Published As

Publication number Publication date
US20220162633A1 (en) 2022-05-26
CN112375782A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN112375782B (zh) 一种大豆蛋白激酶基因GmSTK_IRAK的应用
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN108795971B (zh) miR159在改变植物根系形态中的应用
CA3211382A1 (en) Method for site-directed mutagenesis of bnhbbd gene of brassica napus l., and use
CN106701784B (zh) 大豆油体蛋白基因GmOLEO1及其编码蛋白与应用
CN110358772B (zh) 提高水稻非生物胁迫抗性的OsEBP89基因及制备方法与应用
Mangena et al. Challenges of in vitro and in vivo Agrobacterium-mediated genetic transformation in soybean
CN113604480A (zh) 一种玉米转录因子ZmHsf28及应用
CN113462689A (zh) 大豆基因启动子pEIF1和pEIF1-I在大豆、拟南芥及烟草中的应用
CN111116721A (zh) 一种与植物抗逆性相关的转录因子PwNAC30及其编码基因与应用
CN113755510B (zh) 一种编码大豆FtsH金属蛋白酶基因GmFtsH25及其应用
CN114134159B (zh) 水稻基因OsWOX3B在调控根系形态中的应用
CN114164229B (zh) 利用FvePILS5基因的CRISPR/Cas9基因敲除载体获得再生效率高的草莓新种质的方法及应用
Okeyo-Ikawa et al. In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.
CN115873865A (zh) 一种大豆GmFAH1基因在提高大豆抗旱能力中的应用
LU501061B1 (en) USE OF SOYBEAN PROTEIN KINASE GENE GmSTK_IRAK
CN114774462B (zh) 一种大豆双组分系统响应调节器基因GmRR1的应用
NL2030468B1 (en) Use of soybean protein kinase gene gmstk_irak
CN114085854A (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
CN112063597B (zh) 玉米多铜氧化酶编码基因ZmDEK559-2及其应用
WO2013010368A1 (zh) 水稻通气组织形成关键基因OsLSD2的应用
LU500576B1 (en) Soybean Oleosin Gene GmOLEO1 and Its Coding Protein and Application
CN113403321B (zh) OsAKR4C10在创建非转基因草甘膦抗性水稻种质资源中的应用
CN112029742B (zh) 植物als突变型蛋白及其应用
CN115850412B (zh) 大豆GmSUI1基因及其编码蛋白在大豆疫霉根腐病侵染中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant