CN112375732A - 一种体外扩增精原干细胞的3d悬浮培养方法 - Google Patents

一种体外扩增精原干细胞的3d悬浮培养方法 Download PDF

Info

Publication number
CN112375732A
CN112375732A CN202011315827.3A CN202011315827A CN112375732A CN 112375732 A CN112375732 A CN 112375732A CN 202011315827 A CN202011315827 A CN 202011315827A CN 112375732 A CN112375732 A CN 112375732A
Authority
CN
China
Prior art keywords
culture
polylactic acid
stem cells
spermatogonial stem
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011315827.3A
Other languages
English (en)
Inventor
黄秀珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Aoyu Technology Co ltd
Original Assignee
Guangzhou Aoyu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Aoyu Technology Co ltd filed Critical Guangzhou Aoyu Technology Co ltd
Priority to CN202011315827.3A priority Critical patent/CN112375732A/zh
Publication of CN112375732A publication Critical patent/CN112375732A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/061Sperm cells, spermatogonia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/40Nucleotides, nucleosides or bases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Reproductive Health (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种体外扩增精原干细胞的3D悬浮培养方法。该方法包括以下步骤:在旋转生物反应容器中,将精原干细胞悬液接种于RGD多肽修饰多孔聚乳酸微球上,加入改良的RPMI‑1640培养基,在30~34℃下进行三维静态培养,待精原干细胞粘附于RGD多肽修饰多孔聚乳酸微球上后,启动旋转系统,在30~34℃下进行三维动态悬浮培养。使用本发明方法能在无添加饲养层细胞的前提下,实现小鼠SSCs体外大规模扩增,并获得良好的干细胞增殖活性及未分化活性。

Description

一种体外扩增精原干细胞的3D悬浮培养方法
技术领域
本发明属于生物技术领域,具体涉及一种体外扩增精原干细胞的3D悬浮培养方法。
背景技术
精原干细胞(spermatogonial stem cells,SSCs)是一类存在于雄性动物体睾丸内生精小管内侧壁的一类维持增殖和分化平衡的成体干细胞,在体外培养过程中,SSCs可以自发表观重组转变成为具有和胚胎干细胞类似生物学功能的多能干细胞。是成体干细胞研究的一个重点。
Kanatsu-Shinohara实验室在2003年成功建立了小鼠精原干细胞体外培养体系,经过10余年的发展,小鼠SSCs分离培养技术日臻成熟,小鼠SSCs成为生殖干细胞研究主要细胞材料和模型。然而,SSCs培养体系要求苛刻,依赖于饲养层细胞,易造成饲养层细胞存在带来的外源基因污染、免疫排斥等问题,此外,因为存在饲养层细胞,导致SSCs转基因工作难以进行,转基因效率低,稳转细胞系筛选困难。饲养层细胞是经过一定的化学或射线处理后所得到的有丝分裂过程受到抑制的单层细胞,这些细胞不能再进行分裂增殖却依然保持着代谢活性,可以分泌一系列已知或未知的可溶性膜结合生长因子和受体来促进干细胞的增殖并抑制其分化,使其保持干细胞未分化活性,还可通过为干细胞提供空间支持,进行必要的物理支持而促进干细胞增殖。虽然已有报道采用无饲养层无血清培养体系培养小鼠SSCs,其是通过向培养基中添加大量的各种生长因子或其它物质来替代饲养层细胞的作用,不仅培养成本较高,而且SSCs细胞生长缓慢,容易造成自然分化。主要是由于通过饲养层细胞的物理接触而刺激产生的旁分泌及相关的一些蛋白,是无法通过简单的添加而解决的。通过物理支持和生长因子的分泌,饲养层细胞作为一个整体,为目的细胞的增殖及抑制分化提供了系统的支持。
另一方面,现有的小鼠SSCs体外培养方式大部分为二维平面培养,传统的二维培养并不能够提供细胞组织正常发育所需的环境条件,因而细胞在形态学上会发生改变,进而影响其分化、基因表达等。三维培养是利用各种方法及材料,使细胞呈空间立体方式生长,更接近于体内生长模式,形成类似体内组织的结构,更有利于细胞功能的保持和发挥。目前关于小鼠SSCs体外三维培养的研究相对较少,且关于小鼠SSCs三维培养的报道大部分还是需要依赖于饲养层细胞的作用。因此,有必要提供一种新型的体外扩增精原干细胞的3D悬浮培养方法,在无添加饲养层细胞的前提下,实现小鼠SSCs体外大规模扩增,并获得良好的干细胞增殖活性及未分化活性。
发明内容
本发明的目的是提供一种体外扩增精原干细胞的3D悬浮培养方法,该方法在无添加饲养层细胞的前提下,实现小鼠SSCs体外大规模扩增,并获得良好的干细胞增殖活性及未分化活性。
本发明是通过以下技术方案予以实现的:
一种体外扩增精原干细胞的3D悬浮培养方法,包括以下步骤:在旋转生物反应容器中,将精原干细胞悬液接种于RGD多肽修饰多孔聚乳酸微球上,加入改良的RPMI-1640培养基,在30~34℃下进行三维静态培养,待精原干细胞粘附于RGD多肽修饰多孔聚乳酸微球上后,启动旋转系统,在30~34℃下进行三维动态悬浮培养。
优选地,所述的精原干细胞在培养体系中接种的细胞密度为5×104~8×104个/mL;所述的RGD多肽修饰多孔聚乳酸微球在培养体系中的使用浓度为8~10mg/mL。
优选地,所述的三维静态培养是在30~34℃、5%CO2下培养4~6h。
优选地,所述的三维动态悬浮培养是在30~34℃、5%CO2、15~20r/min下培养,并且三维动态培养过程中需控制培养体系无气泡,隔天半量更换培养液。
优选地,所述的RGD多肽修饰多孔聚乳酸微球为精氨酸-甘氨酸-天冬氨酸三肽修饰多孔聚乳酸微球,所述的多孔聚乳酸微球的粒径为100~300μm,密度为1.00~1.10g/cm3,孔径为30~50μm。
优选地,所述的RGD多肽修饰多孔聚乳酸微球的制备包括如下步骤:称取0.2g多孔聚乳酸微球于10mL MES缓冲液中,超声下分散,加入1mL含0.7M NHS和0.1M EDC的MES缓冲液反应1h,收集反应后的多孔聚乳酸微球,用MES缓冲液洗涤除去未反应的NHS和EDC,然后加入5mL PBS缓冲液形成微球悬浮液,将20mg RGD多肽加入悬浮液中,于磁力搅拌器上搅拌过夜,真空干燥,即得RGD多肽修饰多孔聚乳酸微球。
优选地,所述的多孔聚乳酸微球的制备包括如下步骤:称取2g聚乳酸溶于20mL二氯甲烷,搅拌溶解,然后加入质量分数为5%的明胶水溶液,明胶与聚乳酸的质量比为1:40,于高速剪切乳化机中10000rpm下混合3~5min,得到乳液;将乳液加至50mL预冷至2℃的质量分数为0.1%的聚乙烯醇溶液中,在800rpm下磁力搅拌3~5min,将乳液分散成微球,收集微球,用去离子水反复清洗多次,真空干燥,即得到多孔聚乳酸微球。
优选地,所述的改良的RPMI-1640培养基组成为:RPMI-1640培养基中添加30~60μMβ-巯基乙醇、0.5~1.5%v/v Ultroser G、0.5~1mg/mL GP4G、50~60ng/mL GFRα1、10~20ng/mL rrGDNF、8~12ng/mL bFGF、50~100U/mL青霉素和50~100μg/mL链霉素。
优选地,所述的改良的RPMI-1640培养基组成为:RPMI-1640培养基中添加50μMβ-巯基乙醇、1%v/v Ultroser G、1mg/mL GP4G、50ng/mL GFRα1、20ng/mL rrGDNF、10ng/mLbFGF、50U/mL青霉素和50μg/mL链霉素。
优选地,所述的精原干细胞悬液的制备是将分离纯化得到的小鼠精原干细胞用添加了2~5%v/v Ultroser G的RPMI-1640培养基重悬获得。
与现有技术相比,本发明具有如下有益效果:
1、本发明采用RGD多肽修饰多孔聚乳酸微球作为体外精原干细胞三维培养的载体,与常规三维培养用的实心微载体或支架比较,其表面及内部具有多孔结构有利于细胞的大量黏附,开孔结构有利于营养物质的传输和代谢物质的排出以及细胞间的相互作用。经过RGD多肽修饰的多孔聚乳酸微球能显著促进精原干细胞的粘附与伸展,为精原干细胞的增殖提供提供空间支持,RGD多肽在提高多孔微球细胞黏附性的同时还可以加强细胞与微球的相互作用,通过物理接触而刺激产生的旁分泌及相关的一些蛋白,促进细胞增殖并保持未分化活性。与通过浸渍技术(物理手段)将层黏蛋白、多聚赖氨酸等物质包被在微球上制得的微载体比较,本发明是通过化学交联将多孔聚乳酸微球的活化羧基与RGD多肽的氨基脱水偶联得到RGD多肽修饰多孔聚乳酸微球,性质更为稳定,在旋转生物反应容器中进行三维动态悬浮培养的过程更有利于维持细胞聚集体的粘附状态,防止自由落体运动对细胞造成损伤,并且无需进行反复动态培养-静止培养的预适应过程。
2、本发明采用改良的RPMI-1640培养基对精原干细胞进行培养,相较于现有常用的DMEM、MEM等培养基,更有利于促进精原干细胞的体外增殖及保持干细胞的未分化活性,更好地维持干细胞的生物学特征。尤其是添加的血清替代品Ultroser G及四磷酸二鸟苷GP4G与RPMI-1640培养基相容性佳,使用Ultroser G可避免常规含有FCS、FBS、BSA等血清成分的培养基诱导精原干细胞分化而失去干细胞活性、导致残余体细胞过度生长、降低精原干细胞体外培养数量的问题出现。此外,本发明人还意外发现添加的GP4G除了为干细胞增殖提供能量,显著促进细胞增殖和自我更新外,还对维持干细胞不分化状态具有重要的作用,使精原干细胞能够在体外长期保持高度的增殖活性和分化潜能。
3、本发明通过采用RGD多肽修饰多孔聚乳酸微球作为体外精原干细胞三维培养的载体,结合改良的RPMI-1640培养基对精原干细胞进行培养,实现了体外扩增精原干细胞的3D悬浮培养,在无添加饲养层细胞的前提下,实现小鼠SSCs体外大规模扩增,并获得良好的干细胞增殖活性及未分化活性。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
下述实施例的旋转生物反应容器(rotary cell culture system,RCCS)购于美国宇航局生命中心的Synthecon公司。
RGD多肽(Arg-Gly-Asp)购自上海经科化学科技有限公司,CAS号99896-85-2。
RPMI-1640培养基购自Thermo Fisher Scientific,货号A1049101。
Ultroser G购自上海恒斐生物科技有限公司,货号15950-017。
GP4G(四磷酸二鸟苷)购自上海妍琦生物科技有限公司,货号orb65248。
GFRα1重组蛋白购自上海康朗生物科技有限公司,货号KL548Hu01。
rrGDNF(重组大鼠胶质细胞源神经营养因子)购自上海恒斐生物科技有限公司,货号512-GF-010/CF。
bFGF(重组小鼠碱性成纤维细胞生长因子)购自上海研卉生物科技有限公司,货号CYT-386。
实施例1
1、培养基配制
(1)含4%v/v Ultroser G的RPMI-1640培养基的配制:往RPMI-1640培养基中添加4%v/v Ultroser G,搅拌混匀,过滤除菌,即得。
(2)改良的RPMI-1640培养基的配制:往RPMI-1640培养基中添加50μMβ-巯基乙醇、1%v/v Ultroser G、1mg/mL GP4G、50ng/mL GFRα1、20ng/mL rrGDNF、10ng/mL bFGF因子、50U/mL青霉素和50μg/mL链霉素,搅拌溶解,过滤除菌,即得。
2、RGD多肽修饰多孔聚乳酸微球的制备
(1)称取2g聚乳酸溶于20mL二氯甲烷,搅拌溶解,然后加入质量分数为5%的明胶水溶液,明胶与聚乳酸的质量比为1:40,于高速剪切乳化机中10000rpm下混合3min,得到乳液;将乳液加至50mL预冷至2℃的质量分数为0.1%的聚乙烯醇溶液中,在800rpm下磁力搅拌5min,将乳液分散成微球,收集微球,用去离子水反复清洗多次,真空干燥,即得到多孔聚乳酸微球,该多孔聚乳酸微球的粒径为100~300μm,密度为1.00~1.10g/cm3,孔径为30~50μm。
(2)称取0.2g多孔聚乳酸微球于10mL MES缓冲液中,超声下分散,加入1mL含0.7MNHS和0.1M EDC的MES缓冲液反应1h,收集反应后的多孔聚乳酸微球,用MES缓冲液洗涤除去未反应的NHS和EDC,然后加入5mL PBS缓冲液形成微球悬浮液,将20mg RGD多肽加入悬浮液中,于磁力搅拌器上搅拌过夜,真空干燥,即得RGD多肽修饰多孔聚乳酸微球。
3、精原干细胞的分离与纯化
(1)取7日龄雄性ICR小鼠,颈椎脱臼处死,酒精消毒后取睾丸,用无菌DPBS将组织漂洗3遍;在无菌DPBS中去除脂肪垫、微血管及附睾;在体视镜下用眼科镊剥离睾丸白膜,将游离出来的生精小管撕成1-2mm3小段,得到生精小管小段,将生精小管小段用无菌DPBS漂洗2遍后移入离心管中,加入组织10倍体积的DPBS配制的1g/LⅣ型胶原酶溶液和少量的1g/L的DNAseⅠ溶液,置于37℃条件下消化10min,然后用DPBS洗涤,离心,弃上清,再加入等量的PBS配制的0.25%胰蛋白酶溶液消化10min,最后加入10倍体积的DPBS洗涤,离心,弃上清,反复洗涤3次后,用DPBS重悬细胞,得到睾丸细胞悬液。
(2)将睾丸细胞悬液进行Percoll密度梯度离心分离纯化富集SSCs,具体是在离心管中按密度由大到小依次叠加Percoll密度梯度液,将待分离的睾丸细胞悬液置于梯度分离液最上层,1400r/20min离心;收集27%~35%梯度之间界面上的细胞(主要为SSCs)至离心管中。加入适量DPBS,混匀离心,弃上清,然后加入含4%v/v Ultroser G的RPMI-1640培养基,混匀,得到小鼠SSCs悬液。
4、小鼠SSCs三维悬浮培养
将小鼠SSCs悬液以6×104个/mL密度接种于10mL的旋转生物反应系统中的HARV容器中,随后加入80mg RGD多肽修饰多孔聚乳酸微球,最后加入10mL改良的RPMI-1640培养基,在34℃、5%CO2培养箱内进行三维静态培养4h,待小鼠SSCs粘附于RGD多肽修饰多孔聚乳酸微球上后,启动旋转系统,在34℃、5%CO2培养箱内、20r/min下进行三维动态悬浮培养,三维动态培养过程中需控制培养体系无气泡,隔天半量更换培养液,在培养过程中观察小鼠SSCs的生长情况。
对比例1
参照上述实施例1中小鼠SSCs三维悬浮培养的步骤,采用层黏蛋白和多聚赖氨酸包被的FACTⅢ微载体替换本发明的RGD多肽修饰多孔聚乳酸微球对小鼠SSCs进行三维培养。所述的FACTⅢ微载体(SoloHill)购自颇尔过滤器(北京)有限公司,通过常规的物理浸渍方法将层黏蛋白和多聚赖氨酸包被于FACTⅢ微载体表面上(具体制备步骤可参考中国发明专利CN 111206015 A)。其余的步骤及参数条件同实施例1。
对比例2
参考上述实施例1中小鼠SSCs三维悬浮培养的步骤对小鼠SSCs进行三维培养。其区别在于,以MEM培养基(购自上海微科生物技术有限公司,商品编号P04-08056)替换RPMI-1640培养基用于配制小鼠SSCs三维悬浮培养液,即往MEM培养基中添加50μMβ-巯基乙醇、1%v/v Ultroser G、1mg/mL GP4G、50ng/mL GFRα1、20ng/mL rrGDNF、10ng/mL bFGF因子、50U/mL青霉素和50μg/mL链霉素,搅拌溶解,过滤除菌,即得。其余的步骤及参数条件同实施例1。
对比例3
参考上述实施例1中小鼠SSCs三维悬浮培养的步骤对小鼠SSCs进行三维培养。其区别在于,使用如下的培养基:RPMI-1640培养基中添加50μMβ-巯基乙醇、2.5wt%BSA、50ng/mL GFRα1、20ng/mL rrGDNF、10ng/mL bFGF因子、50U/mL青霉素和50μg/mL链霉素,替换本发明的改良的RPMI-1640培养基。其余的步骤及参数条件同实施例1。
对比例4
参考上述实施例1中小鼠SSCs三维悬浮培养的步骤对小鼠SSCs进行三维培养。其区别在于,所述的改良的RPMI-1640培养基不含GP4G。其余的步骤及参数条件同实施例1。
对比例5
参考上述实施例1中小鼠SSCs三维悬浮培养的步骤对小鼠SSCs进行三维培养。其区别在于,使用现有的精原干细胞无饲养层培养液(中国发明专利CN 109554336 A)替换本发明的改良的RPMI-1640培养基,该培养液的组成为:含10%血清DMEM/F12培养基中添加150ng/mL GFRα1、20ng/mL EGF、10ng/mL bFGF、6g/L葡萄糖、25mg/L胰岛素、10-4mol/L维生素C、10mg/L生物素、1%v/v非必须氨基酸补充液、1%v/v维生素补充液。其余的步骤及参数条件同实施例1。
一、体外三维培养中精原干细胞的生长状态观察
在电子显微镜下观察上述实施例1和对比例1-5的小鼠SSCs在RCCS系统中进行三维培养过程的生长状态,结果见下表1。
表1精原干细胞的生长状态
Figure BDA0002791381470000091
Figure BDA0002791381470000101
由上述实施例1和对比例1的结果可知,相较于采用层黏蛋白和多聚赖氨酸包被的FACTⅢ微载体,采用本发明的RGD多肽修饰多孔聚乳酸微球更有利于促进小鼠SSCs体外三维培养过程中快速增殖。由上述实施例1和对比例2-5的结果可知,采用本发明提供的改良的RPMI-1640培养基对小鼠SSCs进行培养,相较于现有的培养基,更有利于促进SSCs的体外增殖,尤其是添加的血清替代品Ultroser G及四磷酸二鸟苷GP4G与RPMI-1640培养基相容性佳。
二、碱性磷酸酶染色鉴定精原干细胞
碱性磷酸酶(AKP)是多潜能细胞的一个分子标记(Neri et al.2007;Park etal.2008)。AKP阳性细胞具有干细胞特性,可被染成蓝紫色或棕色。将上述实施例1培养5d后的小鼠SSCs用4%多聚甲醛固定0.5h,用PBS漂洗三次,每次5min。将被固定的SSCs用NBT/BCIP AKP底物显色液在低转速下避光染色10~15min。然后用PBS漂洗三次,每次5min。在倒置显微镜下观察。
结果显示,SSCs呈圆形或椭圆形,能被AKP染色成蓝紫色或棕色,采用本发明方法分离培养的SSCs的AP活性呈强阳性。
三、间接免疫荧光染色鉴定精原干细胞的未分化活性
在小鼠的睾丸中,c-kit受体存在于A型SSCs上(SSCs在增殖过程中分A、B两型,A型细胞又可分为As、Apr及Aal三型,统称为未分化型SSCs),c-kit受体可作为鉴定SSCs的标记物。GCNF(生殖细胞核因子又称孤儿核受体)主要定位于B型精原细胞,在精子发生的启动中可能起到了关键作用。Oct-4表达于大多数未分化的精原细胞,在维持下拨的干细胞特性上起重要作用,是干细胞标志物。
本发明通过间接免疫荧光染色检测小鼠SSCs中c-kit、GCNF、Oct-4的受体的表达,鉴定SSCs的未分化活性。具体步骤为:取上述实施例1培养30d后的小鼠SSCs置于含有盖玻片的培养皿中培养,待盖玻片铺满细胞后,取出盖玻片,用PBS缓冲液冲洗3次,置于75%乙醇中室温下固定20min。用PBS缓冲液冲洗玻片3次,每次5min;用含10%山羊血清的封闭液室温封闭30min,消除抗体非特异性结合;提前5min配制一抗,抗体稀释浓度:c-kit(1:50)、GCNF(1:800)、Oct-4(1:200);按上述稀释浓度分别滴加一抗,4℃孵育过夜,空白对照组用PBS替代,次日清晨用PBS浸洗玻片3次,每次5min;滴加二抗异硫氰酸荧光素(FITC)标记的山羊抗兔IgG(1:100),室温孵育2h,注意避光;用PBS浸洗玻片3次,每次5min;最后用甘油PBS封片,于激光共聚焦显微镜下(蔡司)观察,结果见下表2。
表2精原干细胞的c-kit、GCNF、Oct-4检测
实施例1的SSCs 检测结果
c-kit +
GCNF
Oct-4 +
注:“—”表示阴性,“+”表示阳性。
结果显示,GCNF在小鼠SSCs呈现阴性表达,而c-kit和Oct-4在小鼠SSCs呈现阳性表达,而空白对照组未见特异性染色。可见本发明的小鼠SSCs培养30d后为A型精原干细胞,未发生分化,具有干细胞的生物学特征。
四、流式细胞仪检测精原干细胞的活性率
实施例1和对比例1-5的小鼠SSCs培养7d后,用胰酶消化液(0.25%胰酶-0.01%EDTA)对细胞进行消化,PBS清洗2次,收集细胞清洗液,加入FITC标记的Annexin-V室温避光孵育30min,加入PI试剂,避光孵育5min,加入适量缓冲溶液,按照试剂盒说明书在流式细胞仪上进行检测,使用流式细胞仪检测各试验组细胞的生长周期判断细胞增殖,检测精原干细胞的活性率。
统计学处理:使用SPSS16.0,进行统计学分析,计量资料的结果表示为均值±标准差,采用组间t检验。当P<0.05,表明差异具有统计学意义。结果如表3所示。
表3精原干细胞的活性率(%)
组别 活性率(%)
实施例1 99.84±12.58
对比例1 95.12±13.40
对比例2 89.47±11.66
对比例3 86.26±12.29
对比例4 93.85±12.37
对比例5 85.79±13.14
由上述实施例1与对比例1-5的结果可知,采用本发明的RGD多肽修饰多孔聚乳酸微球,结合改良的RPMI-1640培养基对小鼠SSCs进行培养,更有利于提高SSCs的活性率。
五、精原干细胞的分化诱导
使用含10%FBS的DMEM培养液+0.1μg/mL睾酮+1μmol/L维甲酸+0.1U/mL卵泡刺激素对实施例1培养30天后收集的小鼠SSCs进行培养,诱导SSCs分化。隔天换液,持续培养三周。结果显示,经体外诱导可见有新生成的精子,具有明显的尾部结构,表明采用本发明方法体外培养的SSCs保持良好的未分化活性,该SSCs具有良好的克隆形成能力和诱导分化成精子细胞功能。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种体外扩增精原干细胞的3D悬浮培养方法,其特征在于,包括以下步骤:在旋转生物反应容器中,将精原干细胞悬液接种于RGD多肽修饰多孔聚乳酸微球上,加入改良的RPMI-1640培养基,在30~34℃下进行三维静态培养,待精原干细胞粘附于RGD多肽修饰多孔聚乳酸微球上后,启动旋转系统,在30~34℃下进行三维动态悬浮培养。
2.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的精原干细胞在培养体系中接种的细胞密度为5×104~8×104个/mL;所述的RGD多肽修饰多孔聚乳酸微球在培养体系中的使用浓度为8~10mg/mL。
3.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的三维静态培养是在30~34℃、5%CO2下培养4~6h。
4.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的三维动态悬浮培养是在30~34℃、5%CO2、15~20r/min下培养,并且三维动态培养过程中需控制培养体系无气泡,隔天半量更换培养液。
5.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的RGD多肽修饰多孔聚乳酸微球为精氨酸-甘氨酸-天冬氨酸三肽修饰多孔聚乳酸微球,所述的多孔聚乳酸微球的粒径为100~300μm,密度为1.00~1.10g/cm3,孔径为30~50μm。
6.根据权利要求5所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的RGD多肽修饰多孔聚乳酸微球的制备包括如下步骤:称取0.2g多孔聚乳酸微球于10mLMES缓冲液中,超声下分散,加入1mL含0.7M NHS和0.1M EDC的MES缓冲液反应1h,收集反应后的多孔聚乳酸微球,用MES缓冲液洗涤除去未反应的NHS和EDC,然后加入5mL PBS缓冲液形成微球悬浮液,将20mg RGD多肽加入悬浮液中,于磁力搅拌器上搅拌过夜,真空干燥,即得RGD多肽修饰多孔聚乳酸微球。
7.根据权利要求1、5或6所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的多孔聚乳酸微球的制备包括如下步骤:称取2g聚乳酸溶于20mL二氯甲烷,搅拌溶解,然后加入质量分数为5%的明胶水溶液,明胶与聚乳酸的质量比为1:40,于高速剪切乳化机中10000rpm下混合3~5min,得到乳液;将乳液加至50mL预冷至2℃的质量分数为0.1%的聚乙烯醇溶液中,在800rpm下磁力搅拌3~5min,将乳液分散成微球,收集微球,用去离子水反复清洗多次,真空干燥,即得到多孔聚乳酸微球。
8.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的改良的RPMI-1640培养基组成为:RPMI-1640培养基中添加30~60μMβ-巯基乙醇、0.5~1.5%v/v Ultroser G、0.5~1mg/mL GP4G、50~60ng/mL GFRα1、10~20ng/mL rrGDNF、8~12ng/mL bFGF、50~100U/mL青霉素和50~100μg/mL链霉素。
9.根据权利要求8所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的改良的RPMI-1640培养基组成为:RPMI-1640培养基中添加50μMβ-巯基乙醇、1%v/vUltroser G、1mg/mL GP4G、50ng/mL GFRα1、20ng/mL rrGDNF、10ng/mL bFGF、50U/mL青霉素和50μg/mL链霉素。
10.根据权利要求1所述的体外扩增精原干细胞的3D悬浮培养方法,其特征在于,所述的精原干细胞悬液的制备是将分离纯化得到的小鼠精原干细胞用添加了2~5%v/vUltroser G的RPMI-1640培养基重悬获得。
CN202011315827.3A 2020-11-22 2020-11-22 一种体外扩增精原干细胞的3d悬浮培养方法 Withdrawn CN112375732A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011315827.3A CN112375732A (zh) 2020-11-22 2020-11-22 一种体外扩增精原干细胞的3d悬浮培养方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011315827.3A CN112375732A (zh) 2020-11-22 2020-11-22 一种体外扩增精原干细胞的3d悬浮培养方法

Publications (1)

Publication Number Publication Date
CN112375732A true CN112375732A (zh) 2021-02-19

Family

ID=74587293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011315827.3A Withdrawn CN112375732A (zh) 2020-11-22 2020-11-22 一种体外扩增精原干细胞的3d悬浮培养方法

Country Status (1)

Country Link
CN (1) CN112375732A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480262A (zh) * 2022-03-10 2022-05-13 中山大学 一种3d体外培养中华乌塘鳢精原细胞产生功能精子的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480262A (zh) * 2022-03-10 2022-05-13 中山大学 一种3d体外培养中华乌塘鳢精原细胞产生功能精子的方法
CN114480262B (zh) * 2022-03-10 2022-07-05 中山大学 一种3d体外培养中华乌塘鳢精原细胞产生功能精子的方法

Similar Documents

Publication Publication Date Title
JP5670053B2 (ja) マイクロキャリアを使用した、産褥由来の細胞の生体外での拡大
Goh et al. Microcarrier culture for efficient expansion and osteogenic differentiation of human fetal mesenchymal stem cells
CN101228264B (zh) 使灵长类多能干细胞分化成心肌细胞系细胞
JP5265537B2 (ja) ヒト胚盤胞由来幹細胞に由来する多能性心臓前駆細胞の新規の集団
EP1857545A1 (en) Extracellular matrix coated surface for culturing cells
WO2018228071A1 (zh) 一种人多能干细胞来源人视网膜色素上皮细胞的制备和扩增培养方法
JP2010508851A5 (zh)
CN107267442A (zh) 微载体上的多能干细胞培养
JP2002535981A (ja) 造血幹細胞および/または前駆細胞を維持および増加するための方法および装置
Meng et al. Optimizing human induced pluripotent stem cell expansion in stirred-suspension culture
US20220395537A1 (en) Methods of stem cell culture for obtaining products, and implementations thereof
EGUCHI et al. Ultrastructure of the differentiated cell colony derived from a singly isolated chondrocyte in in vitro culture
WO2010013906A2 (ko) 인간 줄기세포에서 고활성 줄기세포를 분리하는 방법 및 상기 방법에 의해 분리된 고활성 줄기 세포
CN112375732A (zh) 一种体外扩增精原干细胞的3d悬浮培养方法
CN107674858B (zh) 骨髓内皮祖细胞的分离培养基和分离方法
KR20220038364A (ko) 접착성 세포를 부유 배양하기 위한 배지 조성물의 제조 방법
CN114292804B (zh) 一种血管化脂肪类器官培养方法
CN113355281B (zh) 高效分离小鼠肌内纤维-成脂祖细胞的方法
CN115537387A (zh) 一种无支架3d微组织及其构建方法
CN110592007B (zh) 一种间充质干细胞及其制备方法和应用
CN111394301A (zh) 白皮杉醇在增加多能干细胞分泌外泌体数量及生物活性中的应用
CN111206015B (zh) 一种利用fact ⅲ微载体体外扩增精原干细胞的三维动态培养方法
CN105734011B (zh) 一种维持人羊膜上皮干细胞多能性的培养液
CN116731961A (zh) 一种第三咽囊内胚层的培养方法及应用
CN117384830A (zh) 高效制备无异源成分iPSCs的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210219

WW01 Invention patent application withdrawn after publication